## Group Problem

You are at the Orange Bowl on January 8, 2009, where OU is playing USC for the 2008 National Championship. The score is OU 21, USC 20, and USC is lining up for a last second field goal to try to win the game. You watched the USC kicker warm up and you saw that he could kick the football with a maximum velocity of $21 \mathrm{~m} / \mathrm{s}$. He lines up for a 45 -yard kick. You watch as he kicks the ball at an angle of $35^{\circ}$ above the horizontal. Assuming he kicks the ball straight will the ball clear the 10 -foot goal post, or will OU win the national championship?

## Context-Rich Problems: Solutions Outline

FOCUS the PROBLEM
Draw a picture of the situation including ALL the information given in the problem.


Questions): What is the problem asking you to find?

$$
\text { Will the field } g_{\text {al }} 1 \text { be god ed? }
$$

Approach: Outline the approach you will use.
Use kinematic equations with $a_{x}: 0, a_{y}=-g$ to determine how high the $b_{n} l l$ will be when it goes 45 yds . (You could also figure out Where the ball is horizontally when it is $10 \mathrm{f}+$ high $)$

## DESCRIBE the PHYSICS

Draw physics diagrams) and define ALL quantities uniquely.


Quantitative Relationships: Write equations you will use to solve this problem.

$$
\begin{aligned}
& V_{2}^{2}=V_{1}^{2}+2 u\left(x_{2}-x_{1}\right) \\
& V_{2}=V_{1}+a\left(t_{2}-t_{1}\right) \\
& x_{2}-x_{1}=V_{0 x}\left(t_{2}-t_{1}\right)+\frac{1}{2} a\left(t_{2}-t_{1}\right)^{2}
\end{aligned}
$$

PLAN the SOLUTION
Construct Specific Equations (Same Number as Unknowns)

$$
\begin{aligned}
y_{1}-y_{0} & =v_{0 y}\left(t_{1}-t_{0}\right)-\frac{1}{2} g\left(t_{1}-t_{0}\right)^{2} \\
y_{1} & =v_{0 y} t_{1}-\frac{1}{2} g t_{1}^{2} \\
x_{1}-x_{0} & =v_{x}\left(t_{1}-t_{0}\right) \\
x_{1} & =v_{x} t_{1}=v_{0} \cos \theta \\
t_{1} & =\frac{x_{1}}{v_{0} \cos \theta} \\
P l_{v g} & (2) \\
y_{1} & =v_{0} \sin \sin \theta\left(\frac{x_{1}}{v_{0} \cos \theta}\right)-\frac{1}{2} g\left(\frac{x_{1}}{v_{0} \cos \theta}\right)^{2} \\
& =x_{1} \tan \theta-\frac{1}{2} g\left(\frac{x_{1}}{v_{0} \cos \theta}\right)^{2}
\end{aligned}
$$

Check Units

$$
[L]=[L]+\frac{[L]}{[T)^{2}}\left\{\frac{\left.[L T]^{(L I}\right\}}{[T T}\right\}^{2}=[L]_{0 t}
$$

EXECUTE the PLAN
Calculate Target Quantity(ies)

$$
\begin{aligned}
y_{1}= & (135 \mathrm{ft})\left(\tan 35^{\circ}\right) \\
& -\frac{1}{2}\left(32 \mathrm{ft} / \mathrm{s}^{2}\right)\left(\frac{135 \mathrm{ft}}{68.9 \mathrm{ft} / \mathrm{sec} \cos 35}\right)^{2} \\
= & 3.0 \mathrm{ft}
\end{aligned}
$$

EVALUATE the ANSWER
Is Answer Properly Stated?
Yes; in feet

Is Answer Unreasonable?
$N_{0}$, it is near the height of

$$
10 \mathrm{ft}
$$

Is Answer Complete?
No, the kicker misses the field goal. It doesn't clear the crossbar. OU wins!
(extra space if needed)

Write your Group Number here and the names of the group members who are present.

Group Number: $\qquad$
Name: $\qquad$
Name: $\qquad$
Name: $\qquad$
Name: $\qquad$

