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Chapter 11 Lecture Notes
Physics 2414 - Strauss

Formulas:
F = -kx.
f = 1/T
E  = (1/2)mv2 + (1/2)kx2 = (1/2)mv0

2 = (1/2)kA2

v = ±v0√{(12 - x2/A2)}
v0

2= (k/m)A2, v0 = ωA

T
m

k
= 2π  f

k

m
= 1

2π
x = Acosωt. = Acos(2πft ) = Acos(2πt/T).  
v = -ωAsinωt., a = ω2A cosωt

T
L

g
= 2π

v = λ  /T = λ f v
F

m L
= T

λn = 2L/n

fn = nv/(2L) f
n F

mLn
T=

2
fn/n  = fm/m
fn = nf1.
sinθ2/sinθ1 = v2/v1

Main Ideas:
1. Simple Harmonic Motion
•  Energy Description
•  Kinematic Description
•  Relationship with Circular Motion
•  Applied to a Pendulum
2. Other Periodic Motion
•  Damped Motion
•  Forced Vibrations and Resonance
3. Wave Motion
•  Types of Waves
•  Description of Waves
•  Superposition and Reflection
•  Standing Waves, Resonant Frequencies
•  Refraction and Diffraction
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1. Simple Harmonic Motion
Vibrations and waves are an important part of life.  Every sound you hear is a
result of something first vibrating, then a sound wave traveling through the air as
the air molecules vibrate, then your eardrum vibrating and the brain interpreting
that as sound.  The simplest vibrational motion to understand is called simple
harmonic motion (SHM).  SHM occurs when the I move an object from its
equilibrium position and the force that tries to restore the object back to its
equilibrium position is equal to the distance from the equilibrium position.  In
other words,

F = -kx.

This is exactly Hooke’s law for springs.  So ideal springs exhibit SHM.  The
motion of the object at the end of a spring repeats itself after a period of time.  It
is periodic with a period T , the amount of time it takes to complete one cycle.
The frequency is the number of cycles per unit time, so

f = 1/T.

The frequency is measured in cycles/second.  1 cycle/second = 1 Hertz (Hz). The
maximum distance from the equilibrium point is called the amplitude (A), and the
distance from the equilibrium point at any time is the displacement.  

Problem:     A 0.35-kg mass attached to a spring with spring constant 130 N/m is
free to move on a frictionless horizontal surface.  If the mass is released from
rest at x=0.10 m, find the force on it and its acceleration at (a) x=0.10 m, (b)
x=0.050 m, (c) x=0 m, and (d) x= -0.050 m

Let’s look at various aspects of simple harmonic motion including energy,
motion, relationship with circular motion, and relationship with pendulum
motion.

1.1 ENERGY OF SIMPLE HARMONIC MOTION

The simple harmonic oscillator is an example of conservation of mechanical
energy.  When the spring is stretched it has only potential energy U = (1/2)kx2 =
(1/2)kA2 where A is the maximum amplitude.  When the spring is unstretched, it
has only kinetic energy K = (1/2)mv2 = (1/2)mv0

2  where v0 is the maximum
velocity which occurs when the spring in unstretched.  At any point in the motion
of the object, it has a total energy equal to its potential energy plus its kinetic
energy.

E  = (1/2)mv2 + (1/2)kx2 = (1/2)mv0
2 = (1/2)kA2.
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Problem:     A .24-kg mass is attached to a horizontal spring that has a spring
constant of 86 N/m.  The spring is initially stretched to 0.23 m.  If there is no
friction so that the spring oscillates with SHM how much energy is kinetic and
potential when the spring is at (a) x = .10 m, (b) x = .0 m

Let’s suppose that the spring is not horizontal, but is instead in a vertical position.
The motion is basically the same as a horizontal spring except for where the
equilibrium position is located. The equilibrium position is found by looking at
all the forces on the mass.  Let x0 be the new equilibrium position.

kx0 = mg ⇒    x0 = mg/k              kx0

If you now move the spring an additional distance
of x the forces on the mass are given by

   mg
F = -k(x0 + x) + mg = -k(mg/k  + x)  + mg  = -kx,

so even a vertical spring behaves as if it was horizontal with the restoring force
equal to -kx..  Also, the energy of compressing a vertical spring is the same as a
horizontal spring.  So a vertical spring acts exactly like a horizontal spring only
the equilibrium position is displaced due to gravity.

1.2 KINEMATICS OF SIMPLE HARMONIC MOTION

So how does a simple harmonic oscillator move?  We have seen that when the
spring is displaced by its maximum amount in a particular situation, then the
potential energy is a maximum and the kinetic energy (velocity) is zero.  When
the spring is at its equilibrium position after being displaced, then it has a
maximum velocity and, therefore, a maximum kinetic energy.  If I use the energy
equations from above to solve for velocity, I get,

(1/2)mv2 + (1/2)kx2 = (1/2)kA2.

v = ±√{(k/m)(A2 - x2)}

And if I set the maximum kinetic energy equal to the maximum potential energy,
I get (1/2)mv0

2= (1/2)kA2 ⇒

v0
2= (k/m)A2,

so plugging this into the above equation gives

v = ±v0√{(12 - x2/A2)}.
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This tells the velocity at any position as a function of the maximum velocity and
of the maximum displacement (amplitude).  Look at what it says.  When the
position is the same as the amplitude (x =A), the velocity is zero.  When the
position is the equilibrium position (x = 0), the velocity is a maximum (v0).

1.3 RELATIONSHIP OF SHM TO CIRCULAR MOTION

Consider an object rotating around in a circle.  If I look at one point of that
object from the side I will see that the object appears to be following simple
harmonic motion.  We will look at the projection of the motion along the x axis.
(See figure 11-6 in the book).  The object always has a speed of v0.  However, the
x component of the velocity, the part of the velocity which is viewed from our
observer changes.  Because the triangles are similar (all three angles are the
same),

(v/v0) = √{A2 - x2}/A

v = ±v0√{(12 - x2/A2)}, which is the equation for a simple harmonic oscillator.
(If the equations are the same, then the motion is the same).   Since we have
already dealt with uniform circular motion, it is sometimes easier to understand
SHM using this idea of a reference circle.  For instance, the speed of the ball
going around the circle is given by distance divided by time.

v0 = (2πA)/T   or  T = (2πA)/v0

where T is the period and A  is the amplitude and v0 is the maximum velocity.  If
I now use v0

2= (k/m)A2, I get

T
m

k
= 2π    or for the frequency, I get f

k

m
= 1

2π
.

So we see that frequency does not depend on amplitude, but it does depend on the
spring constant and the mass.  

If we know the location of the mass and the amplitude of a the oscillation, then
we know the velocity from v = ±v0√{(12 - x2/A2)}.  But suppose I wanted to know
the location as a function of the time.  Where will the mass be after 1 second, or
after 100 seconds?  From our figure, we see that

x = Acosθ,
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and since the mass is rotating with angular velocity ω, we see that θ = ωt, and
from ω = 2πf = 2π/T, we get,

x = Acosωt = Acos(2πft ) = Acos(2πt/T).  

Now we see that the motion is periodic.  After a time where t = T , we get the
mass is at a position of cos(2π) = cos(0) = cos(2nπ)  where n is any integer.  The
mass keeps coming back to the same position.  The motion is also sinusoidal as a
function of time.  That is if I plot position versus time, I will get a sine (or
cosine) curve.

Similarly, the velocity is sinusoidal.

v = -v0√{(12 - x2/A2)} = v0√{(12 - (Acosωt.)2/A2)} = v0√{(12 - cos2ωt.)}
   = v0√{sin2ωt.} = v0sinωt. = -ωAsinωt.  (since v0 = ωA)

v = -ωAsinωt.

and the acceleration is sinusoidal.  We can see this from Newton’s second law.

a = F/m = -kx/m = -(kA/m) cosωt. = v0
2/A cosωt  = ω2A cosωt

a = ω2A cosωt

To use these, keep in mind that v0 = ωA, and v0
2= (k/m)A2.

Whether it is a sine or cosine function for x  and acceleration just depends on
whether the mass starts at the equilibrium position or at the maximum.
Displacement and acceleration are the same (sine or cosine), but velocity is the
opposite.  We say velocity is “out of phase” with displacement.

Problem:     Suppose I have a spring which oscillates according to the following
equation.  What is the amplitude, the frequency, the period of the oscillation?

x = (0.25 m) cos(πt/8.0)

1.4 SHM AND SIMPLE PENDULUMS

A simple pendulum acts like a harmonic oscillator if the displacement is small.
We can see this from looking at the forces on a pendulum.

F = -mg sinθ.
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To be a simple harmonic oscillator, the force must be L
proportional to the distance the pendulum bob has    θ
moved.  

Recall that the arclength (l) is given by       x
θ = l /L in radians, and that sinθ  = x/L
from the figure.  Now if the angle is small,
then x ≈l and θ = sinθ  = x/L, or      l     mg

F = -mgθ  = -mgx/L

which looks just like F = -kx  if k = mg/L .

So for small angles, a pendulum acts like a simple harmonic oscillator with a
spring constant of mg/L.  (Remember if the equations are the same then the
motion is the same).  The period is given by

T
m

k

m

mg L

L

g
= = =2 2 2π π π

So the period or frequency does not depend on the mass of the pendulum, only its
length.  

Problem:      A man wants to know the height of a building which has a pendulum
hanging from its ceiling.  He notices that in one minute the pendulum oscillates 8
times.  (a) What is the height of the building? (b) If the length were cut in half,
what would the new frequency be?

2. Other Periodic Motion

2.1 DAMPED OSCILLATIONS

Most oscillations do not continue on forever, but eventually stop, due to some
kind of nonconservative force like friction or air resistance.  Some vibrations are
purposely stopped.  Your shock absorbers in your car are made to stop the
vibrations set up by the road.  All these vibrations which are eventually stopped
are called damped vibrations, or if the harmonic motion is stopped, it is called
damped harmonic motion.  When the motion is damped, mechanical energy is not
conserved.

2.2 DRIVEN OSCILLATIONS
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The opposite of damped vibrations are vibrations which are driven or forced.  I
can drive an oscillation at any frequency, but if I drive it at its natural frequency
(i.e. resonance frequency), then its amplitude rises without any limits.  
Everything has a natural frequency, like musical instruments, children’s swings
and bridges.  Foot soldiers don’t march in step across a bridge, so that they won’t
accidentally set up a resonance in the bridge and it oscillates and collapses.
Oscillating air at the resonant frequency of a glass is what causes it to shatter.

3. Wave Motion
Oscillations can cause waves.  So it is natural to use the concepts and terminology
developed in our discussion of harmonic motion to begin to talk about waves.
The world is full of waves.  For example, there are sound waves, waves on a
string, earthquake waves, and electromagnetic waves.  Waves are oscillations
which carry energy from one place to another, yet matter is not carried with the
wave.  Setting up dominoes and knocking them down illustrates this.  Each
domino moves very little, but the energy may move over a long distance.  If you
watch a leaf or a cork floating on a lake as waves move by it, the leaf or cork
moves very little, but the wave moves a long ways.  Waves may move in one, two
or three dimensions.  A wave pulse on a rope basically moves in one dimension.
Water waves on a lake move in two dimensions, and spoken sound waves spread
out in three dimensions.  In this chapter we will talk about waves which require
some kind of medium to travel in, like sound waves, earthquake waves, and
waves on a string.  Next semester we will talk about electromagnetic waves,
which do not require any medium to travel in.  We will find that there are many
similarities in all wave motion.

3.1 TYPES OF WAVES

There are two basic types of waves: transverse waves and longitudinal waves.
Each type of wave describes the motion of a small segment of the wave.  In a
transverse wave, each segment moves perpendicular or transverse to the direction
of motion of the wave.  This is like a rope with a pulse on it.  In a longitudinal
wave, each segment moves along the direction of the motion of the wave.  This is
like a spring or slinky which is quickly compressed, then returned to its original
position.

3.2 DESCRIPTION OF WAVES

The shape of a wave on a string gives a good picture of a wave.  The maximum
height of the wave is called the amplitude.  The distance from one point on the
wave to the same point on the next wave (like crest to crest, or trough to trough)
is one wavelength, denoted by the Greek letter lambda (λ).  The speed with
which the wave moves is called the wave velocity (v).  That is, what is the
distance an individual crest travels in a certain amount of time.  The wave
velocity is not the velocity of the individual segments of the wave (a part of the
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rope or a single domino).  It is the velocity that the wave, as a whole, moves. If I
stay at one location and count the number of waves that go by in a given amount
of time, that is called the frequency (f).  The period (T) is the time it takes for
one  complete oscillation of the wave.  Since velocity is distance divided by time,
we see that the wave velocity is given by

v = λ  /T = λ f

The speed of a wave in a certain medium is determined by the
properties of the medium.  We find that for a stretched string the speed with
which the wave moves is given by

v
F

m L
= T

where FT is the tension in the rope, L is the length of the rope, and m is the mass
of the rope.  The quantity µ = L/m is called the linear density of the rope.

Sound travels by creating longitudinal waves in the air.  Some kind of medium is
required for sound waves to travel.  In the vacuum of space, sound waves do not
travel, and no one can hear you scream.  In general, the velocity of a longitudinal
wave traveling in a liquid is given by

v = √{B/ρ}

where B is the bulk modulus (see table 9-1, page 240) and ρ is the density of the
material.  The density is defined as the mass per unit volume (ρ=m/V, kg/m3) and
many values of densities for various materials are given in Table 10-1 on page
260.   This equation also works approximately (though not precisely) for a gas.

Problem:     A string has a mass of 0.300 kg
and a length of 6.00 m and is set up as shown      5 m   1 m
in the picture at the right.  What is the speed 
of a pulse on this string?   2 kg

Problem:     How fast does sound travel in air, and in water?

3.3 SUPERPOSITION AND REFLECTION

An important aspect of waves is the principle of the superposition of waves.
This principle states,
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If two or more traveling waves are moving through a medium, the
resultant wave is found by adding together the displacements of the
individual waves point by point.

So if there are two waves approaching each other on the same string, they will
interfere with each other.  If they both have a positive amplitude, the will
interfere constructively, and the resultant wave will have a larger amplitude.
If one wave has a positive amplitude and one has a negative amplitude, they will
interfere destructively,  and the resultant wave will have a smaller amplitude.  
(See figure 11-29 in the book).   

If the waves are moving in the same direction, then there will be constructive or
destructive interference only if the waves also have the same wavelength.  If the
waves have their greatest positive amplitudes at the same point, we say that the
waves are in phase and they demonstrate constructive interference.  If one
wave has its greatest positive amplitude where the other wave has its greatest
negative amplitude, we say the waves are out of phase and they demonstrate
destructive interference.  

One way of creating a wave travelling in the opposite direction is to have the
wave reflect off of an object.  If a rope is attached to a wall and a pulse is
generated on the rope, it will reflect when it reaches the end.  If the rope is
firmly attached the reflection will actually invert the amplitude of the pulse.  If
the rope is attached with a ring (it is free to move), then the amplitude will not be
inverted.  If a thick rope is attached to a thin rope, then part will be reflected and
part will be transmitted.  

3.4 STANDING WAVES, RESONANT FREQUENCIES

One of the most important concepts regarding waves is the concept of standing
waves and resonant frequencies.  These ideas explain many aspects of sound
including why different instruments, or different shaped volumes, create
different sounds.  A standing wave is a wave in which every point on the wave
oscillates with the same frequency, and each point has a maximum amplitude
which does not change, (although every point may have a different maximum
amplitude).  Any standing wave will have certain parts of the wave which do not
move at all, and are called nodes and other parts of the wave which have
maximum movement and are called antinodes. For any given geometric
situation, a standing wave can only be created for certain frequencies, which are
called natural frequencies or resonant frequencies.  A standing wave is
really a set of waves moving in opposite directions with the same velocities.  That
is why you can create standing waves by attaching a rope at one end and vibrating
the other end.  The waves are reflected off of each end and the two waves
interfere to produce a standing wave.  This will only work if the rope is vibrated
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at the certain resonant frequencies.  A standing wave does appear to be standing
in place, and a travelling wave does appear to be moving.   Yet a standing wave is
really the superposition of travelling waves moving in opposite directions.

If I have a rope that is tied down at each end and I want to set up standing waves
in the rope, I have a constraint.  The constraint is that each end of the rope can
not move.  So each end of the rope is a node.  Then there are only certain ways I
can set the rope vibrating.  These different ways are called harmonics.  (See
figure 11-33 in the book).  If the only nodes are at the end, we call this the first
harmonic or it is also called the fundamental frequency or mode.  When I
have one other node, this is called the second harmonic, or the first
overtone, and when I have two more nodes we call it the third harmonic, or
the second overtone, and so forth.  This is true not only for ropes, but also for
standing sound waves in an air column.  So the harmonics of an instrument are
determined by the length of the air column in the instrument.  In fact, every
object can be set to vibrating at different harmonic frequencies which are
determined by the size and shape of the object.

Fundamental or First Harmonic Second Harmonic or First Overture

Third Harmonic or Second Overture.

How do we determine the wavelength or frequency of the harmonics?  We note
that the must be some fraction of the total length of the string (or air cavity for
sound waves).  For the first harmonic L = (1/2)λ1.  For the second harmonic, L
=λ2.  For the third harmonic, (3/2)L =λ3, and so on.  So in general

L = nλn/2, or   λn = 2L/n    for the nth harmonic.

The standing wave is equivalent to two travelling waves moving in opposite
directions, so we can still calculate the velocity of the waves moving on the
string.  From the equations, v = λ  /T = λf, and v = √{F/(L/m)}  we find that

fn = nv/(2L)
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f
n

L

F

m Ln
T=

2

The last two equations are very useful.  Although you may need them on a test,
they are not necessarily on the equation sheet because they are easily derived

from the more fundamental equations, λn = 2L/n, v = λ /T = λ f, andv
F

m L
= T .

You should know how to use these three equations in appropriate combinations.

What happens when you play a stringed instrument and you press down on the
strings in a certain point.  You are changing which harmonic oscillates.

Unfingered Fingered at a low harmonic

Fingered at a high harmonic (or no harmonic, or with a fret that keeps the string
from vibrating).

The mass per unit length stays the same (m/L), and the tension stays the same so
the velocity of the travelling waves which make up the standing waves also stays

the same sincev
F

m L
= T .  However, the frequency and the wavelength change in

such a way that v =λ f.  If the wavelength is reduced by a factor of 2, the
frequency increases by a factor of 2, so that v stays the same.

Problem:     A violin string of length 33 cm  is under a tension of 55 N.  The
fundamental frequency of the string is 196 Hz.  (a) At what speed do the waves
travel on the string?  (b) What is the mass of the string?  (c) How far from one
end of the string would you have to press the string in order that the remainder
of the string have a fundamental frequency of 300 Hz?
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Here is a trick to solving these problems.  Since v
F

m L
= T , then any string with a

given tension and mass per unit length has the same velocity.  So

v  = fnλ n = 2fnL/n  = 2fmL/m  or

fn/n  = fm/m

where n is for one harmonic, and m is for another harmonic.  If I set m = 1, I get

 fn = nf1.

This formula can be very useful for solving many problems.

Problem:     A string has its fundamental at 200 Hz.  What is the difference in the
frequency between the first two overtones?  

3.5 REFRACTION AND DIFFRACTION

When a wave encounters an obstacle, they bend around the obstacle. This is called
diffraction.  The amount of bending depends on the size of the wavelength and
the size of the object.  It is diffraction which allows us to hear sounds even when
the source is not directly in line with us.  For instance, if you go around a corner
and talk, I can still here you because the waves are bent around the obstacle,
which is the wall.  We will study diffraction quite a bit more next semester when
we encounter electromagnetic waves.  

When a wave travels from one medium to another, (like from air to water), part
of the wave is reflected and part continues into the medium and is transmitted.
The part that is transmitted will often move in a different direction from the
original wave.  This phenomena is called refraction.  Refraction will
particularly important when we discuss light in the next semester.  The  wave is
refracted because it changes velocity in the new medium.  See figure 11-36 which
shows how wave fronts will change direction if they move at a different velocity.
We find that the change of angle  is related to the velocity of the wave in the
different media, so

Sinθ2/Sinθ1 = v2/v1 where θ1  is the angle of incidence, θ2 is the angle of
refraction, v2 is the velocity in the medium of refraction and v1 is the velocity in
the initial medium.
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Problem:     A longitudinal earthquake wave strikes a boundary between two types
of rock at a 25° angle .  As it crosses the boundary, the specific gravity of the
rock changes from 3.7 to 2.8.  Assuming that the elastic modulus is the same for
both types of rock, determine the angle of refraction.  

The specific gravity is the ratio of the density of a substance to the density of
water.  We use the ratio of the sines.

Refraction and diffraction occur for all types of waves.  They are very important
concepts when we talk about electromagnetic waves next semester.


