
Chapter 15

The Second Law of Thermodynamics



• Engines must work using a cyclic process.  Why?
• A useful engine must involve a temperature difference 

with one side at a high temperature and one at a low 
temperature.

• The efficiency for a closed loop:
Q = ∆U + W

Q = W 

Qin – |Qout| = W

QH – |QL| = W

ε = W/QH

ε = (QH – |QL|)/QH = 1 – |QL|/QH

Engines, Refrigerators, and their Efficiencies
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QH = |QL| + W

Schematic diagram of energy transfer for a heat engine.
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QH ≠ W

2nd Law of Thermodynamics: Kelvin-Planck statement

It is impossible for any cyclic device to transform a given 
amount of heat completely into work

There can be no 
100% efficient 
engine.



QH ≠ |QL|

2nd Law of Thermodynamics: Clausius statement

It is impossible for any cyclic device to transfer heat from 
a cold object to a hot object, with no other effect.

High Temperature

Low Temperature

Engine

QH

|QL|
These statements were both 
empirically determined.



Interactive Question

A heat engine that in each cycle does positive work and 
rejects heat, with no heat input, would violate: 

A) The zeroth law of thermodynamics
B) The first law of thermodynamics
C) The second law of thermodynamics
D) Both the first and second laws of thermodynamics
E) None of the above



Interactive Question

A heat engine absorbs heat from a reservoir and does an 
equivalent amount of work, with no other changes.  This 
engine violates: 

A) The zeroth law of thermodynamics
B) The first law of thermodynamics
C) The second law of thermodynamics
D) Both the first and second laws of thermodynamics
E) None of the above



Interactive Question 

A cyclic process that transfers heat from a high 
temperature reservoir to a low temperature reservoir with 
no other changes would violate: 

A) The zeroth law of thermodynamics
B) The first law of thermodynamics
C) The second law of thermodynamics
D) Both the first and second laws of thermodynamics
E) None of the above



In the processes shown 
on the right, the total 
heat flow is:

Interactive Question

A) Positive
B) Negative
C) Zero
D) Not determined

P

V cm3100 500



A heat engine runs according to the process shown below.  
Analyze this engine for a monatomic gas:

P  (atm)

V cm3100 500

30°Cadiabatic

Let’s look at some general features of this graph, then 
develop a strategy for analyzing cyclic processes.

How would you physically carry out this process?

1



1. Sketch the process in a PV diagram and make a table 
of ∆U, W and Q for each segment in the cycle and for 
the entire process
• Use what is given and ∆U = Q – W

2. If this isn’t enough to complete the table:
• Find T, P, and V at each vertex.

• If two are know, use the equation of state.
• If one is known, find a second by relating the 

values at adjacent vertices, knowing what is a 
constant (like PV, P/T, V/T, or PVγ).

• Use ∆U = NF(1/2)nR∆T where appropriate.



Analyze this engine process for a monatomic gas

P (atm)

V cm3100 500

30°Cadiabatic

∆U W Q
(1) 0
(2)
(3) 0
Sign: 0 + +
Tot:

(2)

(3)(1)

At corners: P V T
(a) 1 500 303 K
(b) 100
(c) 500

1

(b) (c)

(a)



P (atm)

V cm3100 500

303 Kadiabatic

(2)

(3)(1)

At corners: P V T
(a) 1 500 303 K
(b) 14.6 100 885 K
(c) 14.6 500 4420 K

1

(b) (c)

(a)
Tc/Vc = Tb/Vb

Tc = TbVc /Vb

= 885(5)=4420 K

PbVb /Tb = PaVa /Ta

Tb = Ta PbVb/PaVa

= 303(14.6)/5 = 885 K

PaVa
γ = PbVb

γ

Pb=Pa(Va/Vb)
5/3 =1(5)5/3=14.6 atm

n = PV/RT
= .0201 mol

(Use Pa and m3)



Analyze the following cyclic process for a monatomic gas

P (atm)

V cm3100 500

30°Cadiabatic

∆U W Q
(1)    (3/2)nR(Tb−Ta) −∆U 0
(2) Q – W P∆V CP (Tc−Tb)
(3) Q 0 CV (Ta−Tc)

(2)

(3)(1)

1

(b) (c)

(a)



Analyze the following cyclic process for a monatomic gas

P (atm)

V cm3100 500

30°Cadiabatic

∆U W Q
(1)    146 J −146 J 0
(2) 888 590 J 1478 J
(3)   −1033 J 0 −1033 J

(2)

(3)(1)

1

(b) (c)

(a)

CV = (3/2)nR = 0.2506
CP = (5/2)nR = 0.4177
Use SI units

Only good to 3 significant figures



∆U W Q
(1)    146 J −146 J 0
(2) 888 J 590 J 1478 J
(3) −1033 J 0 −1033 J

∆Ucycle = 1 Wcycle = 444 J Qcycle = 445 J
(“0”) (Wcycle = Qcycle)

Aside: We should also be able to get ∆U for (2) by using 
∆U = CV(Tc−Tb) = (3/2)nR(Tc−Tb) 

= (3/2)(0.0201 mol)(8.314 J/mol·K)(4420−885 K) 
= 886 J

(which is the same as 888 with round off errors)

ε = 1 – |QL|/QH = 1 – 1033/1478 = 0.301



Problem: What is the power output of the previous engine 
if it runs at 1200 rpm?



Carnot Cycle
(An engine using only “reversible” processes)

P

V

(1)

(2)

(3)

(a)

(b)

(c)

(1) Isothermal Expansion
(2) Adiabatic Expansion
(3) Isothermal Compression
(4) Adiabatic Compression(d)

(4)

We want to calculated the efficiency of this engine:

ε = 1 – |QL|/QH

Only the Carnot engine can transfer all heat at constant 
temperature.



|QL |

QH

Carnot Cycle

P

V

(a)

(b)

(c)

(d)

ε = 1 – |QL|/QH

For the isothermal paths:
W = nRT lnVf/Vi

W = Q – ∆U = Q – (3/2)nR∆T = Q
QH = nRTH ln(Vb/Va)
QL = nRTC ln(Vd/Vc)

∆U W Q
(1) 0 nRTH ln(Vb/Va) nRTH ln(Vb/Va)
(2)    CV (Tc−Tb) −∆U 0
(3)     0 nRTL ln(Vd/Vc) nRTL ln(Vd/Vc)
(4)    CV (Ta−Td) −∆U 0



|QL |

QH

Carnot Cycle

P

V

(a)

(b)

(c)

(d)

For the adiabatic paths:
PcVc

γ=PbVb
γ PdVd

γ=PaVa
γ

From the ideal gas law:
PcVc/Tc=PbVb/Tb PdVd/Td=PaVa/Ta

Notice that Tc=Td=TL and Ta=Tb=TH

Divide the top equations by the bottom equations:
TLVc

γ-1 = THVb
γ -1 TLVd

γ -1 = THVa
γ –1

Divide these two equations:
(Vc/Vd)

γ-1 = (Vb/Va)
γ-1

(Vc/Vd) = (Vb/Va)



From the isothermal processes:
QH = nRTH ln(Vb/Va)
QL = nRTL ln(Vd/Vc) ⇒ |QL| = nRTL ln(Vc/Vd) 
|QL|/QH= TL ln(Vc/Vd)/TH ln(Vb/Va) = TL/TH

|QL|/QH= TL/TH

ε = 1 – |QL|/QH

ε = 1 – TL/TH  for a Carnot cycle.

Carnot’s Theorem: 
The Carnot engine is the most 
efficient engine.  Any 
reversible cycle can be 
approximated as a series of 
reversible Carnot cycles.  

P

V



Interactive Question

You are taking bids to have a heat engine built that will 
operate between 200ºC and 30ºC.  Different contractors 
claim the efficiency of their engines as: 

A) 100%
B) 80%
C) 40%
D) 30%
E) 20%

Which contractor would you accept the bid from?



Interactive Question

Three students have designed an engine that operates 
between 300K and 500K.  Which of these engines is 
possible?

Engine Qin Qout W
1) 250 J -140 J 110 J
2) 250 J -170 J 90 J
3) 250 J -160 J 90 J

A) (1) only
B) (2) only
C) (3) only
D) More than one of them
E) None of them



Problem: Suppose 0.200 moles of an ideal diatomic gas 
(cV = 20.8 J/mol⋅K) undergoes a Carnot cycle between 
temperatures of 227°C and 27°C.  The initial volume of 
the gas is 8.31×10-4 m3 and during the high temperature 
isothermal expansion, the volume doubles.  (a) Find the 
work done during the entire cycle.  (b) Find the efficiency 
of the cycle. 



Problem: A 100 hp car operates at 15% efficiency.  
Assume the engine’s water temperature of 85°C is its low 
temperature and the intake temperature of 500 °C is its 
high temperature.  (a) How much does this efficiency 
differ from the maximum possible efficiency?  (b)  
Estimate how much (b) power (in watts) goes into moving 
the car and (c) how much heat (in joules) is exhausted to 
the air in one hour.



Problem: The diesel cycle consists of (1) an adiabatic 
compression. (2) an isobaric expansion, (3) an 
adiabatic expansion, (4) an isochoric cooling

(A) Draw this cycle
(B) Fill in a rough outline of how you would determine W, 

Q and ∆U.
(C) Determine the efficiency in terms of the volumes.



Refrigerators

High Temperature

Low Temperature

Engine

QH

|QL|

W

Coefficient of Performance:

CP = |QL| /W
From the first law, for a 
cyclic process, ∆U = 0
Q = W 

|QH| – |QL| = W

CP = |QL| /(|QH| – |QL|)

A Carnot refrigerator is just 
a Carnot engine operating in 
reverse.  Only for a Carnot 
process, |QL|/QH= TL/TH

CP = TL /(TH – TL)



Problem: An air conditioner operating between 93°F and 
70°F is rated at 4000 Btu/h cooling capacity.  Its 
coefficient of performance is 27% of that of a Carnot 
refrigerator operating between the same two temperatures.  
What horsepower is required of the air conditioner motor? 

Note that 4000 Btu/h is not the mechanical work done by 
the air conditioner, but the available work (heat in). 



Proof of Carnot’s Theorem

Assume there exists a reversible engine with a better 
efficiency (ε′) than the Carnot efficiency (ε). 

W′/Q′H = ε′ > ε = W/QH

W′/Q′H > W/QH

Connect this engine to a Carnot engine running 
backwards as a Carnot refrigerator. The work output of 
the “better” engine is the work input to the Carnot 
refrigerator.



High Temperature (TH)

Low Temperature (TC)

Engine

Q′H

|Q′L |

Carnot

QH

|QL|

W

The Carnot engine is now 
working as a refrigerator 
between the same two 
temperatures (TC and TH).
The engine on the right 
must be a reversible engine 
that will operate as a 
refrigerator between the 
same two temperatures.  
We know the Carnot 
engine can be reversible, 
and uses only two 
temperatures, so the Carnot 
engine works on the right.



High Temperature, (TH)

Low Temperature (TC)

Engine

Q′H

|Q′L |

Carnot

QH

|QL|

W′/|Q′H| > W/|QH|
|W|/|Q′H| > |W|/|QH|
|Q′H| < |QH|

From the 1st Law:

W = |Q′H| – |Q′L|

W = |QH| – |QL|
So:

|Q′H| – |Q′L| = |QH| – |QL|

|QH| – |Q′H| = |QL| – |Q′L|

W

Q ≡ |QH| – |Q′H| = |QL| – |Q′L| > 0



Q ≡ |QH| – |Q′H| = |QL| – |Q′L| > 0

High Temperature

Low Temperature

Engine

Q

|Q|

The 2nd law will not be violated 
if |Q′H| ≥ |QH| but that contradicts 
our original hypothesis that 
|Q′H| < |QH|.

This combined system works like a perfect refrigerator, 
which violates the 2nd law of thermodynamics.  

Consequently, there is no 
reversible engine with a better 
efficiency than the Carnot engine, 
only possibly identical to it, with 
|QH| = |Q′H|, and |QL| = |Q′L|. 



If the engine is not reversible, then it can only go on the 
left of the diagram 

High Temperature, (TH)

Low Temperature (TC)

Q′H

|Q′L |

QH

|QL|

W ReversibleNot reversible

Using the same 
argument, we can show 
that |Q′H| ≥ |QH|, but 
since the engine on the 
left can’t be reversed, 
they can’t be equal, so 
|Q′H| > |QH|, and the 
reversible engine has a 
greater efficiency



Consider a Carnot cycle  

|QL|/|QH| = TL/TH

–QL/QH= TL/TH

–QL/TL = QH/TH

QL/TL + QH/TH = 0
In general, ∑reversible cycle Q/T = 0

Entropy

We define entropy (S) as S = dQ/T
Although it is possible to define an absolute value for 
entropy, we will usually only be concerned with the 
change in entropy: ∆S = ∫if dQ/T 

For any reversible cycle ∫cycle dQ/T = 0



For any process, the change in entropy is
∆S = ∫if dQ/T 

Let’s now determine the change in entropy for a process 
at a constant temperature: 
∆S = ∫if dQ/T = (1/T) ∫if dQ = Q/T 

∆S may equal zero for an adiabatic process.



dQ = dU + dW
dQ = CV dT + P dV
dQ/T = CV dT/T + P dV/T 
dQ/T = CV dT/T + nR dV/V
∆S = ∫if dQ/T = CV  ln(Tf/Ti) + nR ln(Vf/Vi)

= nc´V ln(Tf/Ti) + nR ln(Vf/Vi)
Since the right side only depends on state functions, the 
left side also must only depend on state functions.  So 
entropy is a state function.

Entropy is a State Function



Interactive Question

The change in entropy for a non-isolated system is zero 
for:

A) reversible adiabatic processes
B) reversible isothermal processes
C) reversible processes which no work is done
D) all of the above
E) all adiabatic processes



Problem: Two kilograms of water at 0ºC is heated to 
100ºC.  What is the change in entropy? 

Calculating entropy change when the heat input changes 
the temperature.



Interactive Question

A hot object and a cold object are placed in thermal 
contact and the combination is isolated.  They transfer 
heat until they reach a common temperature.  What can 
you say about the change in entropy of the hot object 
(∆SH), the cold object (∆SC), and the total change in 
entropy (∆SC). 

A) ∆SH > 0, ∆SC > 0, ∆ST > 0
B) ∆SH < 0, ∆SC > 0, ∆ST > 0
C) ∆SH < 0, ∆SC > 0, ∆ST < 0
D) ∆SH > 0, ∆SC < 0, ∆ST > 0
E) ∆SH > 0, ∆SC < 0, ∆ST < 0



Problem: Two moles of an ideal gas undergo a free 
expansion to four times the initial volume.  What is the 
change in entropy for this irreversible process?

Calculating entropy change when the heat input is used 
for doing work (an isothermal expansion) with no change 
in internal energy.



Consider four different methods of moving an ideal gas  
from one isotherm to another.  Which has the greatest 
change in entropy? 

Interactive Question

P

V

A
B

C

D

E) None of the Above



A one kilogram block of ice at 0º is placed on a stove. 
Assume the stove is large enough that its temperature does 
not change.  Which of the following is correct?

Interactive Question

A) Qice = |Qstove|, Tice = Tstove, ∆Sice = |∆Sstove|
B) Qice > |Qstove|, Tice = Tstove, ∆Sice > |∆Sstove|
C) Qice > |Qstove|, Tice < Tstove, ∆Sice = |∆Sstove|
D) Qice = |Qstove|, Tice < Tstove, ∆Sice > |∆Sstove|
E) Qice = |Qstove|, Tice  < Tstove, ∆Sice < |∆Sstove|



Problem: A one kilogram block of ice at 0º is placed on a 
stove. Assume the stove is large enough that its 
temperature does not change.  How could the change in 
entropy be less than or equal to zero?



To determine the universal change in entropy in any 
irreversible process, we must include the system and the 
environment.  The previous example is a specific case of a 
more general rule.  For the (non-equilibrium) irreversible 
process to proceed, the change in entropy of the 
environment must be greater than the change in entropy of 
the system so that 

For any irreversible process ∫dQ/T > 0



Another statement of the 2nd Law of Thermodynamics. 
The entropy of an isolated system either stays the same 

(for any reversible process), or increases (for an 
irreversible process), ∆S ≥ 0 .

The entropy of a system doesn’t always increase.
In fact, in our previous example, the entropy of the stove 
actually decreases.  But the entropy of an isolated system 
must always increase.  The universe is an isolated system 
so in any process, the entropy of the universe increases.

In any naturally occurring process, the total entropy 
increases, ∆S > 0. 



A Proof of Carnot’s Theorem Using Entropy 

∆S = ∆SH + ∆SC = –|QH|/TH + |QL|/TL ≥ 0
|QL|/TL ≥ |QH|/TH

TH/TL ≥ |QH|/|QL|
TL/TH ≤ |QL|/|QH|

Consider the entropy change of both the engine and the 
reservoirs (since the 2nd law deals with entropy change of 
the universe) for the entire cycle of the engine.  The 
entropy change of the reversible Carnot engine during one 
cycle is zero.  The hot reservoir gives up heat and the cold 
reservoir absorbs heat.

ε = |W|/|QH| = 1 – |QL|/|QH| ≤ 1 – TL/TH



The Statistical View of Entropy

Example: Roll Two Dice
Macrostates Microstates Num Prob
2 (1,1) 1 1/36
3 (1,2) (2,1) 2 1/18
4 (1,3) (2,2) (3,1) 3 1/12
5 (1,4) (2,3) (3,2) (4,1) 4 1/9
6 (1,5) (2,4) (3,3) (4,2) (5,1)                 5 5/36
7 (1,6) (2,5) (3,4) (4,3) (5,2) (6,1)        6 1/6
8 (2,6) (3,5) (4,4) (5,4) (6,2) 5 5/36
9 (3,6) (4,5) (5,4) (6,3) 4 1/9
10 (4,6) (5,5) (6,4) 3 1/12
11 (5,6) (6,5) 2 1/18
12 (6,6) 1 1/36

All microstates are equally probable.  All macrostates are not.



What is the probability of flipping a coin and getting 5 
heads in a row?

Interactive Question

A) 1/2
B) 1/5
C) 1/16
D) 1/32
E) 1/64



A pendulum in an isolated box with 
3 gas molecules and 11 units of 
energy.  Why doesn’t the pendulum 
start swinging on its own?  We do 
know that energy is conserved. 
Etot = Egas + Epend

Let’s say the gas molecules are identical so microstates 
that differ only by rearranging the molecules are really the 
same.  For instance, the microstate (1,0,0) is identical to 
the microstate (0,1,0).  



E Microstates
0 (0,0,0)
1 (1,0,0)
2 (2,0,0) (1,1,0) 
3 (3,0,0) (2,1,0) (1,1,1)
4 (4,0,0) (3,1,0) (2,2,0) (2,1,1)
5 (5,0,0) (4,1,0) (3,2,0) (3,1,1) (2,2,1)
6 (6,0,0) (5,1,0) (4,2,0) (4,1,1) (3,3,0) (3,2,1) (2,2,2)
7 (7,0,0) (6,1,0) (5,2,0) (5,1,1) (4,3,0) (4,2,1) (3,3,2) (3,2,2)
8 (8,0,0) (7,1,0) (6,2,0) (6,1,1) (5,3,0) (5,2,1) (4,4,0) (4,3,1) (4,2,2) 

(3,2,2) 
9 (9,0,0) (8,1,0) (7,2,0) (7,1,1) (6,3,0) (6,2,1) (5,4,0) (5,3,1) (5,2,2) 

(4,4,1) (4,3,2) (3,3,3)
10 (10,0,0) (9,1,0) (8,2,0) (8,1,1) (7,3,0) (7,2,1) (6,4,0) (6,3,1) (6,2,2) 

(5,5,0) (5,4,1) (5,3,2) (4,4,2) (4,3,3) 
11 (11,0,0) (10,1,0) (9,2,0) (9,1,1) (8,3,0) (8,2,1) (7,4,0) (7,3,1) (7,2,2) 

(6,5,0) (6,4,1) (6,3,2) (5,5,1) (5,4,2) (5,3,3) (4,4,3) 

The energy could be distributed in the gas in the following microstates.



A pendulum in an isolated box with 
3 gas molecules and 11 units of 
energy.  Why doesn’t the pendulum 
start swinging on its own?  We do 
know that energy is conserved. 
Etot = Egas + Epend

What is the most probable energy state?
Egas = 11
Epend = 0

The second law of thermodynamics is not about some new 
force or interaction, but just about probabilities.  Systems 
migrate to the most probable macrostate, the one with the 
most microstates available.



A volume divided up into NV regions.  
Here NV is 3.

1 molecule (A,0,0) (0,A,0) (0,0,A)
2 molecules (AB,0,0) (0,AB,0) (0,0,AB) (A,B,0) (B,A,0) 

(A,0,B) (B,0,A) (0,A,B) (0,B,A)

# molecules 3 regions 4 regions
1 3 4
2 9 16
3 27 64
N 3N 4N

For N molecules, the number of microstates (W) is 

proportional to the volume to the Nth power. 
W ∝ (Volume)N



Let’s see how a small isothermal expansion changes W.

Wf/Wi = {(V+∆V)/V}N = (1 + ∆V/V)N

∆Q = ∆U + ∆W = P ∆V = (NkT) ∆V/V
Wf/Wi = (1 + ∆V/V)N= {(1 + ∆Q/(NkT)}N

When N is very large, it is more convenient to use a 
smaller number by taking the natural logarithm.
ln Wf − ln Wi = ln{(1+∆Q/(NkT)}N = Nln{(1+∆Q/(NkT)}

For small x, ln(1+x) ≈ x
ln Wf − ln Wi = N ∆Q/(NkT)
k ln Wf − k ln Wi = ∆Q/T

We have already seen that ∆S =  ∆Q/T, so now we have 
another equivalent way of writing entropy:
S = k ln W
where W is the number of microstates! 



S = k ln W
An increase in entropy is simply an increase in the number 
of microstates.  The entropy always increases simply 
because a system will always migrate to the most probable 
state!  There is nothing magic about entropy.

The Second Law of Thermodynamics: ∆S≥0
For any real process: ∆S>0



Problem: Two moles of an ideal gas undergo a free 
expansion to four times the initial volume.  Find the 
change in entropy for this irreversible process using 
statistical means?



For N identical objects with two possible configurations, 
one having n1 objects and the other having n2 objects, the 
number of microstates is given by:

W = N!/(n1! n2!)



There are 25 identical molecules in a box that can be 
found on either the left side of the box or the right side of 
the box.  How many total microstates are there?

Interactive Question

A) 25
B) 50
C) 125
D) 3.36 × 107

E) 1.55 × 1025



There are 25 identical molecules in a box.  How many 
microstates are there with 10 molecules on one side of the 
box and 15 molecules on the other side of the box?

Interactive Question

A) 1.03 × 1023

B) 3.27 × 106

C) 150
D) 25
E) 5



Problem: (a) What is the probability that a coin is flipped 
10 times and 10 heads come up?  
(b) What is the change in entropy when you take 5 heads 
and 5 tails, and change them to 10 heads?


