Context-Rich Problems: Solutions Outline

FOCUS the PROBLEM

Draw a picture of the situation including ALL the information given in the problem.

Question(s): What is the problem asking you to find?

Approach: Outline the approach you will use.

Use kinematic equations to get acceleration, and Nowton's second law to Figure out Force. Chose x axis along slope

DESCRIBE the PHYSICS

Draw physics diagram(s) and define ALL quantities uniquely.

Kinematics

Y₀=0 V₀=0 t₀=0 V₁=3.0 m/s t₁=? Dynamics

Which of your defined quantities is your Target variable(s)?

Quantitative Relationships: Write equations you will use to solve this problem.

PLAN the SOLUTION

Construct Specific Equations (Same Number as Unknowns)

UNENUMNS

Find a

EXECUTE the PLAN

Calculate Target Quantity(ies)

$$6 = 51N^{-1} \frac{3.0 \text{ m/s}}{(5.0 \text{ s})(9.8 \text{ m/s}^2)} = 3.5^{\circ}$$

Is Answer Properly Stated?

7,5

Is Answer Unreasonable?

Yes, 5 seconds is quite long, and 3.0 Mz is slow, so It hould be a Small angle Is Answer Complete?

Yes

(extra space if needed)

Check Units

$$SIN'$$
 $\frac{(1)}{(T)}$ $=$ N_1 Units OK