Assignment #11

Chapter 10 Questions:

10.32 Once leaving the board, there is no external torque on the diver. By “tucking,” adiver decreases his
moment of inertiaand so his spin rate (angular velocity) increases to conserve angular momentum.
When the diver straightens out, his moment of inertiaincreases dramatically and so the angular velocity
a so decreases dramatically, but does not become zero.

10.38 Using the CWE theorem, chose a coordinate system with j up and an origin at the level of the center of
the circles when they are at the base of the inclined plane. Let the height of the planebe h. Since

W = AK + AU
0= (MV¥2 + lmw?/2 — 0) + (0—mgh) J

Writing the moment of inertiaas pmR?,

mgh = mv¥/2 + BmRA?/2R?
gh = (1+B)V?/2

The object with the smallest value of B has the largest velocity, v, since the left hand side of the equation
isthe same for all the objects.

Chapter 10 Problems:

10,27
a) Using the right hand rule, we find that the angnlar momentum L is in the same direction as 3.

h) The gravitational force of the Earth on the disk produces a nonzero torque about the swivel. For the
given orientation, the gravitational torque is directed perpendicular to and out of the page.

c¢] The torque of the gravitational foree is in the same direction as the change in the angular momentum
vector, so the precession is in a counterclockwise sense when viewed looking vertically downward from above
the system.

d) The moment arm of the gravitational force 1s bsin ¢, where @ 15 the angle between the symmetry axs
and the direction of g Hence, the magnitude of the torque of the gravitational torce about the pivot is

T = mgbsin ¢.

The magnitude of the torque also is equal to the magnitude of the time rate of change of the angular
momentum,

dlL
dt

When viewed from above locking down, during a short time interval A#, the component of the angular
momentum in the horizontal plane (L sin @) moves through a small angle A#. Recalling the standard
relation @ = s/r, we can associate AL with s, Lsind with r and Ad with 6, so

AL A# AL

Al At AtLsing

Lsin o



As At approaches zero, the left-hand side becomes the angnlar speed W' of the precession, and on the right-

hand side, the quantity AL /At becomes equal to the magnitude of the torque (which we evaluated abowve).
Therefore,

~,_ mghbsing _ mgh
© 7 Lsine L
But L = Iw, so
., mgb
s _ I\A; -
10.47

a) The moment of inertia of the tub is the sum of the moment of inertia of a cylindrical shell and that of
a disk, both found in Table 10.1 on page 440 of the text,

1
2 2
I= Ic:.'lindriral shell + Jdisk = mBA= + 5??113

— I=(6.0kg)(0.25m)% + %(5.0 kg )(0.25 m)?

= [ =038kgm? + 0.16 kg-m?

= [=054kgm®.
b) Convert the initial angular speed from rev /min to rad/ s,

(180 rev / min) (27 rad / rev)

60 = / min

= 18.8rad/s.

Winitial =

The initial kinetic energy of the tub is

KEipnitial = EIW'Z

2 initial —

%(0,54 kem? )(18.8 rad/s )2 = 05 J.

c) Convert the final angular speed from rev /min to rad /s,

(60 rev / min)i2r rad / rev)

w = — = 6.3 rad/s.
final 60 s / min !

The moment of inertia of the sand in the tub is that of a cylinder
1
Isand = Ei”sand-lqz-

Apply the law of conservation of angular momentum to the tub-and-sand system, nsing the magnitudes of
the vectors:

JE‘ﬁnsl] = JE"u']'n:.la.]

i (I + Isand :li-l" = J-T‘Jf'irli'f.iaall
= 0.54kgm? + %msand(D.QJ} m )?(6.3 rad/s ) = (0.54 kg-m? ){18 8 rad/=)

= Tgand = 35 kg



d) The moment of inertia of the tub-and-sand system when the sand is rotating with the tub is
I' = ILiup + Toana = 0.54 kg-m® + %(35 ke )(0.25 m)* = 1.63 kgm?.
The kinetic energy of the tub-and-sand system 1s

KB = ', = ~(1.63 keom? ) (6.3 rad /s )2 = 32 7.

2

b | =

e] The fraction is

I'{‘.I:—:f"u'ua.] _32‘] 0
R 057 ok

10.50  Use the CWE theorem. The work done by yon 18 Wianconservative- There is no work done by the
force of static friction on the tire since it is a zero-work force. Choose a coordinate system with origin at
the hottom of the incline, with 1 in the horizontal and j in the vertical direction. With these choices,

H"'—lmmccmsenrative = ..:‘L[KE + ]-:E,J = (%”u@ + %I""Iz + ﬂlgh) - (D J + 0J .J

The rolling constraint implies that the speed and angular speed of the tire are related by
v = Ruw.

Also, the moment of inertia of the disk-like tire is

I = %mRz.

Substitute for w and [ in the CWE theorem,

W oonconservative = %mvz + % (%m.ﬁ‘z) (;—__L))“ +mgh = gmvz + mgh.

10.54 The angular momentum of the merry-go-round-kid system 1s conserved because there are no torques
acting on it. Therefore, using the magnitudes of the vectors, we have

J:‘Ensl = Jt-'i.ni.t,ia]
= Ilfpalwhinal = Jinitial Winitial
= (Taisk + T )whinal = Jdiskwinitial
diskWinitial

(Taieke + Tia )

The moment of inertia of the merry-go-round is that of a disk, while the moment of inertia of the child is
that of a particle in orbital motion. The moment of inertia of the disk is

= Whinal =

Ll = %mdiskﬁ’z = %[150 kg )(2.00 m )* = 300 kg-m*.

The moment of inertia of the kid 1=

Tia = My B* = (30 kg )(2.00 m )* = 1.2 x 10° kg-m* .



Use these moments of inertia in the equation above for wg.:

. (300 kg-m? )(20 rev / min)
“inal = 00 kgm? + 1.2 « 102 kgm?)

= Whnal = 14 rev /min.
10.66 Use conservation of angular momentum for the magnitudes of the vectors:
Lﬁnal = L]'nit.]'al
—— t.Il + Iz:lw' = Nhuwo

I
I+ 1z

—

.

10.67

a) Use the parallel axis theorem to determine the moment of inertia of the hoop about the peg:
I = Icnm + md=.
Here, d = R, and we can find [y from Table 10.1 on page 440 of the text:
I =mR* + mR* =2mR*.

b} Refer to Figure P.67 on page 483 of the text. The forces on the hoop are its weight W, and the force of
the peg on the hoop. The force of the peg on the hoop produces no torque about the peg since its line of
action passes through the peg. Hence, the torque is caused only by the weight.

Choose k into the page. The moment arm of the weight is K=inf. Hence, the magnitude of the torque
resulting from the weight is

T = mygimoment arm) = mgHsind.
The direction of the torque is along fc, which we choose to point into the page. Notice in Figure P.6T that the
torque always tends to decrease # . Hence, the angular acceleration has a negative component of magnitude

cv. Therefore,

F=1a
= mgh sinfk = [Q??;sz(—a-ﬁj

= 2Ra 4+ gsind = 0 m/s

2
= QR% +gsinf = 0m/s
. dzg g = i.2
= = +ﬁsmﬁ'— 0 rad/s".
For small angles, sinf = #, so
d?8 g

F —|— Eg = G rad;"sz .



This differential equation is the equation for simple harmonic oscillation. The square of the angular frequency
w of the oscillation is the coefficient of # in the differential equation. Hence,

T OR “TVaor

10.73 The forces on the ladder are its weight W, the normal force N1 of the vertical, f1 1ctionless wall on
the ladder, the normal force N of the horizontal surface, and the force of static frlct.lon i The =second law
force dlagranl and an appropriate coordinate cholce are shm@ n below.

v
/

When the ladder is ready to slip, the force of static friction has its maximum magnitude
(1) Jomax = palNz.
Since the ladder is equilibrium, the sum of the forces along each coordinate axes must be zero. Therefore,

Frtotal=DN = fsmax_-"\rl =0N

50
(2) fe max = N1
Al=o

Fyitotal =0N = No—mg=0N
50
(3) Ny = mg.

Since the ladder 15 in equilibrium, the sum of the torques taken about any point must be zero. Take torques
about the base of the ladder. The forces Nz and f; yax each produce zero torque about this point, since
their lines of action pass throngh the pont. Set the sum of the remaining torques to zero, so

mgeosd  mg

sems o ot%

ONm = [mg% cos B)(—k) + (N fsinf)k = Ny =

Use equation (2] for fi max

mg

fo max = 5 cot 7,



and then use equations (1) and (3) to find &:

- mg . _ . _ 1 1 —
[aTlg = 5 oot = cotf =2u, — tanf = Qe 2x0.30

L7 = 6 =50

So, at any angle less than 597, the ladder will slip.

10.77  Choose a coordinate system with origin at the edge of the roof, i pointing horizontally to the right,
and j pointing up. Let r be the maximum distance you can walk from the edge of the building without
tipping the plank. When the plank is ready to rotate about the origin (the edge of the roof), the forces on
the system are:

1. the weight W, of the plank, directed downward. This may be thought of as being applied at the center
of mass of the plank, at the point (—0.50 m )i;

2. your weight W, directed downward. This 1s applied at the point i
3. the force F directed upward of the edge of the building on the plank. This is applied at the origin.

Take torques about the origin. Then force F produces zero torque, since its line of action passes through
the origin. Since the system is in equilibrium, the total torque on the system is zero, so

Tiotal = 0 Nem == (100 kg }(9.81 m/s* )(0.50 m ])fc +(70.0 kg )(9.81 m/=* ).z‘(—ﬁj =0 Nm
= (100 kg )(9.581 m;"sz JO50m ) — (T0.0 kg )(0.81 111;"52 jr=0Nm = x=07lm.

Chapter 12 Questions:

12.14 Onalocal scale, the speed of light can be considered to be essentially infinite compared with the speed
of sound, v. The sound of thunder travels adistanced inatimet, d = vt.
If disin kilometers, the d = (0.34 km/s) t
Hence the distance in kilometers is about one third the time in seconds between seeing the lightning and
hearing the thunder. The distance in milesis about 1/5 the timein seconds. So a difference between the
lightning and thunder of 5 seconds meant the lighting struck about one mile away.

12.15 Theacceleration is greatest at the maximum amplitudes +A. The acceleration is zero when the
transverse position is zero (the equilibrium position). Thisisalso the position of greatest speed. The
speed is zero at the maximum amplitude, £A.



Chapter 12 Problems:

12.2

a) Mathematical functions representing traveling waves only contain the variables r and ¢ in the combina-
tion (x — vt) or (x + vt), where v is the speed of the wave. So, in the expression given, the coefficient of ¢ is
v=>500m/s.

b) Here are plots of the waveform at the specified times.

P (m)
0.125 t=100s t=200s

: R : : xr{m)

—5.00 0 5.00 10.00 15.00
¢] The wave disturbance ¥ix,t) is a maximum at the values of @ and ¢ which make the denominator a
minimum. This happens whenever x — (5.00 m/s)t = 0 m. We are not asked to find the values of z and
¢t for which this ocours; rather, we only are asked to find the value of ¥(z.¢) when it occurs. Thus, the
maximum value of the wave disturbance is

0.250 m®
; 1aE
M 2 0m2+0m? 0.125m.

d) Here are the plots of the waveform at the specified times.

_ v {m)
t= 2.00 t= J..DOS 0_125

r(m)

15.00 —10.00 —5.00

12.16
a) The amplitude A of the wave is the coefficient of the cosine term, 20 A = 0.300m.
b} The angular wavenumber k is the coefficient of = in the argument of the cosine, so &k = 12.57 rad/m .
¢] The wavelength A is found from
2w 2w 2

= T _05000m.
) k  1257radjm

d) The angular frequency v of the wave is the coefficient of ¢ in the argument of the cosine, w = 261.3 rad/s.

e) The frequency 1+ and angular frequency w are related by
w 25613 rad/s

w=2mr = v=—

O 2

= 40.00 Hz.

t) The period T of the wave is
1 1

= —9F 25
S =T 2500 = 107= 5.

T =



g) The speed v of the wave is
v =ph=(40.00 Hz ){0.5000m ) = 20.00 m/s.

h) To find the wave disturbance & at r = 3.00 m when t = 1.50 x 1073 s, substitute these numerical
values into the wavefunction:

¥ = (0.300 m) cos[(12.57 rad/m )(3.00 m ) — (251.3 rad/s)(1.50 = 10~% 5]
= (0.300 m ) cos[37.7 rad — 0.377 rad]
= (0.300 m ) cos(37.3 rad ) = (3)(0.931)
= ¥ =0276m.



