Physics 1215
Group Problem

A very long cylindrical shell of radius \(a \) shares the same axis with another long cylindrical shell of radius \(b, \ b > a \). The inner shell has a total charge per unit area of \(\sigma = \frac{q}{A} \), while that of the outer shell is \(-\sigma = -\frac{q}{A}\). Both charges are uniformly distributed over the entire length of the cylinders.

1) Ignoring any fringe effects at the end of the cylinders, find the electric field for (i) \(r < a \), (ii) \(a < r < b \), and (iii) \(r > b \).

2) Find the electric potential difference between (i) \(\infty \) and \(b \), (ii) \(b \) and \(a \), and (iii) \(a \) and the axis of the cylinders. (Assume \(V(\infty) = 0 \)).

3) Suppose that instead of having equal and opposite charge per unit area on each cylinder, the cylinders have equal and opposite charge per unit length, \(\lambda = \frac{q}{L} \). In this case, (i) what is the electric field for \(r > b \)? What is the electric potential between \(\infty \) and \(b \)?
1) i) \[\oint \hat{E} \cdot d\hat{A} = \frac{Q_{enc}}{\varepsilon_0} \]
\[E \oint dA = \frac{Q_{enc}}{\varepsilon_0} \]
\[E 2\pi r L = 0 \]
\[E = 0 \]

ii) \[\oint \hat{E} \cdot d\hat{A} = \frac{Q_{enc}}{\varepsilon_0} \]
\[E \oint dA = \frac{Q_{enc}}{\varepsilon_0} \]
\[E 2\pi r L = \frac{2\pi Ma}{\varepsilon_0} - \frac{2\pi bL}{\varepsilon_0} \]
\[E = \frac{\sigma (a-b)}{\varepsilon_0 r} \]

iii) \[\oint \hat{E} \cdot d\hat{A} = \frac{Q_{enc}}{\varepsilon_0} \]
\[E \oint dA = \frac{Q_{enc}}{\varepsilon_0} \]
\[E 2\pi r L = \frac{2\pi Ma}{\varepsilon_0} - \frac{2\pi bL}{\varepsilon_0} \]
\[E = \frac{\sigma (a-b)}{\varepsilon_0 r} \]

2) i) \[\Delta V = -\oint \hat{E} \cdot ds = -\oint_0^r \frac{\sigma (a-b)}{\varepsilon_0} \cos \Theta (-dr) \]
\[= \left[-\frac{\sigma (a-b) dr}{\varepsilon_0} + 0 \frac{(a-b) \ln r}{\varepsilon_0} \right]_0^\infty \]
\[= -\frac{(a-b) \ln r - (a-b) \ln r}{\varepsilon_0} \]
\[= -\frac{\ln r}{\varepsilon_0} \]
\[\Delta V_{b \rightarrow a} = -\oint_a^b \frac{\sigma a dr}{\varepsilon_0 r} \cos \Theta = -\frac{\sigma a \ln r}{\varepsilon_0} \]
\[\Delta V = \oint_0^\infty \hat{E} \cdot ds = 0 \]

ii) \[\Delta V = \oint_0^\infty \hat{E} \cdot ds = 0 \]

3) Same picture as (2ii) \[\oint \hat{E} \cdot d\hat{A} = \frac{Q_{enc}}{\varepsilon_0} = 0 \]
\[\oint E = 0 \]
\[\oint \hat{E} \cdot ds = 0 \]