Errors and Analysis of Data

The sole purpose of performing an error analysis is to show to what
extent your results can be believed. There are three different aspects
to reporting errors: (1) keeping track of measurement uncertainties;
(2) discussing sources of random and systematic error in your experi-
ment; and (3) error propogation in the analysis of the data. The first
two are by far the most important. The third has a rough-and-ready
aspect as well as a rigorously mathematical aspect. Usually it won’t
be necessary to do a thorough error propogation. But it is important,
when combining measured quantities in equations, to kndw which er-
rors are going to have the greatest effect on the accuracy of the final
result and have some idea to the latter, if only an estimate.

Measurement Uncertainties

The precision of any measuring instrument is limited, and when record-
ing data you have an obligation to determine or at least estimate and
report those limits. This prevents incorrect conclusions from being
drawn from the measurements. o :
For example, suppose you are taking a voltage reading from the
meter face shown in Figure 1. The small ticks are spaced 2 millivolts
. (mV) apart. Suppose that you measure a voltage of 60 mV. You
would be able to tell easily if the reading were 64 mV instead; on the
other hand, if it changed from 60.0 to 60.2, you would probably not
be able to see the difference. So your uncertainty in the measurement
is less than 4 mV, but more than 0.2 mV. It’s your job to make
a common-sense estimate of a reasonable mazimum probable error of
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. Figure 1: A voltmeter you might use to make a measurement.

your result. You might decide that the voltage is known to an accuracy
of 1 mV: in other words, you think a change of 1 mV or more would
be noticeable. For rulers, dials, and other measuring devices with tick
marks, the error will probably be comparable to the smallest marked
division. For a digital instrument, the error will probably be in the last
digit of the display and typically £1 unit. Other devices will usually
have a certain percentage accuracy associated with them, for example
+1%, +£10%, £20% and so on. Consult your TA if you cannot estimate
this yourself.

Once you have decided upon the likely accuracy of the meter, you
can report the appropriate uncertainty for your voltage measurements.
When you report a result of (60+ 1) mV, you are saying you think that
the voltage is probably between 59 and 61 mV. You are also saying that
58 or 62:mV would not be out of the question, but you are quite sure
that the voltage is less than 64 mV and more than 56 mV.-

There are a few standard ways of reporting such errors. If you read
many measurements from one device, you might write a note such as
error in voltage = £1 mV in your lab notebook and formal report.
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When the errors vary from measurement to measurement, you might
present them each with their own error intervals, i.e., (60 £ 1) mV.
One common mistake is to write more digits in the measurement than
the precision allows: for example, it makes no sense to report (60.05 +
1) mV, since 0.05 mV is less than the unknown accuracy. When data
are graphed, the errors should be indicated on the graph, either as error
bars or in a comment on the graph (for example, if the error is very
small compared to the scale of the plot or the size of the symbols).

Random and Systemic Error

Every numerical measurement you will make in the Physics laboratory
will have an uncertainty (or error) associated with it. As in the case
of the voltmeter reading described above, the error may be due to
the finite resolution of your measuring device, but it is not limited
to this. The measuring device may have an unknown offset, or it may
have been calibrated incorrectly. Generally, errors are grouped into two
categories, random and systematic. Random error comes from things
in your experiment which are slightly different each time you make a
measurement, in a way you cannot predict or control. Systematic error
comes from your experimental setup and is the same whether you make
the measurement once or one hundred times. o

If you are reading from a meter with a quivering needle, or a digital
readout where the last digit is flickering, these will cause random error
in the measurement. Since the needle is just as likely in this case to read
slightly high as slightly low, you can improve your data by taking many
measurements and averaging. This is an example of random error.

On the other hand, the calibration of the meter might be wrong. It
might consistently give a reading 2 mV too high. This is an example
of systematic error. Repeating the measurements in this case will not
make any difference; all measurements will still be too high, but you
could in principle detect the problem and account for it. (For example,
you could check the meter with a constant voltage source known to
better than 2 mV.) This is an example of systematic error.

To further illustrate the difference between random and systematic
errors consider an example from target practice (Figure 2). The random
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Figure 2: Target practice.

errors might be due to variations in the cartridges, jitter while aiming,
etc. The systematic errors might be wind, misaligned sights, or a con-
sistent bias in aiming. Note that random errors become smaller if the
data are averaged over many tries or measurements, while systematic
errors do not. In other words, we can decrease random errors by taking
many measurements and averaging, but we must combat systematic
errors in other ways.

When your eport experimc wbal results you will usuaﬂy be COIpariing
» them to something — either an accepted value or, much more often, a
value you measured in a different way to check for consistency. Since
the values you are comparing will never (or very rarely) be eractly
equal, it is important to know the uncertainty associated with a given
measurement in order to correctly compare it to the expected value.
A discrepancy between a measured and expected value is signaled by
the expected value falling outside the limits established on the measured
value by its associated uncertainty. Because comparisons between ex-
pected and measured values allow us to draw meaningful results from
experimental measurements it is essential to understand and charac-
terize both the random and systematic uncertainties associated with
a given measurement. Furthermore, experimental results are often de-
rived from equations which make use of many separate measurements.
In order to derive meaningful experimental results it is often necessary
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Figure 3: Gaussian distribution.

to propagate measurement uncertainties through these equations. This,
along with other important aspects of uncertainty determination, are
described in detail below.

The Normal Distribution, Mean, and Stan-
dard Deviation

Suppose we consider a measurement whose result can take on a con-
tinuous range of values. To be concrete let us imagine a very simple
experiment. We want to measure the time it takes a ball to fall 1.00 me-
ter. To get an accurate value we use a good stopwatch and repeat the
measurement 200 times. Figure 3 shows the results of our hypothetical
experiment in the form of a histogram.

The vertical height of each rectangle or bin gives the number of
measurements that lie within the range of the bin. For example, there
were 29 measurements with fall times between 0.485 and 0.495 sec.

The distribution in Figure 3 is somewhat idealized, but is typical
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of what real data from a well-designed and executed experiment might
look like. The most notable features are:

1. The values are clustered about a well-defined mean value which
is close to the most probable value (the value of ¢t where the
distribution has its maximum). The arithmetic mean of the ¢
values in gaussian is approx. 0.497 s. \
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2. Values which are far from the mean are very unlikely.

3. The distribution is reasonably symmetric about the mean. There
is no obvious skewing toward the high or low side.

If we took many, many measurements and made the bins very fine,
our histogram might begin to look like the smooth, bell-shaped curve.
This curve is the limiting case in an ideal situation. It is referred to as
the normal or Gaussian distribution. Measurement errors which follow
this distribution are said to be normally distributed. The mathematical
form of the normal distribution is really not very important because,
in a given experiment, you cannot prove that the measurements will
follow a normal distribution. Nevertheless, a distribution resembling
the normal distribution is usually found, and it is usually assumed that
a normal distribution is appropriate.

The bell-shaped curve and, to a good approximation, the histogram
of Figure 3 can be characterized by two quantities, the mean value
and the width. The mean t of the measured times is just the arithmetic
average of the data,

_ 1 1 Z
n =t
Here tq,1s,... are the measured times, the symbol 3 stands for a

sum, and NV is the number of measurements. (For the normal distribu-
tion, the mean is defined in terms of an integral analogous to Equation
1.) The width of the distribution can be defined in various ways — for ex-
ample, the full width at half mazimum, the mean deviation Y |t —t;|/N
and the root mean square (rms) deviation o = [S(—t;)2/N]z. The
rms deviation turns out to be the most common, and we shall accept
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it as our definition. It is-also called the standard deviation of the
measurement. We shall generally refer to it as the standard deviation
and use the symbol . Thus
= (L@ e 2
o=l ;( i)°] (2)
where 7 is the mean from Equation 1.

If the measurements follow a normal distribution then ideally 68.3%
of the measurements lie within +1¢ from the mean. Thus, from Fig-
ure 3, which contains 200 measurements, we can estimate ¢ by counting
off 68 measurements in either direction from the mean. This includes
a band of width approx. +0.030, so the standard deviation per mea-
surement is approx. 0.03. This band is indicated in Fig. 1 by the
arrows labelled +s and s. Note that we could get a more precise value
of ¢ by numerical calculation from Eq. 2, but the increase in preci-
sion of ¢ is insignificant. In other words, we shouldn’t feel obliged to
estimate o to very high accuracy. In practice, it is safest to use the
histogram method for estimating ¢ when possible because it gives a
chance to judge whether the data look normally distributed. We might
be tempted to discard a measurement which lies many standard de-
viations from the mean. (We shall not discuss the correctness of this
procedure; the point is that it is often done.)

It is jmportant to realize that ¢ is a measure of the probable un-
certainty of one measurement i.e., if we make one measurement it has
a 68% probability of being within lo of the mean value. The uncer-
tainty in the mean is much smaller than ¢ because we have made many
measurements. For N measurements the standard deviation of the
mean is

Lam:a/\/ﬁ " (3)

This assumes that the measurements are independent and uncorre-
lated. In the example of measuring the fall time of a ball, if we started
and stopped two clocks with the same switches the measurements of
the two clocks would be strongly correlated; the amount of correlation
would depend on how good the clocks were. (The better they are, the
stronger the correlation.)
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The result of a series of measurements of a quantity A and its error
or uncertainty are usually written in the form A + ¢. In the example
above, the mean time was 0.497 sec and the standard deviation of the
mean would be 0.03/1/200 =2 .002, so we would write

t = 0.497 & .002 sec (4)

Ideally this means that the “true” value of t has a 68.3% chance of
lying between 0.495 and 0.499 sec. Two results are considered to be
consistent with each other if they are within 1 or 2 standard deviations
of each other. Obviously some judgement is required. The above dis-
cussion assumes that all of the measurements in an experiment are of
equal intrinsic accuracy. If some measurements are better than others,
the better ones should have a higher weight in computing the mean.
The calculation of the weighted mean and probable errors in this kind
of a situation is discussed in many references.

Experiments Whose Outcome Is an Inte-
ger: The Square Root Rule

Often the result of an experiment or measurement is an integerfor ex-
ample, the number of mice out of an initial sample of 100 that die within
.one year or the number of radioactive nuclei out of a sample that decay
in one second. The standard deviation of the number of such “events”
(deaths, decays, or whatever) can be estimated by the square root

rule. If IV is the number of events, the standard deviation in N is
Om=VN . (5)

For this to be an accurate estimate, the following conditions must be
satisfied. (The better they are satisfied, the better the estimate of o.)

1. The number of events N must be large. [Some people might
consider N > 10 to be large enough.]

2. The probability that any member of the initial sample dies or
decays (or whatever) must be small. If, for example, we did an
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experiment to see how many of 100 mice would die within 100
years, the answer would be 100 & 0. The probability of death is
100%, surely not small. On the other hand, if we start out with
10® radioactive nuclei and they decay at the rate of 10° per sec,
in a 10 sec “experiment” the number of nuclei which decay would
be N = 10000 + 100. The square root rule should work very well
because N > 1 and the probability of a given nucleus decaying
is 107* during the experiment.

Error Propogation

For most experiments, you will not present just the raw data, but some
quantity derived by combining the results in equations. The uncertain-
ties in the measurements will all contribute to the uncertainty in the
final result, and there is a specific way to handle this.

Even when you aren’t going to do a full-fledged error propogation,
there are some things you must keep in mind. First, give some thought
to how many digits you write down when you record the data. It’s
a good habit to write down all the digits you can when you make the
measurement, and round off later when you report the result with its
uncertainty. This allows you to see what kind of fluctuations (random
error) you have in your data, and also keeps roundoff error from building
up and thanging your results.

You may sometimes make measurements which have the same units
and need to be added together, but which have different uncertainties.
Remember that your precision is only as good as that of your least
accurate measurement. For example: you measure a bunch of voltages
with a digital voltmeter. For the small voltages, you use the smallest
scale setting, which goes down to 0.001 V. For the larger voltages, you
use a higher scale that goes down to 0.1 V. Your data look like this:
0.568, 0.450, 4.2, 3.8, with the error in the last reported digit of each
number. Now suppose you need to sum them to find a total voltage.
It would be incorrect to report the sum equal to 9.018, since you don’t
have that much accuracy in all of your measurements. You need to
round to 0.1 V, since that is your largest uncertainty, and report 9.0 V
as your final result.
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So much for the rough-and-ready error analysis. You should now be
able to answer the questions at the end of this appendix. Unfortunately,
there is still more for you to learn before you can call yourself an expert
and before you can successfully complete the analysis for some of the
experiments, so read on. If you need or want to be completely rigorous
in the error analysis, the following techniques must be used.

Notation: If the measured quantity is z, the symbol 6z (delta x)
will denote the experimental precision. For example, if the measured
data is (60 & 1) mV then =z = 60 while éx = 1. Likewise if some
number A is calculated from measured numbers, §A is the uncertainty
in A. The following rules tell you how to find 6 A from the errors in the
experimental quantities.

Rule 1: addition and subtraction. Suppose that you make several
measurements, x £ dx, y + dy, and z &+ 6z, and the quantity A is given
by

A= kl.’L’ + ka + k)SZ

where the k’s are all constants (positive or negative). Then

8A = 1/ (k18z)? + (k26y)? -+ (ksb2)?
and you report the result A £ 6A. (For more than three measured

variables there would be additional terms in the square root sign.)

Rule 2: multiplication and division. Again let z,7, z be the mea-
sured variables, k constant, and A given by multiplication or division
of these. Multiplication and division are treated the same, so A can be:

A=kxyz or A=kxy/z or A=k/zyz

or any similar variant. Then

CEORC)

Note that this expression has the same form as that for addition, but the
fractional or percent errors are used instead of the absolute errors. That
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is, (6x/x) instead of 6z is the important quantity. Hence, if (6z/z) are
+1%, and (6z/z) is £5% then it is mainly (6z/z) that determines 64/A
and the others can be neglected. Also, then (0A/A) = (6z/z) = £5%.

Errors can be approzimated since you only need one digit or so of
accuracy. Therefore they usually need not be calculated to high preci-
sion, particularly just to get an estimate of the error and its propagation
(as in the above example).

Rule 3: power function. When your measured variable x is taken

to a power n, that is,
A= kx",

5A = Ajn| (%) |

Note: n could be fractional since /z = 7; also log,, z and In|z|
correspond to m < 1. Here is an example to show you how a more
complicated function can be handled in terms of these rules. The mea-
sured variables are z, y and z; say k and n are constants; and A is the
calculated quantity. Other capital variables B, C, ... will be used as
dummy variables for the algebra. Suppose your calculation is

where k is constant, then

] A=k/x+ yz".

This is of the form A = B+ C where we set B = k/x and C = yz™. So
from Rule 1 we have

§A=/(6B)? + (6C)2.
Now 6B and 6C can be found separately.

B=k/z, so 6B=DB (%) = (k/x)(6z/x) = k6:r/:1:2

Now,
C =yz"
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to deal with this term, set D = 2" so C = yD. Now you can find §C
from the multiplication rule:

w=o|(3)'+(3)’

Now of course we need to find §D:

11880000 0sasccaccnas

6D = D[n[% = (yz”)]n[% = |nlyz""'6z.

Now we can go back and plug all these numbers in to find 6A. It’s
actually a lot of trouble. A much better idea is to look at the three
rules again and note the following:

1. When quantities are added, it is the total error that matters.

2. When quantities are multiplied, it is the fractional or percentage
error (6z/x) which matters.

3. When a quantity comes into an equation raised to a certain power
(+ or —), it is the power times the percentage error (néx/z) which
is significant. '

4. logz and Inz terms correspond to n < 1 so uncertainties in them
are usually small i.e., log(z £ ) ~ log(z) for & small.

5. Since high accuracy is not needed, you can make approximations
to simplify calculations.

So look at the expression for A just one more time:
ok
A=—+y"
o Y

Looking at this, we can simply say the following. If |n| is greater than
one, then the percentage error in z will be more important than the
percentage error in y. Also, if the error in one term of A is much
greater than the error in the other term, you will only have to worry
about the term with the larger error. If they are about the same, then
we should use the square root rule to calculate their total contribution
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to 6A. but otherwise you can approximate and keep only the dominant
term. Learning to make this kind of judgement will often save us the

-trouble of going through a long painstaking analysis, and is a useful

intuition to develop. During a lab, you want to concentrate your efforts
on the key items needing accurate measurement.

References on Errors and Treatment of
Data

There are two handy paperbacks: Theory of Errors by Yardley Beers
(Addison-Wesley Pub. Co.); and Statistical Treatment of Data by Hugh
D. Young,(Mc Graw-Hill Pub. Co.). On the lighter side, there is How
to Lie with Statistics by Darrel Huff (Norton Pub. Co.). A readable
but more advanced book is P.R. Bevington, Data Reduction and Error
Analysis. Another useful book is J.R. Taylor, An Introduction to Error
Analysis. These books are available in the Science Library which in the

Undergraduate Library.

Questions

" 1. Twenty measurements of the time for a ball to fall 1.0 meter are
made with the results: .461, .512, .496, .470, .537, .501, .495,
449, 468, .444, .472, .483, 441, 467, 463, .557, .482, .430, 477,
450 sec. Histogram the data. Calculate the mean and estimate
the standard deviation. Do these data seem to follow a normal
(Gaussian) distribution? Discuss. Are these data consistent with

the data in Figure 37

2. From the data in Figure 3 calculate the acceleration of gravity
from g = 2y/t? if the ball fell a distance y = (1.102 £ .004)m.
Estimate the standard deviation in the “measured” value of g.
Compare it to the accepted value of g = (9.81 +.01)m/s®. Is the
measured g consistent with this? Are the errors in the measure-
ment purely random? Give three examples of systematic errors
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that might occur in this measurement and discuss how they might
be minimized.

. You make 10 measurements of the number of radioactive nuclei

that decay in 1 sec. The results are: 60, 69, 58, 65, 71, 60, 62, 74,
68, 66. Are these data consistent? Calculate the mean number
of decays per sec. and estimate its standard deviation. Would
you have gotten a more or less accurate value if you just took one
measurement for 10 sec and divided by 107 Discuss advantages
and disadvantages of either strategy.

. If you made a histogram of the grade point averages of all U. of

M. students, would you expect it to follow a normal distribution?
What about the distribution of the number of spectators per home
game in the football stadium for the past 5 years? Suppose you
randomly select students to make 300 groups, each containing
100 students. You then calculate the mean height for students in
each of the 300 groups. Would you expect the 300 mean heights
to follow a normal distribution? Discuss each example briefly and
sketch what you might expect the histogram to look like.

. Joe believes a pair of dice is “loaded.” To check this possibility,

he takes one of them, throws it 100 times, and tallies how many

+‘;W\f\{" Ijnh]’\ Y\“m]’\n"‘ NDPAATYTIAG 11T HO QY\AO 1n 2 a¥alal 17 +1!1A0 r)n +L\7‘QQC‘
uiiTiCs Calil [IUIlIoTUL COLICo up. 110 1l 1V Uiy, 17 UWUn, &4u ulllCln,

24 fours, 13 fives and 16 sixes. Can he conclude the die is loaded?
Discuss.

. A study was made of 85000 Vietnam veterans, who had been ex-

posed to chemical defoliants, to determine whether they showed
abnormally high rates for a variety of cancers. Eleven were found
to have soft tissue sarcomas (a rare form of cancer) compared
to a predicted number of 16 based on rates in similar groups of
American males. Twenty compared to a predicted 15 had de-
veloped lymphomas. Can these differences between the observed
and predicted rates be considered significant? Explain.
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