Problems in Bender and Orzag:

Chapter 6, pp. 313-4: **6.71, 6.76**

1. One representation for the gamma function is

\[
\frac{1}{\Gamma(x)} = \frac{1}{2\pi i} \int_C e^{t} t^{-z} dt
\]

where the contour of integration is as shown in Figure 1. Use the method of steepest descents to derive Stirling’s approximation,

\[
\Gamma(x) \sim x^x e^{-x} \sqrt{\frac{2\pi}{x}}, \quad x \to +\infty.
\]

2. The Airy function has the asymptotic expansion

\[
\text{Ai}(x) \sim \frac{1}{2} \pi^{-1/2} x^{-1/4} e^{-2x^{3/2}/3} [1 + O(x^{-3/2}) + O(x^{-3}) + \ldots].
\]

![Contour C](image)

Figure 1: Contour C used for defining the Hankel representation of the gamma function.
Calculate the $O(x^{-3/2})$ and the $O(x^{-3})$ terms.

3. Using the integral representation for the Hankel function of the first kind

$$H_{\nu}^{(1)}(z) = \frac{e^{-i\nu\pi/2}}{\pi} \int_{-\pi/2+i\infty}^{\pi/2-i\infty} d\phi e^{i(z \cos \phi + \nu \phi)},$$

derive Debye’s asymptotic expansion of $\tan \alpha > 0$ and ν large and positive:

$$H_{\nu}^{(1)}(\nu \sec \alpha) \sim \sqrt{\frac{2}{\pi \nu \tan \alpha}} e^{-i\pi/4} e^{i\nu(\tan \alpha - \alpha)} \left(1 + \frac{u_1(\cot \alpha)}{i\nu} + O(1/\nu^2) \right),$$

where

$$u_1(t) = \frac{3t + 5t^3}{24}. $$