Chapter 1

Review of Complex Numbers

Complex numbers are defined in terms of the imaginary unit, \(i \), having the property
\[
i^2 = -1. \tag{1.1}\]

A general complex number has the form
\[
z = x + iy, \tag{1.2}\]
where \(x, y \) are real numbers. We also often write
\[
z = \text{Re } z + i \text{Im } z, \tag{1.3}\]
where Re \(z \) is the “real part of \(z \),” and Im \(z \) is the “imaginary part of \(z \).” Complex numbers are added and multiplied just like real numbers: If
\[
z_1 = x_1 + iy_1, \tag{1.4a}
z_2 = x_2 + iy_2, \tag{1.4b}\]
then
\[
z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2), \tag{1.5a}
z_1z_2 = x_1x_2 + iy_1x_2 + ix_1y_2 + i^2y_1y_2 = x_1x_2 - y_1y_2 + i(x_1y_2 + x_2y_1). \tag{1.5b}\]

The complex conjugate of a number is obtained by reversing the sign of \(i \): If \(z = x + iy \), we define the complex conjugate of \(z \) by
\[
z^* = x - iy. \tag{1.6}\]

Note that
\[
\text{Re } z = \frac{z + z^*}{2}, \tag{1.7a}
\]
\[
\text{Im } z = \frac{z - z^*}{2i}. \tag{1.7b}\]

1
CHAPTER 1. REVIEW OF COMPLEX NUMBERS

Figure 1.1: Geometrical interpretation of a complex number $z = x + iy$.

Note also that
\[zz^* = x^2 + y^2 \]
(1.8)
is purely real and non-negative, so we define the modulus, or magnitude, or absolute value of z by
\[|z| = \sqrt{zz^*} = \sqrt{(\text{Re} z)^2 + (\text{Im} z)^2}, \]
(1.9)
where the positive square root is implied.

We give a simple geometrical interpretation to complex numbers, by thinking of them as two-dimensional vectors, as sketched in Fig. 1.1. Here the length of the vector is the magnitude of the complex number,
\[r = |z|, \]
(1.10)
and the angle the vector makes with the real axis is θ, where
\[\tan \theta = y/x; \]
(1.11)
the quadrant θ lies in is determined by the sign of x and y. We call
\[\theta = \arg z \]
(1.12)
the argument or phase of z. The above geometrical picture is sometimes called an Argand diagram.

There is an arbitrariness in the choice of the argument θ of a complex number z, for one can always add an arbitrary multiple of 2π to θ without changing z,
\[\theta \to \theta + 2\pi n, \quad n \text{ a positive integer}, \quad z \to z. \]
(1.13)
It is often convenient to define a single-valued argument function $\arg z$. By convention, the principal value of $\arg z$ is that phase angle which satisfies the inequality
\[-\pi < \arg z \leq \pi. \]
(1.14)
Figure 1.2: Geometrical interpretation of complex conjugation.

(Note that radian measure is always employed.) For every z there is an unique $\arg z$ lying in this range.

The geometrical significance of complex conjugation is shown in Fig. 1.2. Complex conjugation corresponds to reflection in the x-axis.

From the Argand diagram we can write down the “polar representation” of a complex number,

$$ z = r \cos \theta + ir \sin \theta = r(\cos \theta + i \sin \theta), \quad (1.15) $$

so if we have two complex numbers,

$$ z_1 = r_1(\cos \theta_1 + i \sin \theta_1), \quad (1.16a) $$
$$ z_2 = r_2(\cos \theta_2 + i \sin \theta_2), \quad (1.16b) $$

the product is

$$ z_1 z_2 = r_1 r_2 \left\{ \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 \\
+ i \left[\cos \theta_1 \sin \theta_2 + \cos \theta_2 \sin \theta_1 \right] \right\} \\
= r_1 r_2 \left[\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right]. \quad (1.17) $$

That is, the moduli of the complex numbers multiply,

$$ |z_1 z_2| = |z_1||z_2|, \quad (1.18a) $$
while the arguments add,

$$ \arg(z_1 z_2) = \arg z_1 + \arg z_2. \quad (1.18b) $$

The latter statement is to be understood as modulo 2π, i.e., equality up to the addition of an arbitrary integer multiple of 2π. In particular, note that

$$ \left| \frac{1}{z} \right| = \left| \frac{1}{z} \right| |z| = 1, \quad (1.19a) $$
while
\[0 = \text{arg} \left(\frac{1}{z} \right) = \text{arg} \left(\frac{1}{z} \right) + \text{arg} z, \]

implying that
\[\left| \frac{1}{z} \right| = \frac{1}{|z|}, \]
\[\text{arg} \left(\frac{1}{z} \right) = -\text{arg} z. \]

1.1 De Moivre’s Theorem

From the above, if we choose a unit vector,
\[z = \cos \theta + i \sin \theta, \]
successive powers follow a simple pattern:
\[z^n = \cos n\theta + i \sin n\theta, \]

or
\[(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta, \]
where \(n \) is a positive integer. This is called De Moivre’s theorem.

1.2 Roots

Suppose we wish to find all the \(n \)th roots of unity, that is, all solutions to the equation
\[z^n = 1, \]
where \(n \) is a positive integer. If we take the polar form,
\[z = \rho(\cos \phi + i \sin \phi), \]
this means
\[\rho^n(\cos n\phi + i \sin n\phi) = 1, \]
which implies
\[\rho = 1, \]
\[n\phi = 2\pi k, \]
1.2. ROOTS

where \(k \) is any integer. Thus the \(n \)th root of unity has the form

\[
 z = \cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n}.
\]

These are distinct for \(k = 0, 1, 2, \ldots, n - 1; \)

outside of these values of \(k \), the roots repeat. Thus there are \(n \) distinct \(n \)th roots of unity. For example, for \(n = 8 \), the roots are as shown in Fig. 1.3, in the complex plane.