Helmholtz equation - unbounded space

\[(\nabla^2 + k^2) G_k(\vec{r}, \vec{r}') = 0 \]

The solution to this equation is an outgoing spherical wave

\[G_k(\vec{r}, \vec{r}') = G_k(\vec{r} - \vec{r}') = -\frac{1}{4\pi} \frac{e^{ik|\vec{r}-\vec{r}'|}}{|\vec{r}-\vec{r}'|} \]

This may be directly verified: Consider a small sphere, of radius \(\varepsilon \), centered on \(\vec{r}' \):

\[
S: \quad \vec{r} = \vec{r}' - \vec{r}'
\]

\[
\int (d\vec{r})(\nabla^2 + k^2) G \approx \int (d\vec{r}) \nabla^2 \left[-\frac{1}{4\pi} \frac{e^{ik|\vec{r}|}}{|\vec{r}|} \right]
\]

\[
\approx \int d\Omega \rho^2 \frac{\partial}{\partial \rho} \left[-\frac{1}{4\pi} \frac{e^{ik\rho}}{\rho} \right] \bigg|_{\rho = \varepsilon}
\]

\[
\approx \frac{1}{4\pi} \int d\Omega \rho^2 \frac{1}{\rho^2} e^{ik\rho} \bigg|_{\rho = \varepsilon} = 1
\]

And for \(r \neq r' \) \((\nabla^2 + k^2) G_k = 0\) is easily seen.
Alternatively, we may construct G from the eigenfunction expansion:

\[G_k(\vec{r}-\vec{r}') = \sum_n \frac{\psi_n^*(\vec{r}') \psi_n(\vec{r})}{\lambda_n - \lambda} \]

where $-\lambda = k^2$, $-\lambda_n = k'^2$, while

\[(\nabla^2 + k'^2) \frac{\psi_k}{k'}(\vec{r}) = 0 \]

or \[\frac{\psi_k}{k'}(\vec{r}) = \frac{1}{(2\pi)^{3/2}} e^{i\vec{k}' \cdot \vec{r}} \]

(The $(2\pi)^{-3/2}$ factor is for normalization. The spectrum of eigenvalues is continuous, so

\[\sum_{\lambda} \rightarrow \int (d\vec{k}') \]

and

\[G_k(\vec{r}-\vec{r}') = \int (d\vec{k}') \frac{e^{-i\vec{k}' \cdot \vec{r}'}}{\frac{i}{k^2 - k'^2}} e^{i\vec{k} \cdot \vec{r}} \]

Do the integral in spherical coordinate

\[(d\vec{k}') = k'^2 dk'd\phi'd\mu', \mu' = \cos \theta' \]

z-axis along direction of $\vec{r}-\vec{r}'$.
\[G(\mathbf{r} - \mathbf{r}') = \frac{1}{(2\pi)^3} \int_0^\infty dk' k'^2 \int_0^{2\pi} d\phi' \int_0^1 dv' \frac{e^{ik'\rho}}{k^2 - k'^2} \]

where we replaced \(\int_0^\infty \) by \(\frac{1}{2} \int_{-\infty}^{\infty} \) since integrand is even in \(k' \). We evaluate this integral by contour methods.

Since now \(k \) coin sides with an eigenvalue we must choose the contour to define the Green's function. Suppose we choose the contour as shown, phasing below the pole at \(k \), above the pole \(k' \) at \(-k \). We close the contour in the UHP for the \(e^{ik\rho} \) term, in the LHP for the \(e^{-ik'\rho} \) term.
Then, by Jordan's lemma,

\[G_{z} (\mathbf{r} - \mathbf{r}') = \frac{1}{(2\pi)^2} \frac{1}{2} \left\{ -\frac{2\pi i}{2k} \frac{ke^{ikr}}{i\rho} \right. \]

\[+ \frac{2\pi i}{-2k} \left(\frac{k}{i\rho} \right) e^{ikr} \rho^2 \]

\[= -\frac{1}{4\pi} \frac{e^{ikr}}{\rho} \cdot Q.E.D. \]

If a different contour had been chosen, we would have got a different Green's function, not one corresponding to outgoing spherical waves. Boundary conditions uniquely determine the contour.

Note: \(G(\mathbf{r}, \mathbf{r}') = G(\mathbf{r}', \mathbf{r}) \), even though \(G_{z} \) is complex. The self-adjointness property from eigenfunction expansion is only formal, and is 'spoiled' by contour choice.
Green's Function for Scalar Wave Equation

The inhomogeneous scalar wave equation

\[
(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}) \psi(\vec{r}, t) = \rho(\vec{r}, t)
\]

requires boundary and initial conditions. The boundary conditions may be Dirichlet, Neumann, or mixed. The initial conditions are Cauchy (see p. 137). Thus we must specify \(\psi(\vec{r}, t_0) \), \(\frac{\partial}{\partial t} \psi(\vec{r}, t_0) \) at every point in the region being considered.

The Green's function \(G(\vec{r}, t; \vec{r}', t') \) satisfies

\[
(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}) G(\vec{r}, t; \vec{r}', t') = \delta(\vec{r} - \vec{r}')
\]

\[
\times \delta(t - t')
\]

It must satisfy the homogeneous form of the boundary conditions satisfied by \(\psi \). Thus if \(\psi \) has a specified value everywhere on the bounding surface, the corresponding Green's function
must vanish on the surface. In classical physics, it is customary to adopt as initial conditions:

\[
\begin{align*}
G(\vec{r}, t, \vec{r}', t') \quad &\quad \big\{ \begin{array}{l}
G(\vec{r}, t, \vec{r}', t') \\
\frac{\partial G}{\partial t} (\vec{r}, t; \vec{r}', t')
\end{array} \big\} = 0 \quad \text{if } t < t' \\
\end{align*}
\]

These then define the so-called retarded Green's functions. They ensure that an effect occurs after its cause. [In fact, however, the time asymmetry of the Green's function, which is not present in the wave equations, is not necessary: and in fact it is impossible to maintain in relativistic quantum mechanics.]

With this Green's function what takes the place of the self-adjointness property given on p. 130? Since \(\frac{\partial G}{\partial t} \) is invariant when \(t \to -t \), we have

\[
\begin{align*}
a) \quad \nabla^2 G(\vec{r}; t; \vec{r}', t') - \frac{i}{c^2} \frac{\partial^2}{\partial t^2} G(\vec{r}; t; \vec{r}', t') &= \delta(\vec{r} - \vec{r}') \delta(t - t') \\
b) \quad \nabla^2 G(\vec{r}; t; \vec{r}'', t'') - \frac{i}{c^2} \frac{\partial^2}{\partial t^2} G(\vec{r}; t; \vec{r}'', t'') &= \delta(\vec{r} - \vec{r}'') \delta(t - t'')
\end{align*}
\]
Multiply a) by \(G(r_j - t; \vec{r}_\prime - t') \), b) by
\(G(\vec{r}_j, \vec{r}_\prime, t') \), subtract, and integrate over
the volume being considered, and over \(t \) from
\(-\infty \) to \(T \), where \(T > t', t'' \), we have

\[
\int_{-\infty}^{T} dt \int d\vec{r} \left\{ G(\vec{r}_j, \vec{r}_\prime, t') \nabla^2 G(\vec{r}_j - t; \vec{r}_\prime - t') - G(\vec{r}_j - t; \vec{r}_\prime - t') \nabla^2 G(\vec{r}_j, \vec{r}_\prime, t') - G(\vec{r}_j, \vec{r}_\prime, t') \frac{1}{c^2} \frac{\partial^2}{\partial t^2} G(\vec{r}_j - t, \vec{r}_\prime - t') \right. \\
\left. + G(\vec{r}_j - t, \vec{r}_\prime - t') \frac{1}{c^2} \frac{\partial^2}{\partial t^2} G(\vec{r}_j, \vec{r}_\prime, t') \right\}
\]

\[=- G(\vec{r}_j^1 - t'; \vec{r}_\prime^1 - t'') + G(\vec{r}_j^1, t''; \vec{r}_\prime^1, t') \]

Now use Green's theorem, together with the identity

\[
\frac{\partial}{\partial t} \left(A \frac{\partial}{\partial t} B - B \frac{\partial}{\partial t} A \right) = A \frac{\partial^2}{\partial t^2} B - B \frac{\partial^2}{\partial t^2} A
\]

to conclude

\[=- G(\vec{r}_j^1 - t'; \vec{r}_\prime^1 - t'') + G(\vec{r}_j^1, t''; \vec{r}_\prime^1, t') \]

\[= \int_{-\infty}^{T} dt \int d\vec{r} \cdot \left\{ G(\vec{r}_j, \vec{r}_\prime, t') \nabla G(\vec{r}_j - t; \vec{r}_\prime - t') \right. \\
\left. - G(\vec{r}_j - t; \vec{r}_\prime - t') \nabla G(\vec{r}_j, \vec{r}_\prime, t') \right\} \]
\[-\int V \left\{ \frac{1}{c^2} \left[\frac{\partial}{\partial t} G(\mathbf{r}, t; \mathbf{r}', t') \right. \right. \left. \frac{\partial}{\partial t} G(\mathbf{r}, -t; \mathbf{r}', -t') \right. \right. \left. \frac{\partial}{\partial t} G(\mathbf{r}, -t; \mathbf{r}', t') \right]\right\}\left. \right|_{t=0}^{t=T} \]

The surface integral vanishes, since both Green's functions satisfy the same homogeneous boundary conditions on \(S \). (B.C. are time independent.) The second integral is zero because

\[G(\mathbf{r}, -\infty; \mathbf{r}', t') = 0 \]

\[\frac{\partial G(\mathbf{r}, -\infty; \mathbf{r}', t')}{\partial t} \]

and

\[G(\mathbf{r}, -T; \mathbf{r}', -t') = 0 \]

\[\frac{\partial G(\mathbf{r}, -T; \mathbf{r}', -t')}{\partial t} \]

since \(-T < -t'\)

Thus, \(G(\mathbf{r}, t; \mathbf{r}', t') = G(\mathbf{r}, -t'; \mathbf{r}', -t) \)

the "reciprocity relation."

How do we express a solution to the wave equation in terms of the Green's function?
The procedure is the same as in the derivation on p. 148. The field, and the Green’s fn., satisfy

\[\nabla^2 \Phi(\vec{r}, t) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \Phi(\vec{r}, t) = \rho(\vec{r}, t) \]

\[\nabla^2 G(\vec{r}, \vec{r}'; t, t') - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} G(\vec{r}, \vec{r}'; t, t') \]

\[\left(\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) = \delta(\vec{r} - \vec{r}') \delta(t - t') \]

Note the differentiations on \(G \) are with respect to the second set of arguments (this equation follows from the reciprocity relation). Again multiply both sides by \(G(\vec{r}, \vec{r}'; t, t') \) and by \(\Phi(\vec{r}, t') \), subtract, integrate over the volume, and over \(t \), from \(t_0 \) to \(t^+ \) (\(t^+ \) means \(t + \epsilon \), \(\epsilon > 0 \)), \(\epsilon \to 0 \) \((t_0 < t) \) (\(\vec{r} \) inside \(V \))

\[\int_{t_0}^{t_+} dt' \int (d\vec{r}') \{ G(\vec{r}, \vec{r}'; t, t') \nabla^2 \Phi(\vec{r}', t') \]

\[- \Phi(\vec{r}, t') \nabla^2 G(\vec{r}, \vec{r}'; t, t') \]

\[- \frac{1}{c^2} \left[G(\vec{r}, \vec{r}'; t, t') \frac{\partial^2}{\partial t^2} \Phi(\vec{r}, t') \right] \]

\[- \Phi(\vec{r}, t') \frac{\partial^2}{\partial t^2} G(\vec{r}, \vec{r}'; t, t') \} \]

\[= - \Psi(\vec{r}, t) + \int_{t_0}^{t_+} dt' \int (d\vec{r}') G(\vec{r}, \vec{r}'; t, t') \]

\[\times \Phi(\vec{r}', t') \]
Use Green's theorem, and identity on p. 16, to conclude

\[\psi(r, t) = \int_{t_0}^{t_+} dt' \int (d\vec{r}') G(r, t; \vec{r}', t') \rho(\vec{r}', t') \]

\[- \int_{t_0}^{t_+} dt' \oint_{S} \left\{ \nabla' \cdot G(r, t; \vec{r}', t') \nabla' \psi(\vec{r}', t') \right\} \]

\[- \frac{1}{c^2} \int (d\vec{r}') \left[G(r, t; \vec{r}', t_0) \frac{\partial}{\partial t_0} \psi(\vec{r}', t_0) \right] \]

\[- \psi(\vec{r}', t_0) \frac{\partial}{\partial t_0} G(r, t; \vec{r}', t_0) \]

Interpretation:

1. 1st integral represents the effect of sources \(\rho \) distributed throughout the volume \(V \).

2. 2nd integral represents the B.C. \(\nabla \psi \) specifies homogeneous Neumann B.C. on \(S \), so

\[\vec{n} \cdot \nabla \psi |_S = f(\vec{r}') \] is specified

then use homogeneous Neumann B.C. for \(G \)
\[\mathbf{n} \cdot \nabla G(\mathbf{r}, t ; \mathbf{r}', t') = 0. \]

So 2nd integral reads

\[- \int_{t_0}^{t+} dt' \int d\mathbf{r}' \cdot G(\mathbf{r}, t ; \mathbf{r}', t') \nabla' \Psi(\mathbf{r}', t') \]

\[- \mathbf{n} \cdot \nabla' \Psi(\mathbf{r}', t') \text{ represents a surface source distribution} \]

[Other types of B.C. are as discussed on pp. 141-143]

3rd integral represents the effect of the initial conditions.

\(\Psi(\mathbf{r}', t_0) \), \(\frac{\partial}{\partial t_0} \Psi(\mathbf{r}', t_0) \)

are specified. They correspond to impulsive sources at \(t = t_0 \).

\[P_{\text{init}}(\mathbf{r}, t') = - \frac{1}{\varepsilon^2} \left[\frac{\partial}{\partial t_0} \Psi(\mathbf{r}', t_0) \delta(t'-t_0) \right. \]

\[+ \left. \Psi(\mathbf{r}', t_0) \delta'(t'-t_0) \right] \]

(verify this by integrating by parts, and letting lower limit of \(t' \) integral be \(t_0-\varepsilon \))
Wave equation in unbounded space

We solve

\[\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) G(\vec{r}, t; \vec{r}', t') = \delta(\vec{r} - \vec{r}') \times \delta(t - t') \]

by noting \(G \) is a function of \(\vec{r} - \vec{r}', t - t' \) only,

\[G(\vec{r} - \vec{r}', t - t') \], and

introducing the Fourier transform

\[g(\vec{k}, \omega) = \int (d\vec{r}) \, d\tau \, e^{i \vec{k} \cdot \vec{r}} \, e^{-i \omega \tau} \, G(\vec{r}, \tau) \]

The Fourier transform of the Green's function equation is \((c = 1 \text{ for convenience}) \)

\[\left[-\kappa^2 + \omega^2 \right] g(\vec{k}, \omega) = 1 \]

or \[g(\vec{k}, \omega) = \frac{1}{\omega^2 - \kappa^2} \] \((\kappa^2 = \vec{k} \cdot \vec{k}) \)

Then

\[G(\vec{r}, \tau) = \int (d\vec{k}) \, d\omega \, \frac{1}{2\pi} e^{-i\vec{k} \cdot \vec{r}} e^{i\omega \tau} g(\vec{k}, \omega) \]

\[= \int (d\vec{k}) \, d\omega \, \frac{1}{2\pi} e^{-i\vec{k} \cdot \vec{r}} e^{i\omega \tau} \frac{1}{\omega^2 - \kappa^2} \]
the \(w \) integral is not well defined until we impose the boundary condition

\[G(\bar{\rho}, \tau) = 0 \quad \text{if} \quad \tau < 0. \]

This will be true if the poles are located above the real \(\omega \) axis.

\[
\int_{-k+i\epsilon}^{k+i\epsilon} \frac{e^{i\omega \tau}}{(\omega-k)(\omega+k)} \, d\omega
\]

Close contour in UHP for \(\tau > 0 \); in LHP for \(\tau < 0 \); in both cases, by Jordan's lemma, the infinite semicircle gives no contribution.

\[
\int_{-\infty}^{\infty} \frac{e^{i\omega \tau}}{(\omega-k)(\omega+k)} \, d\omega
\]

\[
= \begin{cases}
 i \left[e^{ikt} \frac{1}{2k} - e^{-ikt} \frac{1}{2k} \right] & \tau > 0 \\
 0 & \tau < 0
\end{cases}
\]

Thus, if \(\tau > 0 \),

\[
G(\bar{\rho}, \tau) = \frac{1}{(2\pi)^3} \int_{0}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{ik\rho \mu} \\
\times \frac{i}{2\pi} \left[e^{ikt} - e^{-ikt} \right]
\]
\[
\frac{1}{(2\pi)^2} \int_0^\infty \frac{k \, dk}{2i \chi k} \left[e^{ik\rho} - e^{-ik\rho} \right] i \left[e^{ikt} - e^{-ikt} \right] = \frac{1}{(2\pi)^2} \frac{1}{2 \rho} \frac{1}{2} \int_{-\infty}^\infty dk \left[e^{i k(\rho + \tau)} + e^{-i k(\rho + \tau)} \right] \\
- e^{-i k(\rho - \tau)} - e^{-i k(\tau - \rho)}
\]
\[
= \frac{1}{(2\pi)^2} \frac{1}{4 \rho} 2\pi \left\{ 2 \delta(\rho + \tau) - 2 \delta(\rho - \tau) \right\}
\]

But \(\rho, \tau \) are both positive, so \(\rho + \tau \) can never vanish.

So
\[
G(\vec{r}, \tau) = -\frac{1}{4\pi} \frac{1}{\rho} \delta(\rho - \tau)
\]

or restoring \(\chi \),
\[
G(\vec{r} - \vec{r}', t - t') = -\frac{1}{4\pi} \frac{1}{|\vec{r} - \vec{r}'|} \times
\]
\[
\chi \delta\left(\frac{|\vec{r} - \vec{r}'|}{c} - (t - t')\right)
\]

The effect at \(\vec{r} \) at time \(t \) is due to the effect of the point source at \(\vec{r}' \) at time \(t' = t - \frac{|\vec{r} - \vec{r}'|}{c} \).
Physically, this means that the "signal" propagates with speed c.

Let us make this more concrete by considering a simple example, a point "charge" moving with velocity \vec{v} (unit).

Then $p(\vec{r}, t) = q \delta(\vec{r} - \vec{v} t)$

\[\frac{\vec{v}}{c} \rightarrow \]

There are no effects from the infinite surface, so

\[\gamma(\vec{r}, t) = \int_{t_0}^{t_+} \int (d\vec{r}') G(\vec{r} - \vec{r}', t-t') \rho(\vec{r}', t') \]

\[= -\frac{q}{4\pi} \int_{t_0}^{t_+} dt' \frac{1}{|\vec{r} - \vec{v} t'|} \delta \left[\frac{|\vec{r} - \vec{v} t'|}{c} - (t-t') \right] \]

Let $p = \frac{|\vec{r} - \vec{v} t'|}{c} + t'$

\[dp = dt' \left[\frac{v^2 t' - \vec{r}, \vec{v}}{c |\vec{r} - \vec{v} t'|} + 1 \right] \]

since $|\vec{r} - \vec{v} t'| = \sqrt{r^2 + v^2 t'^2 - 2 \vec{r}, \vec{v} t'}$
\[\psi(r, t) = -\frac{q}{4\pi} \int \frac{d\rho s(\rho - t)}{v^2 t' - \vec{r} \cdot \vec{v} + |\vec{r} - \vec{v} t'|} \]

\[= -\frac{q}{4\pi} \left. \frac{1}{\frac{1}{c}(v^2 t' - \vec{r} \cdot \vec{v}) + |\vec{r} - \vec{v} t'|} \right|_{\rho = t} \]

The equation \(\rho = t \) determines \(t' \), the "retarded time."

A more compact way of writing this is to let
\[\vec{\rho} = \vec{r} - \vec{v} t' \], so

\[\psi(\vec{r}, t) = -\frac{q}{4\pi} \frac{1}{\rho - \frac{\vec{v} \cdot \vec{\rho}}{c}} \]

\(\vec{\rho} \) is the displacement of observation point (or from source when signal now reaching observer was radiated) then, at time \(\rho/c \) earlier.
\[h(r, t) = \frac{1}{4\pi} \int_{t_0 - \infty}^{t^*} dt' \frac{1}{\rho(t')} \delta \left(\frac{\rho(t')}{c} - (t - t') \right) \]

\[t = \frac{\rho(t')}{c} + t' \]

\[d\tau = dt' \left(1 + \frac{d\rho}{dt'} \frac{1}{c} \right) \]

\[\rho = \sqrt{r^2 + v^2 t'^2 - 2r \cdot v \cdot t'} \]

\[\frac{d\rho}{dt'} = \frac{v^2 t' - r \cdot \overrightarrow{v}}{\rho(t')} = -\frac{\overrightarrow{v} \cdot \overrightarrow{r}}{\rho} \]

\[(= \frac{1}{2\rho} \frac{d}{dt'} \overrightarrow{r} \cdot \overrightarrow{v} = \frac{\overrightarrow{r}}{\rho} \cdot \overrightarrow{v}) \]

\[d\tau = dt' \left(1 + \frac{\overrightarrow{v} \cdot \overrightarrow{r}}{\rho c} \right) \]

\[\therefore \psi(\overrightarrow{r}; t) = -\frac{q}{4\pi} \int_{t_0 - \infty}^{t^*} d\tau \frac{1}{\rho(t) \left(1 + \frac{\overrightarrow{r} \cdot \overrightarrow{v}}{\rho c} \right)(t)} \delta (\tau - t) \]

\[= -\frac{q}{4\pi} \frac{1}{\rho(t) - \frac{\overrightarrow{r} \cdot \overrightarrow{v}}{c}(t)} \]

\[\tau = t \] determines "retarded time" \(t \)

\[\rho = \text{distance from source to observation pt at time } t' \left(= t - \frac{\rho}{c} \right) \]