Heat Engine Problem

Your group has been hired as consultants by Oklahoma Gas and Electric to help design their power plant. Their turbines use a monatomic gas and follow the cycle below:

- A \rightarrow B: This is an isotherm at a high temperature T_H . Exactly how high will be up to you to determine. The system expands from a volume V_A to V_B . Design constraints force $V_B = 4V_A$.
- B \rightarrow C: This is an isochore on which the system is cooled to room temperature, $T_C = 300$ K.
- C \rightarrow D: This is an isotherm at the low temperature T_C . The system is returned to its original volume V_A .
- D \rightarrow A: This is an isochore on which the system is returned to its original temperature, $T_{\rm H}$.

You are hired to answer some or all of the following questions:

- 1. Draw this cycle.
- 2. What is the efficiency of the system? First write your answer as a function of T_H , V_A , V_B , and T_C . Then put in the correct values for V_A , V_B , and T_C so your answer is a function of T_H .
- 3. How does this compare with the efficiency of a Carnot engine acting between $T_{\rm H}$ and $T_{\rm C}$? Is it a big difference or a little difference?
- 4. Plot (1) the efficiency of this engine, (2) the Carnot efficiency of an engine acting between the temperature extremes, and (3) the ratio of $\mathcal{E}_{\mathbb{C}}$ as a function of T_H , all on the same graph.
- 5. Estimate the high temperature needed for this cycle to reaches 80% of its maximum efficiency (not the Carnot efficiency)?
- 6. Estimate the high temperature that this cycle reaches 80% of the Carnot efficiency at that same high temperature?
- 7. OG&E can bill for energy at a rate of 10^{-3} dollars/Joule. The cost of energy to run the engine depends on its operating temperature. The hotter it runs, the more expensive it is to operate. The cost of energy is $(T_{\rm H})^4 \times 10^{-7}$ dollars/(Joule·K). Calculate the ratio of money earned/money spent as a function of $T_{\rm H}$. At approximately what $T_{\rm H}$ is it a maximum? (Again, drawing a plot may be helpful. Note that the energy OG&E needs to pay for is the energy to run the engine, but they can only charge based on the work output of the engine.)
- 8. If they insulate the turbines, they can redesign them to act more like a Carnot engine. How would the ratio of money earned/money spent change? A little or a lot?

$$Q = \Delta u + W$$

$$T_A = T_B = T_H$$

$$T_C = T_D = T_C$$

$$V_D = V_A$$

$$V_C = V_B$$

$$\mathcal{E} = \frac{(T_H - 300) \ln 4}{T_H \ln 4 + 3/2 (T_H - 300)} = \frac{(T_H - 300) \ln 4}{T_H (\ln 4 + 3/2) - 450}$$

3) (aunut is given by:

$$\mathcal{E}_{c} = \frac{T_{H} - T_{C}}{T_{H}} = \frac{(T_{h} - 300)}{T_{H}}$$

The numerator of E is 1.4 larger than the Carnot, but the denominator is about 2,9 times larger (not counting) the -450 term. So at high temperatures this is about 48% less efficient than a Cornot. At lower Ty it gets closer to Ec. This is not too large.

4) A chart

Tn	Ec	<u>8</u>	E/Ec	E/Emm - 8/. 480
350	.143	124	86.5%	25.8%
400	.250	, 197	78.7	41.0%
600	, 500	, 324	64.990	67.590
900	.667	,387	58,190	80.6%
1200	,750	. 414	55,2%	86.39.
2000	,850	,443	52.1%	92,390

Notice how at high TH, the ratio \$180 15 approaching 48%.

The ratio \$10 \$10 is \$0% at a 400 K, \$10 money earner = \$\frac{\text{V}}{\text{The Noney earner}} = \$\frac{\text{V}}{\text{The Noney spent}} = \$\frac{\text{V}}{\text{The Noney spent

$$\Rightarrow T_{H} = \frac{4}{3} T_{c} = \frac{4}{3} (300 k) = 400 k$$

 $A + 900 \text{ K} = 1 \times 10^{-4} \text{ n}$ $A + 400 \text{ K} = 4.5 \times 10^{-4} \text{ n}$ $A + 500 \text{ K} = 3.7 \times 10^{-4} \text{ n}$

8) I would recommend the insulation. They could run the engine at about 500 k and get the same efficiency as the current engine at 900 K. In doing so, they would have a profit margin 3.7 times higher than at 900 K.

