Focus the problem
Draw a picture of the situation including ALL the information given in the problem.

\[m = 75 \text{ kg} \]

\[\theta = 9.0^\circ \]

5.0 m = \(r \)

Question(s): What is the problem asking you to find?

What is the work done by friction and average frictional force

Approach: Outline the approach you will use.

Use conservation of energy with work done by friction as the only non-conservative external work

Describe the physics
Draw physics diagram(s) and define ALL quantities uniquely.

Initial

\[y_i = 5.0 \text{ m} \]

\[v_i = 0 \text{ m/s} \]

\[F_f \]

\[W_f, \quad F_f \]

Final

\[y_f = 0 \text{ m} \]

\[v_f = 9.0 \text{ m/s} \]

Which of your defined quantities is your target variable(s)?

Quantitative relationships: Write equations you will use to solve this problem.

\[W = \int F \cdot dr \]

\[W_{ext} = \Delta K + \Delta U \]

\[\frac{1}{2} mv^2 \]

\[U_g = mgH \]
PLAN the SOLUTION
Construct Specific Equations (Same Number as Unknowns)

Find \(\langle F_x \rangle \)
\[
W_f = \int S \, F_x \, dr = \langle F_x \rangle \Delta r \cos \theta
\]
Since \(\theta = -1 \), \(\Delta r = \frac{1}{4} \pi r \)
\[
W_f = \langle F_x \rangle \frac{1}{2} \pi r
\]
\[
\langle F_x \rangle = -\frac{2W_f}{\pi r}
\]

\(\text{(1)} \)

Find \(W_f \)
\[
W_f = \Delta k + \Delta U = K_f - K_i + U_f - U_i
\]
\[
W_f = \frac{1}{2} m V_f^2 - m g y_i
\]

\(\text{(2)} \)

EXECUTE the PLAN
Calculate Target Quantity(ies)

\(\text{(2)} \)
\[
W = \frac{1}{2} (75 \text{ kg})(9.0 \text{ m/s})^2 - \frac{1}{2} (75 \text{ kg})(9.8 \text{ m/s}^2)(5.0 \text{ m})
\]
\[
= -640 \text{ J}
\]

\(\text{(1)} \)
\[
\langle F_x \rangle = \frac{(2)(640 \text{ J})}{11 \text{ (5.0 m)}} = 81 \text{ N}
\]

EVALUATE the ANSWER
Is Answer Properly Stated?

Yes, in Joules and Newtons

Is Answer Unreasonable?

This is a Force of about 18 pounds
So it seems reasonable

Is Answer Complete?

Yes

(extra space if needed)

Check Units

For \(\text{(2)} \)
\[
\frac{\text{[m]}(\text{L})^2}{(\text{T})^2} - \frac{\text{[m]}(\text{L})^2(\text{L})}{(\text{T})^2} = \text{ J ok}
\]

For \(\text{(1)} \)
\[
\frac{\text{[m]}(\text{L})^2}{(\text{T})^2(\text{L})} = \frac{\text{[m]}(\text{L})}{(\text{T})^2} = \text{ J ok}
\]