Physics 1215 Group Problem

A rod of length L is moved at a constant speed v along horizontal conducting rails as shown in the figure. In this case, the magnetic field in which the rod moves is not uniform, but is provided by a current I in a long wire parallel to the rails. Assume that v = 5.00 m/s, a = 10 mm, L = 10 cm, and I = 100 A.

- a) Calculate the emf in the rod by using Faraday's law.
- b) What is the current in the rod if the rod has a resistance of 0.400Ω and the rails and connecting strip have no resistance?
- c) What is the rate that thermal energy is being produced in the rod?
- d) Calculate the external force that must be applied to the rod to maintain its motion by calculating the magnetic force on the rod and using Newton's 2nd law.
- e) At what rate does the agent exerting the external force do work? Compare your answer to your answer in part c.

(a) First raticulate Is maile the vails

From the wire
$$B = \frac{M_0 L}{2\pi r}$$

So

 $A = \frac{M_0 L}{2\pi r} \times A_0 = \frac{M_0$