Types of Boundary Conditions

Three types of 2nd order, homogeneous differential equations are commonly encountered in physics: (the dimensionality of \(r \) is not important)

Hyperbolic: \(\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) u (\vec{r}, t) = 0 \)
(wave eqn)

Elliptic: \(\left(\nabla^2 + k^2 \right) u (\vec{r}) = 0 \)
(Helmholtz eqn, including Laplace)

Parabolic: \(\left(\nabla^2 - \frac{1}{K} \frac{\partial}{\partial t} \right) T (\vec{r}, t) = 0 \)
(diffusion eqn)

The types of boundary conditions specified on which types of boundaries are necessary to uniquely specify a solution to these equations is as follows:

<table>
<thead>
<tr>
<th>Type of Eqn.</th>
<th>Type of B.C.</th>
<th>Type of Boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperbolic</td>
<td>Cauchy</td>
<td>Open (initial)</td>
</tr>
<tr>
<td>Elliptic</td>
<td>Dirichlet, Neumann or mixed</td>
<td>Closed</td>
</tr>
<tr>
<td>Parabolic</td>
<td>Dirichlet, Neumann or mixed</td>
<td>Open (initial)</td>
</tr>
</tbody>
</table>
Laplace B.C.: specify u, $\frac{\partial u}{\partial n}$ both on boundary ($\frac{\partial u}{\partial n}$ mean normal derivative to surface)

Dirichlet: specify u only on surface

Neumann: specify $\frac{\partial u}{\partial n}$ only on surface

Mixed: specify $\alpha u + \beta \frac{\partial u}{\partial n}$ on surface

If the specified boundary values are zero, the B.C. are called homogeneous; otherwise inhomogeneous.

Example: To determine the motion of a string, described by

$$\left(\frac{\partial^2}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) u = 0.$$

Must specify $u(x,0)$, $\frac{\partial u}{\partial t}(x,0)$ at some initial time ($t=0$)

This is open surface in (ct, x) plane.
Typically, one determines the eigenfunctions of a differential operator subject to homogeneous boundary conditions. That means that the Green's function obeys the same boundary conditions [see p. 136]. But suppose we seek a solution of

$$(L - \lambda) \psi = S$$

subject to inhomogeneous boundary conditions.

It cannot then be true that

$$\psi(\vec{r}) = \int (d\vec{r}') G(\vec{r}, \vec{r}') S(\vec{r}')$$

To see how to deal with this situation, let us consider the example of the (3-dim. Helmholtz equation):

$$(a) \quad (\nabla^2 + k^2) \psi(\vec{r}) = S(\vec{r})$$

We seek a solution $\psi(\vec{r})$ subject to arbitrary inhomogeneous (Dirichlet, Neumann, or mixed) boundary conditions on a surface ∂V enclosing the volume V of interest. The Green's function G for this problem satisfies

$$(b) \quad (\nabla^2 + k^2) G(\vec{r}, \vec{r}') = \delta(\vec{r} - \vec{r}')$$

subject to homogeneous boundary condition of the same type as ψ satisfies.

Multiply (a) by G, (b) by ψ, ...
subtract, and integrate over the appropriate variables:

\[
\int d\mathbf{f}' \left[G(\mathbf{r}, \mathbf{r}') (\nabla^2 + k^2) \psi(\mathbf{r}') \\
- \psi(\mathbf{r}') (\nabla^2 + k^2) G(\mathbf{r}, \mathbf{r}') \right]
\]

\[
= \int d\mathbf{f}' \left[G(\mathbf{r}, \mathbf{r}') \nabla' \psi(\mathbf{r}') \\
- \psi(\mathbf{r}') \nabla' G(\mathbf{r}, \mathbf{r}') \right]
\]

Here we have interchanged \(\mathbf{r} \) and \(\mathbf{r}' \) in (a) and (b), and have used

\[
G(\mathbf{r}, \mathbf{r}') = G(\mathbf{r}', \mathbf{r})
\]

[we assume eigenfunctions and Green's functions are real]. Now we use Green's theorem (Assignment 9, prob 2) to establish

\[
-\int d\mathbf{f}' \cdot \left[G(\mathbf{r}, \mathbf{r}') \nabla' \psi(\mathbf{r}') \\
- \psi(\mathbf{r}') \nabla' G(\mathbf{r}, \mathbf{r}') \right]
\]

\[
+ \int d\mathbf{f}' \ G(\mathbf{r}, \mathbf{r}') \nabla' G(\mathbf{r}, \mathbf{r}') = \int \psi(\mathbf{r}), \nabla' \psi \nabla' G(\mathbf{r}, \mathbf{r}') S(\mathbf{r}') = \begin{cases} \psi(\mathbf{r}), \nabla' \psi & \text{in } V \\ 0, \text{ outside } V \end{cases}
\]

where in the surface integral \(d\mathbf{f}' \) is the outwardly directed surface element, and \(\mathbf{r}' \) lies within the surface \(\partial S \). This generalizes
the simple relation between "field" and "source" given on p. 135

How do we use this result? We always suppose \(\psi \) satisfies homogeneous B.C. on \(\partial V \).
If \(\psi \) satisfies the same conditions, then for \(\bar{r} \) in \(V \)

\[
\psi(\bar{r}) = \int_{V} (dV') \cdot G(\bar{r}, \bar{r}') S(\bar{r}').
\]

But suppose \(\psi \) satisfies inhomogeneous Dirichlet conditions on \(\partial V \):

\[
\psi(\bar{r}') \bigg|_{\bar{r}' \in \partial V} = \psi_0(\bar{r}') \quad \text{(specified)}
\]

Then we impose homogeneous Dirichlet conditions on \(G \):

\[
G(\bar{r}, \bar{r}') \bigg|_{\bar{r}' \in \partial V} = 0
\]

The first surface term is zero, but the 2nd contributes. For example, if \(S(\bar{r}) = 0 \) inside \(V \), \(\bar{r} \) inside \(V \)

\[
\psi(\bar{r}) = \int d\sigma' \cdot [\nabla' G(\bar{r}, \bar{r}')] \psi_0(\bar{r}')
\]

which expresses \(\psi \) in terms of its boundary values.
If \(\psi \) satisfies inhomogeneous Neumann conditions on \(\partial \Omega \)

\[
\frac{\partial \psi (\vec{r}')}{\partial n'} \bigg|_{\vec{r}' \in \partial \Omega} = N(\vec{r}') \text{ specified}
\]

then we use the Green's function which respects homogeneous Neumann condition

\[
\frac{\partial}{\partial n} \ G(\vec{r}, \vec{r}') \bigg|_{\vec{r}' \in \partial \Omega} = 0
\]

so, again if \(S = 0 \) inside \(\Omega \), \((\vec{r} \text{ inside } \Omega) \)

\[
\psi(\vec{r}) = -\int d\sigma \ G(\vec{r}, \vec{r}') \ N(\vec{r}')
\]

\[
[\vec{n} \cdot \nabla = \frac{\partial}{\partial n}]
\]

[Finally if \(\psi \) satisfies inhomogeneous mixed B.C.,

\[
\frac{2}{\partial n}, \psi(\vec{r}') + \alpha(\vec{r}') \psi(\vec{r}') \bigg|_{\vec{r}' \in \partial \Omega} = F(\vec{r}')
\]

then when \(G \) satisfies homogeneous B.C. of the same type

\[
\frac{2}{\partial n} + \alpha(\vec{r}') \bigg|_{\vec{r}' \in \partial \Omega} = 0
\]