Department News

Astrophysics and Cosmology

Research Highlight: Star Chemistry

Research Highlight: Star Chemistry

The Ring Nebula was formed when a Sun-like star nearing the end of its life ejected part of its atmosphere into the interstellar medium. The nebular gas itself is heated by the UV continuum from the remnant of the original star visible at the center of the Ring. Also shown is a slitless spectrum of the Ring, where an image of the nebula appears at wavelengths of bright nebular emission. Planetary nebulae are useful in Prof. Henry’s research in determining properties of the interstellar medium as well as for studying the evolution of stars like the Sun. Credits: Image, Hubble Heritage Team (NASA); Spectrum: Julie Skinner (former OU Astronomy undergraduate), using the 2.1 meter telescope at KPNO.

Research Highlight: OU-Apache Point Observatory Partnership

Research Highlight: OU-Apache Point Observatory Partnership

The University of Oklahoma has signed a 3-year lease agreement with the Astrophysical Research Consortium in Sunspot, NM (see the press release), giving its undergraduate students, graduate students, postdocs, and faculty access to research-grade 3.5m and 0.5m telescopes at the Apache Point Observatory. After being trained to use these facilities on-site in NM, OU astronomers will operate these telescopes from their offices in Norman. The agreement will help elevate OU’s astrophysics research profile and provide invaluable educational training to OU students.

Research Highlight: Active Galactic Nuclei

Research Highlight: Active Galactic Nuclei

Active Galactic Nuclei (AGN) such as the one imaged here by the Hubble Space Telescope, are the most luminous, persistently emitting individual objects in the Universe. They can be seen at the largest distances, and provide a probe of the early Universe after structure formation. Used as a background light, absorption lines in their spectra trace nonluminous matter. They are powered by accretion onto black holes, and are key for understanding black hole demographics and the black hole mass function. Prof. Leighly works to understand how the primary physical parameters for black hole accretion, the black hole mass and accretion rate, manifest themselves in the broad band continuum and line emission from AGN.



CMP Journal Club

Oct 17, 2019 1:30 pm

Nielsen Hall 103 - Soumya Bhattacharya


Oct 17, 2019 3:45 pm

Nielsen Hall 170 - Dorival Gonçalves
The Higgs gateway to new physics: First steps into terra incognita

Astronomy Journal Club

Oct 18, 2019 12:30 pm

Nielsen Hall 103 - Renae Wall and Kalee Anderson