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Chapter 7 Lecture Notes
Physics 2414 - Strauss

Formulas: p = mv
ΣF = ∆p/∆t
F∆t  = ∆p
Σpi = Σpf

xCM = (Σmx)/ Σm,   yCM = (Σmy)/ Σm

Main       Ideas:
1. Momentum and Impulse
2. Conservation of Momentum.
3. Elastic Collisions
4. Inelastic Collisions
5. Center of Mass and motion.

1. Momentum and Impulse.
Last chapter we talked about the fundamental law of the conservation of energy.
Energy is always conserved in any process.  This chapter will introduce another
conservation law (which is not applicable in all circumstances, but in many
important ones).  That is the conservation of linear momentum.  First we have to
define what linear momentum is.

p = mv

Linear momentum (p) is defined as the mass of an object times the velocity of
that object.   It is a vector, having the same direction as the velocity of the object.  
We use momentum in this way in everyday language.  A 300 lb lineman has more
momentum than a 180 lb flanker when they are both moving at the same velocity
because the lineman has more mass.  A car going 60 mph has more momentum
than one going 10 mph because it has a higher velocity.

Now consider Newton’s second law:

ΣF = ma = m∆v/∆t = m(v2 - v1)/∆t = (mv2 - mv1)/∆t = (p2 - p1)/∆t

ΣF = ∆p/∆t

So Newton’s second law can be restated as the rate of change of momentum
of a body is proportional to the net force applied to it.  In fact, this way
of stating Newton’s law as the change in momentum is how Newton originally
formulated his second law.
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I can rewrite this equation as ΣF∆t = ∆p.  

In physics you should understand that the equations mean something.  This
equation says that the net force acting on an object over a period of time (∆t)
produces a change in momentum (∆p).  Often when the momentum of an object
is changed, it is because there was a very large force acting on the object for a
very brief time or the force of impact is in a different direction from other
forces acting on an object.  This happens when you hit a ball, or bounce a ball, or
hammer a nail, or in many collisions.  In such cases, we neglect all forces except
the major force changing the momentum and write (dropping the “summation”),

F∆t = ∆p

where the quantity F is the major force changing the momentum, and F∆t is
called the impulse.  It is the quantity which gives the impetus necessary to
change the momentum.

Problem:     A 50-g golf ball is struck with a club.  The ball is deformed by about
2.0 cm during the time of collision and the ball leaves the club face with a
velocity of 44 m/s  (a) What is the impulse during collision? (b) How long is the
collision? (c) What is the average force during the collision?

Problem:    A 100-g ball is dropped from 2.00 m above the ground.  It rebounds to
a height of 1.50 m.  What was the average force exerted by the floor if the ball
was in contact with the floor for 1.00 × 10-2 s.

2. Conservation of Momentum
One of the most important concepts in understanding conservation of momentum
is to understand what we mean by a system.  A system will be defined by the
person trying to solve the problem or look at the situation.

Suppose we look at a collection of objects that we want to define as a system.  If
we have two billiard balls, that could be the system.  A ball bouncing off the
floor could consist of the ball and the floor as the “system,” or I could define just
the ball itself as the system.  Let’s define two classes of forces.  The first are
forces internal to the system.  These are forces between only objects that are in
our defined system.  For example, if our system consists only of two balls, the
only forces internal to the system would be the equal and opposite force between
the two balls when they collide or the force of gravity between the two balls.
Other forces, like the force of gravity from the earth, or the normal force of the
table on the balls are external to the system.  That is they require agents which



3

are not a part of the system.  They require the earth to make gravity, or the table
to impart the forces to the system.  

If there are no external forces, we say that the system is isolated.  In many cases
where a collision occurs, the internal forces are much greater than the external
forces.  If I hit a  baseball or two cars collide, the internal forces between the ball
and the bat, or between the two cars, are much greater over the very brief period
of time that the collision took place, than the external forces like gravity.  In such
a case the system acts as if it is isolated during the collision.  So we
approximate collisions as isolated systems, and treat them as isolated systems.   

A major question, then is what happens in an isolated (or nearly isolated)
collision?

Look at two balls colliding
Before collision: After collision

       m1v1i m2v2i      m1v1f       m2v2f

Looking at ball 1 and at ball 2
F1∆t = ∆p1 = m1v1f -m1v1i F2∆t = ∆p2 = m2v2f -m2v2i

where F1  and F2 are the force of ball 2 on ball 1 and the force of ball 1 on ball 2,
respectively, during the collision.

From Newton’s third law we know that the force of ball 2 on ball 1 (F1) is equal
to the force of ball 1 on ball 2 (-F2), and the time of the collision is the same for
each ball, so we set the two equations above equal to each other with a minus sign
(F1∆t = -F2∆t ).

This leads to two important results.  First, when two objects collide, the
magnitude of the change in momentum for each object is exactly the same:
∆p1 = -∆p2

Second, when we set the two equations equal to each other we get

m1v1f -m1v1i = -(m2v2f -m2v2i ) or    m1v1i  +m2v2i = m1v1f + m2v2f

which generalizes for any number of objects to be

   Σp i = Σpf
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which is the law of the conservation of momentum.  It states:

The total momentum of an isolated system of bodies remains constant.  

Problem:     A 90-kg fullback attempts to dive over the goal line with a velocity of
6.00 m/s.  He is met at the goal line by a 110-kg linebacker moving at 4.00 m/s in
the opposite direction.  The linebacker holds on to the fullback.  Does the
fullback cross the goal line?

Since pi = pf  is a vector equation, if we have a collision in two dimensions, we
must conserve momentum in each direction.  So the conservation of momentum
can be written as two equations pxi = pxf and pyi = pyf.  We must make the
momentum initially and finally equal in both the x direction, and the y direction.

Problem    :  A firecracker weighing 100 g, initially at rest, explodes into 3 parts.  
One part with a mass of 25 g moves along the x axis at 75 m/s.  One part with
mass of 34 g moves along the y axis at 52 m/s.  What is the velocity of the third
part?

3. Elastic Collisions
In a certain class of collisions, both the momentum and the kinetic energy are
conserved.  That is, the total momentum and the total kinetic energy are the
same before and after the collision.  The only collisions that conserve
kinetic energy are elastic collisions.  All collisions that can be
considered isolated conserve momentum.  Remember that momentum is a
vector, so the total momentum must be summed like a vector.  Kinetic energy is a
scalar, so the total energy is summed like regular numbers.  An example of a
nearly elastic collision is a super ball.

Problem:     A ball with a mass of 1.2 kg moving to the right at 2.0 m/s collides
with a ball of mass 1.8 kg  moving at 1.5 m/s to the left.  If the collision is an
elastic collision, what are the velocities of the balls after the collision?

4. Inelastic Collisions
An inelastic collision is one in which kinetic energy is not conserved.  A
collision is called a completely inelastic collision if the objects stick together
after colliding.  In an inelastic collision, kinetic energy is not conserved.
However, linear momentum is conserved even in inelastic collisions.

Demonstration/Problem:     The ballistic pendulum is used to determine the velocity
of a projectile.  Suppose we have a projectile with mass m and velocity v1, and a
pendulum with mass M.  The projectile hits the pendulum and sticks to it, so that
the projectile and pendulum have a mass (m + M ) and final velocity v. The
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pendulum then rises a distance h from its original position. From conservation of
momentum during the collision we know that

mv1 = (m+M)v

After the collision, then mechanical energy is conserved and we have
Ki = Uf

(1/2)(m+M) v2 = (m+M)gh
(1/2) m2v1

2/(m+M) = (m+M)gh
v1

 = √{2gh} (m+M)/m

    R          l
Now h is not easy to measure but it is θ
given by h+l = R R
l/R = cosθ ⇒  l = Rcosθ h
h = R - R cosθ

     
v1

 = √{2gR (1-cosθ)} (m+M)/m

If the gun is horizontal, then from kinematic equations we know
y =vyi

 t - (1/2)gt2

y = - (1/2)gt2

t  = √{2y/g}
x = v1t
    = 2√{yR (1-cosθ)} (m+M)/m

5. Center of Mass
We have talked about the motion of an object a lot in this class.  We have usually
used simple objects and described their movement.  But sometimes the movement
of an object is not so simple, (like a spinning, wobbling tossed frisbee).  How do
we describe the motion of that object.  The motion of most of the points on the
object is quite complicated.  However, there is one point of the object which
behaves in the same way as a single particle would move subject to the same
forces.  That point of the body is called the center of mass.  Even with rotating,
and spinning, the center of mass moves in the same way that a single particle
would move.  That is, the same way as all of

We find the center of mass of an object along a certain axis by using the equation
xCM = (Σmx)/ Σm   or yCM = (Σmy)/ Σm.
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Problem:      If the mass distribution of a person sitting down with his legs
outstretched can be approximated by the two rectangles, where is the person’s
center of mass?

10 cm

  65 kg
25 kg

      45 cm 
  6 cm

20 cm  40 cm

Note a few things about this example.
1) The CM may be outside the body.
2) The CM depends on the shape of the body.
If this person stands up, the center of mass will change location relative to his
body.  In fact, it will then be somewhere in his torso.

The high jumper described in the book can actually clear the bar without the
center of mass clearing the bar.  A basketball player or gymnast in flight has
their center of mass follow the same path that a single particle would follow
(parabolic near the earth if we neglect air resistance) although their extremities
may be changing direction, and they may be twisting and tumbling.

This means that even if there are internal force, like muscles pulling, the motion
of the center of mass of the system is governed by the external forces only.
Suppose, I shoot fireworks up in the air and they explode.  What is the motion of
the center of mass of all the particles?  What is the motion of each particle?  Look
at the rocket example in the book.

Case where mII = mI

   m I       m II 

D D D
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Problem:    Suppose that mII = 3mI.  Where would mI land?

mI would still land straight down, and now the CM must be at 2D, so

Note that every one of the individual objects, as well as the center of mass of all
the objects follow a parabolic path.  (A straight line down is also a type of
parabola).


