Assignment #8
Chapter 8 Problems:

8.28

a) The forces acting on the hog during its descent down the slope and across the horizontal portion of 1ts
path are:

1. its weight W, a conservative force whose work 1s accounted for by the change in the gravitational
potential energy due to the hog's change in height; and

2. the normal force N which does no work since it is always perpendicular to the path of the hog.

—

When the hog encounters the spring, the spring also exerts a force Foprng on the hog. This force also is
conservative, so 1ts work on the hog is accounted for by changes in the potential energy associated with the
spring.

Use the CWE theorem with the initial position where the hog begins its descent and the final po=sition
where the hog has compressed the spring to its maximum.

i'{"-noncnnservative = ‘J—\"(KE‘ + PEJ
The are no nonconservative forces, so Wioneonservative = 0 J. Hence
0J = A(KE + FPE) = (KE¢ + PEf) — (EE; + FE;).

In both its initial and final position, the hog is at rest, so KE; = KEy =0 J. Thus the last equation reduces
to

FEf = FE;.

Let y be the height of the hog above the level of the spring, and let & be the amount that the spring
iz compressed from its equilibrinm position. Choose the zero of the gravitational potential energy where
¥ =0m (as usual), and the zero of the potential energy associated with the spring to be where =0 m.
Then the only initial nonzero potential energy is the gravitational potential, 2o

PE; = mgu;.

When the hog again comes to rest, the gravitational potential energy is zero, but the spring is compressed
by rf, and therefore the final potential energy is

1
PE.f=§A-I%,
Therefore,
1 Imgy;  2(100 kg )(9.81 m/s? )(5.00 m |
PE = PE; — he? = moy — k= oy 2000ke)O8 m/s )3.00m) _ ) o 450

2 x} (—1.50 m)?
bj Since the total mechanical energy, KE + PE, of the hog is conserved the hog will return te its initial
height of 5.00 m.

c) In this case, there is work done by a nonconservative force, the kinetic force of friction, as the hog slides
over the rough ground on the way to the spring. The force of kinetic friction 1s a constant force over the
rough ground, so its work 1s t;, ® AT, The force of kinetic friction is directed opposite to AT while the hog
is on rough ground. Hence the work done by the force of kinetic friction is

Ti ¢ AT = frlAArcos180° = — frAr = — N Ar.



The magnitude N of the normal foree on the hog while it 15 on the horizontal portion of its path equals the
magnitude mg of the weight of the hog. Ar is given as 2.00 m. Hence

fi e AT = —pp NAr = —(0.30)(100 kg )(9.81 m/s? )(2.00 m ) = —5.0 = 102 J .

Apply the CWE theorem to the hog, with the initial position where the hog begins its slide, and the final

position where the hog has compressed the spring to ite greatest extent. We now have Wionconservative =
a . 1 7

—5.9 = 10° J. We still have KE; = EEy =0 J, PE; = mgy;, and PEy = §R‘:t:f“, 20

2 1 2
Wionconservative = A(KE+ FE) = 58 =10 ] = §Fm:f‘ —mgy —

—1.4m.

I IfQ(—.B,Q x 102 J) + 2mgy;) N fﬂ{—.ﬁ,g ) 107 T ) + 2(100 kg ){9.81 m/s? )(5.00m )
=y 2 T 136 < 10° N/m -

(We choose the negative root since the spring is compressed.] Therefore the spring 1s now compressed hy
only 140 em, rather than the 150 cm in the original problem.

The total mechanical energy was reduced by 5.9 x 102 J due to the work of friction. When the hog
travels back over the rough ground, it will lose another 5.9 x 10* J of mechanical energy. Therefore when
it again comes to rest towards the top of the incline, its total mechanical energy will have heen reduced by
2(5.9 x 10% J). Since at that time its kinetic energy is zero, its new gravitational potential energy will be

PEf=PE; —2(5.9 x 10?7 J) = mgyr = mgy; — 2060 x 10°]) =
yf:yj_QL-J.Qxlﬂ JJ:S.EIDm— 2(65.9 = 10°7)

_ —38m.
mag (100 kg )(0.81 m/s* ) =

8.29 Apply the CWE theorem to the Dean, with the initial position taken as the point of release and
the final position as the instant just before impact on the surface of the Earth. The gravitational force
of the Earth is the only force acting on the Dean during the descent and its work is accounted for in the
CWE theorem by the change in the appropriate gravitational potential energy. Since the position of the
Dean changes over distances comparable to the radius of the Earth, you cannot use mgy as the gravitational
potential energy function. Instead wou must use the more general form

PE _G’;‘LIrn.

r
Let R be the radius of the Earth, M the mass of the Earth, m2 the mass of the Dean, and v the speed

of the Dean just before impact. There is zero work done by nonconservative forces (since there are none),
so the CWE theorem becomes

0J = Wionconservative = -—\"[KE + PE:] = [\KE + PEJf - U{E + EE‘:]L

B mus n _G’.-'lfm o1+ _G.-'lfm
2 R 2R ’

v= |G = flll(ﬁ'ﬁ? #1071 N - m? /kg? )(5.98 x 10* kg )
V'R 7Y 6.37 » 10° m

Converted to km/h, this is about 28 500 km /h!

mv?  GMm .
So 5 =5p Hence, solving for v,

=7.01 = 10° m/s =7.91 km/s.



8.40 Use the CWE theorem. Take the initial position to be the location of the rock as it begins its vertical
descent and the final position where the rock passes the rangers. The work done by the nonconservative
force of kinetic friction is equal to the change in the total mechanical energy of the rock.

H":.mnconservative = -l[:I{E + PEJ = (I{Ef + PEfj - I:I{E] + FE]J

Letj' point stralght up and choose the origin at the height where the rock passes the rangers. The appropriate
form for the potential energy function is mgy, since the entire motion occurs close to the Earth's surface.
Hence,

Wiaanconservative = (%?m-‘{?‘ + mg(0 m j) — (%m(ﬂ m/s) + ﬂ'egy-l)
= %(lDD kg )(2.00 m/s)? — (100 kg )(9.81 m/s* )(50.0 m ) = —4.80 = 10* J.

Az the rock slides down the talus slope, the forces on the rock are:

1. its weight W, of magnitude mg directed down;

2. the normal force N of the surface on the rock; directed perpendicularly out of the surface; and
3. the force of kinetic friction T,., directed opposite to the motion of the rock.

Here's a second law force diagram and a convenient coordinate system. (The rock is the little black dot
in the middle of the picture.)

/
N~
P
N *
Vo 4"

There 15 no acceleration in thej direction, so the total force in that direction is zero.
Fytotal =0N = N —mgcostfl =0N = N =mgcosf.
Therefore the magnitude of the kinetic foree of friction on the rock 1s
i = pieN = ppmgeosf.

The kinetic force of friction is a constant force along the talus slope. The work done by the force is
W = f;, « AF. The force f; is directed opposite to the velocity of the rock and =0 is opposite to AF
Therefore

W

W = fLArcos 180" = — fLlAr = (—ppmg cos ) &r = yj = ——m—m—n.
{mgcost)Ar

The magnitude Ar 1s the length of the of the talus slope. From the geometry, we have

Ar=20m _og
sin 45

Make the substitutions into the expression for pt;, recognizing that W is the work done by the nonconservative
foree that we found from the CWE theorem.

—4.80 x 104 ]

- Y - - = 2.5,
(100 kg )(9.51 m/= )(cos45°) (28 m ) ?

i =



8.43

a) The work done by the gravitational force on the book is, by definition, the negative of the change in
the gravitational potential energy of the book.

H"Ygravit.)' = —AFE.

'Ta,kej to polnt straight up, and choose the origin to be at the bottom of the incline. The appropriate
gravitational potential energy to use is mygy. Hence

Waraviey = —(FEy — PEy) = —mg(ye — ) = —(2.00 kg ){9.81 m/s* ){0m —10.0m ) =196 J.

h) The normal force of the surface on the book does zero work hecause it 1s perpendicular to AT at every
point along the path.
¢] The change in the kinetic energy of the hook 1s

ARE = KE; — KE,; = %rm-‘? — érmrf = %?FE(Q.DD kg )(0m /s )* — %(2,00 kg)(2.00m/s)* = —4.007.

d) The change in the gravitational potential energy of the book is
APE = PE; — PE; = mgys — mgy = mglyy — i) = (200 kg )(9.81 m/s* )(0m — 10.0m ) = —196 J.

e) We first use the CWE theorem to find the work done by the nonconservative force of kinetic friction on
the hook. Then we use the work done by friction to compute the force of friction. Finally, we compute the
normal force of the inclined plane on the book and use this together with the force of friction to find the
coefficient of kinetic friction.

The work done by friction is

Wooneonservative = A(KE + PE) = AKE + APE= —4.00J +(~196J) = 2007,

The work done by friction i= also given by W = fi e AF. Since i opposes the motion, it is directed opposite
to ATF. Hence
W = fiArcos 180° = — f A
10.0 m 10.0 m

———— == 15, 50 Ar =
Ar !

W=—fi(39m) = —200] =—£(39m) = fr =561N.

=30 m. Thus

From the geometry -
g o sin 15°

We now need the normal force of the surface on the book. The forces on the book as it slides down the
plane are:

1. The weight W of the book of magnitude myg, directed straight down;

2. the normal force N of the surface on the book, directed perpendicularly out of the surface; and

3. the force of friction _i:k, directed to oppose the motion of the book.

Let j point perpendicularly out of the surface — parallel to N. The book is not accelerating in this direction,
so the total force on the hook in this direction must be zero. Thus

N —mgeosl5” =0N = N =mgeos15° = (2.00 kg )(9.81 m/s? ) cos15° = 19 N.
Finally, the magnitude of the force of friction is

o e 5AN
= _"\.' = = — = — =), .
Tie = pine pe=3 = o = 0



1
8.58 Note that since y = yo + vyt — ngz,

o |du] .
V= = |voy — gt|.
Hence the expression for E is

E=KE+TE= %m(vny — gt)? +mg (yg + vyt — Q%)

When we expand the square and then simplify, this hecomes

1 1
E = §rngr§y + migyn = 5??2&'%3, + mguo.

This is just the sum of the initial kinetic energy §?m'§y and the initial potential energy mugyg, and is

independent of time.

8.67 The total mechanical energy E of the oscillator is

1 2
E = skA™.

Sinee E = KE 4 PE, this implies

%m? —KE + PE=KE + %kxz.

Thus, at the position r = 7

212 8
Therefore,
3
e _ g3
B Zpg 4

8.77 Convert the final speed of the car from km/h to m/s.

. . _ 10% m h )
v=150km/h = (150 km/h) ( o ) [SGDOS) =41.7Tm/s.

According to the CWE theorem, the work done by the total force is equal to the change in the kinetic energy
of the car, so

W e = AKE = mug B muf _ m(v§ — v¥) _ (1.00 x 10° kg ) [(41.7 m/=)? — (0 m/s )?]

5 3 5 5 = 8.60 = 10" 1.




The average power of the total force 1s

W total 860 x 10° ] - .
Pave = ——7— = ——gpe—— = 100 < 10° W = 100 kW .

Chapter 9 Questions:

9.9 Since K = p?/2m, if the kinetic energy is equal, the larger mass will have the larger momentum.

9.12 Airbags are designed to bring you to rest over alonger time interval than otherwise would occur, thus
decreasing the force acting on you for a given change in momentum. To change your momentum, an impulse
is needed and the same impulse can be provided by either alarge force acting over a short timeinterval or a
smaller force acting over alonger timeinterval. Airbags are used so the latter scenario is the case.

Chapter 9 Problems:

9.6 Convert the speed from ln/h to m/s.

. . 10% m h
an/h = | an/h) | —— | [ ——— | = 27.8m/s.
100 km/h = {100 km/h ( oo ) (BEDO " ) 278 m/s

a) The velocity of the car i=s
V= (278 m/s)(cos 1367 )i 4 (27.8 m/s )(sin 135%)] = (—19.7 m/= )i+ (19.7 m/s )j.
g0, the momentum is
B =m¥ = (120 » 10° kg) (.1—19.? m/s )i+ (19.7 m/s ;.j)
= —(2.36 « 10" kgm/s ) i+ (2.36 % 10* kgm/s) j.

bl The magnitude of the momentum is the magnitude of this vector — the square root of the sum of the
squares of its components:

p=1/(2.36 % 108 kgm/s)? + (2.36 = 100 kgm/s)? = 3.34 = 10" kgam/=.

We can also find the magnitude of the momentum more directly by taking the product of the mass with the
speed:

p=|B| = |m¥| = m|¥| = mv = (1.20 =« 10° kg )(27.8m /=) = 3.34 = 10* kg-m /s.

Mote that this is valid only becanse m is a scalar — not a vector.



9.9 Use the CWE thecrem to determine the speed of the coclleshell the instant before impact. Choose a
coordinate system with j pointing up, i pointing horizontally in the direction of the gull's flight, and origin
at ground level directly below the release point.

The conservative gravitational force of the Earth is the only force acting on the shell during its fall.
There are no nonconservative forces, so their work is zero. The CWE theorem becomes

2

. ; . L . mt:? . . s
0T = Wiinconservative = A EE+FE) = (KE; +FE¢) — (KE; +PE;) = — mg(0m) | — —5 - tmgu

/
= = 1U."|I'i_::-2 + 291 =4/ (15.0 m/s)? 4+ 2(9.81 m/s? ) (20.0m) = 24.8 m/s.
The magnitude of the momentum of the shell the instant before impact is

p=muy = (0.200 kg (248 m/s ) = 4.96 kg-m/s.

0.12

a) Choose a coordinate system with i pointing horizontally in the same direction as the ball's initial
horizontal velocity component, j pointing straight up, and origin at the ball's position before it is whacked.

b)  The impulse i= equal to the change in the momentum of the ball,
I=AP =5~ B

The initial velocity of the ball resting on the tee before the impact of the club is % = 0 m/s. The final
velocity of the ball after leaving the club head is

Ve = (60.0 m/=) (cc:s 450" 1+ sin 45_0*'3) = (42.4m/s)i+ (424 m/s)].
Therefore, the impulse is
T = m¥; — m¥%; = (0.045 ke ) (.;‘42.4 m/s )i+ (42.4 m/s ;.j) —(0.045 kg )(Om/s) = (LON-5 Ji+ (19N = )i.

¢)  From part b) the magnitude of the impulse T is

I=+/(1ON-8 )2 +(1.ON.s )2 =27 N.s .

The magnitude of the average force times the time interval it acts on the ball is equal to the magnitude of
the impulse given to the ball, so

I 2TN-s

—_— = = 27x 10®N.
A Lonxips T

Faelt =1 = Fy.=

9.22

a) Since the collision of each marble with the wall i= elastic, the kinetic energy of each marble is conserved
immediately before and after the collision. Hence, each marble rebounds from the wall with the same speed
as the incident speed. The momentum change of each marble is thus

AP=Pi— P =m¥—m¥; =m(¥—¥)=m (.;‘—ﬁ;. - ﬁ) — —2mui.

b} During the impact with the wall, the foree of the wall on a marble is much greater than the weight of
the marble; hence, neglect the weight. It is the impulse of the wall on each marble that causes its change
in momentum. According to the impulse-momentum theorem, the total impulse on each marble is equal to
the change in its momentum. Hence, the impulse of the wall on each marble is

Iwall on marhle = =2dmui.



o) From Mewton's third law, the impulse of the marble on the wall has the same magnitude as the impulse
of the wall on the marble, but is in the opposite direction. Hence the impulse of the marble on the wall is

I:m..a.rb-l.e an wall = .

d) With n marbles per second incident upon the wall, the total impulse provided to the wall during one
second is n2mui. This equals the average foree on the wall times one second.

n2mui = ﬁm.eﬂl sy = Fo. = (2.00 g1 :lnm'ui.

It is, of course, important to retain the unite of s~ Otherwise the two sides of the equation would not
have the same dimensions. If, for example, n marbles were thrown per howur, then Fa,. = (2.00 h™! jnmad.
The magnitude of this force is only 1,/3600 times the force when n marbles are thrown every second.

&) The force per unit area is the foree on the entire wall divided by its area.

(20051 :lnmtri
A '



