Context-Rich Problems: Solutions Outline

FOCUS the PROBLEM

Draw a picture of the situation including ALL the information given in the problem.

Question(s): What is the problem asking you to find?

What was the acceleration down the hill?

Is this a result of coasting

Approach: Outline the approach you will use.

- 1) Use projectile motion and kinematic equations to determine velocity when the cur left the cliff.
- 2) Set X axis parallel to the hill and determine average acceleration with one dimensional kinematic equations

DESCRIBE the PHYSICS

Draw physics diagram(s) and define ALL quantities uniquely.

Which of your defined quantities is your Target variable(s)?

Quantitative Relationships: Write equations you will use to solve this problem.

$$y_{2} - y_{1} = V_{1} \left[t_{2} - t_{1} \right] + \frac{1}{2} a \left[t_{2} - t_{1} \right]^{2}$$

$$V_{1}^{2} = V_{1}^{2} + 2a \left(x_{2} - x_{1} \right)$$

$$V_{2}^{2} = V_{1} + a \left(t_{2} - t_{1} \right)$$

PLAN the SOLUTION

 $x_2 - x_2 = \sqrt{(t_3 - t_2)}$

Construct Specific Equations (Same Number as Unknowns)

$$V_{1} = V_{0} + a(t_{1} - t_{0})$$

$$V_{1} = at_{1} \qquad (v_{1} = V_{x})$$

$$V_{x} = at_{1}$$

$$V_{x} = at_{1}$$

$$\sqrt{a} = V_{x}/t_{1}$$

$$\sqrt{a}$$

$$x_{3} = \sqrt{x} t_{3} \quad \boxed{2}$$

$$y_{3} - \sqrt{2} = \sqrt{2}y(t_{3} - t_{2}) - \frac{1}{2}g(t_{3} - t_{2})^{2}$$

$$y_{3} = -\frac{1}{2}gt_{3}^{2} \quad \boxed{3}$$
From $\boxed{3}$ $t_{3} = \sqrt{2}y_{3}/g \quad \boxed{6}$

Olung @ into (2)
$$V_{X} = \frac{X_{3}}{t_{3}} = X_{3} \sqrt{\frac{9}{2y_{3}}} \quad (B)$$

$$\begin{array}{c|c}
a = \frac{x_3}{t_1} \sqrt{\frac{9}{2y_3}}
\end{array}$$

Check Units

$$\frac{1}{2} : \frac{1}{2} : \frac{1}{2} : \frac{1}{2} : \frac{1}{2} \cdot \frac{1$$

EXECUTE the PLAN

Calculate Target Quantity(ies)
$$Cl = \frac{30 + 1}{3 \cdot 1} \sqrt{\frac{32 + 1/5^2}{2 \cdot (400 \cdot 1)}} = 2.0 + \frac{1}{5} \cdot 2$$

EVALUATE the ANSWER
Is Answer Properly Stated?

Is Answer Unreasonable?

No, it is much less than the acceleration of gravity 32 H/32

Is Answer Complete?

No, this is much less than g, and the slape is only 10°. It is a reusenable coasting acceleration on a 10° slope, so this seems like an accident. (extra space if needed) No faul play seems involved.