Problems:

1) If \(\hat{A} \) and \(\hat{B} \) are Hermitian, which of the following are Hermitian?
 a) \(i(AB-BA) \)
 b) \((AB-B\hat{A}) \)
 c) \((AB+B\hat{A})/2 \)
 d) if \(\hat{A} \) is not Hermitian, is the product \(\hat{A}^\dagger \hat{A} \) Hermitian?
 e) if \(\hat{A} \) corresponds to the observable \(A \) and \(\hat{B} \) corresponds to \(B \), what is a "good" (i.e. Hermitian) operator that corresponds to the physically observable product \(AB \)?

2) For a particle moving in one dimension, show that the observable \(\hat{x}\hat{p} \) is not Hermitian. Construct an operator which corresponds to this physically observable product that is Hermitian.

3) Obtain uncertainty relations for the following products
 a) \(\Delta x\Delta E \)
 b) \(\Delta p_x\Delta E \)
 c) \(\Delta x\Delta T \)
 d) \(\Delta p_x\Delta T \)

 for a particle with kinetic energy \(T \) and total energy \(E \).

4) Can the total energy and linear momentum of a particle moving in one dimension in a constant potential field be measured consecutively with no uncertainty in the values obtained?