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Abstract

We give the lens equation for light deflections caused by point mass condensations in an otherwise
spatially homogeneous and flat universe. We assume the signal from a distant source is deflected
by a single condensation before it reaches the observer. We call this deflector an embedded lens
because the deflecting mass is part of the mean density. The embedded lens equation differs
from the conventional lens equation because the deflector mass is not simply an addition to the
cosmic mean. We prescribe an iteration scheme to solve this new lens equation and use it to
compare our results with standard linear lensing theory. We also compute analytic expressions for
the lowest order corrections to image amplifications and distortions caused by incorporating the
lensing mass into the mean. We use these results to estimate the effect of embedding on strong
lensing magnifications and ellipticities and find only small effects, < 1%, contrary to what we have

found for time delays and for weak lensing, ~ 5%.
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I. INTRODUCTION

Conventional extragalactic gravitational lensing assumes that the Universe is homoge-
neous and isotropic on scales significantly smaller than observer/source/deflector distances,
i.e., that the cosmological principal applies at these distances. It also assumes that a lens-
ing inhomogeneity such as a galaxy or cluster of galaxies is an addition to the homogeneous
mean. What we investigate here is the extent to which errors are made because of this latter
assumption. To assume a single galaxy is an addition to the mean might not seem irrational
but to assume giant super clusters are is more suspect. In fact they are both contributing
to the mean and hence do not act as infinite range deflectors. To understand why, one only
has to surround a typical deflector by an imaginary sphere of radius r and note that the
average mass density inside the sphere decreases as r increases until the density reaches the
cosmological mean at some r=ry. If this were not correct the cosmological principle would
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be in error. Beyond the gravitational boundary r,, the gravitational field has returned to
the homogeneous mean and the lens ceases to produce any additional deflection of a passing
light ray. In this paper we compute modifications to the lens equation caused by this finite
range. To make sure we properly account for the lensing gravity we use an exact solution to
Einstein’s equations. We assume the deflector is a simple point mass lens embedded in a flat
Friedman-Lemaitre-Robertson-Walker (FLRW) universe, see Eq. (1), whose energy content
includes pressureless dust (cold dark matter) and a cosmological constant A (2, + Q2 = 1).
The mathematics of the embedding process is the same as embedding in the Swiss cheese
cosmological models [1-4]. These models are the only known exact general relativistic (GR)
solutions which embed spherical inhomogeneities into homogeneous background universes.
The range 7, above is given by the comoving radial boundary of the homogeneous sphere
that has been replaced by the condensation. Beyond that boundary the gravity caused by
a condensation and a homogeneous sphere are exactly the same. Schiicker [5] refers to this
radius as the Schiicking radius. For a point mass lens the removed dust sphere of comoving
radius y, is replace by a Kottler condensation [6], i.e., Schwarzschild with a cosmological
constant, see Eq.(2). This complete condensation of mass is often criticized on aesthetic
grounds. The jump in mass density at the boundary of the void is obviously nonphysical;
however, the model’s optical properties appropriately correct for embedded inhomogeneities
(see [7, 8] for more details about optics in, references for, and history of this model). The
discontinuities do not cause refraction and just as in conventional linear lensing the mean
density of the mass in the light beam is the important quantity, not its actual discontinuous
distribution along the beam. In [7, 9] we derived analytical expressions for the bending angle
a and the time delay AT of a photon that encounters such a condensation. Related work
appeared in [10-15]. In this paper we derive the embedded lens equation and prescribe a
scheme to iteratively solve it.

The flat FLRW metric for the background cosmology can be written as
ds? = —c*dT? + R(T)? [dy® + x*(d6? + sin” 0d¢?)| (1)

and the embedded condensation is described by the Kottler or Schwarzschild-de Sitter metric

[6] which can be written as

ds* = —y(r)72dt® + y(r)*dr® + r*(d6” + sin® 6 d¢?), (2)
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where y71(r) = \/1—762(7') and $%(r) = ry/r + Ar?/3. The constants r, and A are the
Schwarzschild radius (2Gm/c?) of the condensed mass and the cosmological constant re-
spectively. By matching the first fundamental forms at the Kottler-FLRW boundary, angles
(0, ¢) of Egs.(2) and (1) are identified and the expanding Kottler radius r;, of the void is
related to the comoving FLRW radius x, by

ro = R(T)xs. (3)

By matching the second fundamental forms the Schwarzschild radius r4 of the Kottler con-
densation is related to FLRW by
H2
rs = Qm?QO(ROXb)ga (4>
where Hj is the Hubble constant and the cosmological constant A is constrained to be the
same inside and outside of the Kottler hole.

In Section II we give the lens equation valid for deflections caused by Kottler condensa-
tions in the flat FLRW universe and numerically compare its predictions with conventional
lensing theory for a source at redshift one and a deflector at redshift one half. In Section
[T we give analytic expressions for image magnifications and distortions for the embedded

point mass lens (to lowest order only) and compare them with conventional lensing results.

II. THE LENS EQUATION

The Swiss cheese lensing geometry is shown in Fig. 1. The deflected photon leaves a
source S, enters a Kottler hole at point 1, exits at point 2 with a deflection angle @ < 0, and
then proceeds to the observer at O. Point B is the intersection of the forward and backward
extensions of respective FLRW rays S1 and 20 drawn as if the Kottler hole were absent and
the original ray was simply reflected at point B. Angles 6; and 6g are respectively the image
and source positions relative to the observer-deflector optical axis OD. The rotation angle
p measures the difference between the horizontal axis [with respect to which we measure the
spherical polar angle ¢, see Egs. (2) and (14) and Fig. 1] and the optical axis. A negative
p is a clockwise rotation of the observer. The lens equation for a given deflector mass and
background cosmology is simply the equation that gives 6; as a function of g for fixed

comoving source-observer distance ys and deflector-observer distance x4, and fixed photon
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FIG. 1. The comoving embedded lensing geometry. Points .S, D and O represent respectively the
source, deflector, and observer positions. The point B is a fictitious reflection point. Points 1 and 2
denote the photon’s entrance and exit from the Kottler void. The bending angle is o, 8 and g are
respectively the image and source position angles at the observer measured relative to the optical
axis OD, and A = 6 — 0g. A similar geometry appears in Fig. 1 of [7]. The figure represents the
0 = 7/2 plane (the plane containing the photon’s orbit) of the spherical polar coordinates used in
Egs. (1) and (2). The ¢ orientation is fixed by requiring the photon’s point of closest approach to

the Schwarzschild mass, rg, occur at ¢ = 7/2.

arrival time Tp. For non-embedded lenses, i.e., for conventional linear lensing theory, this
relation is straightforward to obtain even for complicated lensing mass profiles, because the
deflector is completely unrelated to the cosmology. For an embedded lens this is no longer
the case. However, because of the azimuthal symmetry of the lensing geometry all photon
orbit variables can be thought of as depending on a single independent variable. Choosing
fs or the photon’s minimum Kottler coordinate ry would be logical but not convenient. In
what follows we have chosen to give all quantities as functions of ¢; where m — ¢; is the
azimuthal angle of the photon at entry into the Kottler void (see Fig. 1, or Fig.1 of [7]).
Because ro(gfgl) is a complicated function, r( is retained in all expressions and only evaluated
when needed.

The embedded lens equation can be obtained by applying the law of sines to the triangle
SBO of Fig. 1

sin(fs — 0y — ) = XXBO sin(—a). (5)



The embedded lens equation can be compared to the standard linear lensing equation [16, 17]

for flat FLRW

D s s
05— 0y = =5 (o) = = (), (6)

where small angle approximations are made and the differences between distances from the
observer to the deflector and to the reflection point B (x4 and xpo) are neglected. Since we
are now computing the linear and non-linear corrections to the standard lensing theory, we
cannot make such simplifications as is done in [18] and [19]. To find the relation between

these two distances we apply the law of sines to the comoving triangle D20,

_ sin(¢y — & —0r)
X20 = sin(¢s — &) Xd

= [Cos 0r — cos(py — &2)

sin 9[
sin(¢g — 52)] X ")

Applying the law of sines to the comoving triangle D20 again and noting that ¢, = b1+ Ao,
& = & + a by definition, we obtain

X20 = [cos 0; — cos(y — & + Ag — oz)izb] Xd, (8)

d

where y,, the Kottler void radius [see Eq. (4)], is assumed known. The angles &, & = & +a,
$1, and A¢ are exhibited in Fig. 1 and are the same as those used in [7, 9] where analytic
expansions for them as explicit functions of 7y and ¢; can be found. The angles & and &
are negative and give the respective slopes of the photon as it enters the Kottler hole at
azimuthal angle 7 — ¢; and exits at angle ¢ = A¢ + ¢ (see Fig.1 of [7]). The comoving
distance xp2 can be obtained from trig identities applied to triangles 1B2 and 1D2 of Fig. 1

XB2 = —281n<_A¢/2 &) cos (le + AQS) Xb- 9)

sin « 2

Combining this with Eq. (8) we obtain the relation of xgo to xa,

XBO = X20 + XB2
_ {Cosel— [cos(&l 6+ AG—a)
L28in(=A0/2+4 &) (le N Aqﬁ)]xb}xd

sin a 2 Xd
= 9(91,51,A¢, a)Xd' (1())

The new lens equation (5) becomes

Os =0+ a+ sin™! Kd 901,61, A¢, ) sin(—a)] ) (11)
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The task at hand is to evaluate all variables on the right hand side of Eq. (11) as functions
of a common variable e.g., gzgl. Once accomplished, Qs(qgl) and Gf(qgl) can be tabulated to
give the desired image position as a function of the source position, 0;(fs). The image angle
f; can be determined from knowledge of &, A¢, and o by applying the law of sines to the
triangle D20

sin 6 = sin(¢ — & + Ag — ) 2. (12)

Xd
The bending angle « is given by Eq. (32) of [7], Ad = ¢ — ¢y is given by Eq. (13) of [9],
and the photon’s slope angle &; results from evaluating Egs. (16)-(19) of [7] at the photon’s
entry point into the Kottler void (to fourth order)
. B . 1 . .
& = —Pising + ™ cos ¢1(2 + sin® ¢y) — 561@(6 — 3sin? ¢, — 2sin’ ¢))
To To

1, - 1mir_ - o« . -
—— B Argsing; — ——2[15(4151 — —) + cos ¢y (8 — 15sin ¢y + 4sin” ¢y
18 4 rg 2

+14sin® ¢y + 4sin’ ¢y)] + O(5). (13)

The rotation angle p can be computed from the photon’s exiting slope & + a and the image
position 6; using

p=&+a+0; <O0. (14)

The expansion speed 3 = v/c of the void boundary relative to stationary Kottler observers
is defined in Eq. (2) and when evaluated at the photon’s entry point is called 3; (see Fig. 1
of [7]). Keeping terms to 4*® order is necessary in order to correct point mass time delays
for embedding.

In the expressions for &, A¢, and «, approximation orders have been counted as follows:
B is 1% order, r,/ro and Arg are both 2. All terms are made of sums and/or products of
these. The expansion speed f; depends on ¢; and rq through its dependence on 7 (which

is given by the symmetric null geodesics of the Kottler metric Eq. (2))

To T L~ 2 ( T )2 17 1 5~ 4
= —q1l4+ — |1+ — — (=) |— == — _
" sin ¢ { 2rg < Sin 1 sin ¢1> 2ro 4 4 St g1 sin? ¢4
15 ~ ~
+3 (7 — 261) cot ¢1] + 0(6)}. (15)

The above expansion is valid only when sin él > rg/1ro. All quantities on the RHS of the
embedded lens equation (11) can now be evaluated as functions of ¢y and ro. These two

variables fix the photon’s symmetric orbit (symmetric about ¢ = 7/2) while in the Kottler
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hole. They are independent unless the photon is additionally constrained by originating at
a specific cosmic source or arriving at a specific observer. To eliminate one of these two
variables an additional relation between them such as a cosmic timing constraint must be
used. For the photon which started at a fixed x, to have reached the observer at time
To after entering the Kottler void at &1 and passing with minimum impact rg, it must
have impacted the Kottler void at a specific time T} or equivalently at a specific redshift z;
(1+ 21 = Ro/R(T1)). Knowledge of z; allows us to independently determine r; from the
embedding equations (3) and (4) i.e., by using

1 rs 13
— T ) 16
n=r (5 1) (16)

Because z; is not assumed known we compute z; — z4, the difference in entry redshift and

the (assumed known) deflector redshift, using techniques similar to those developed in [7, 9].

The result up to fourth order is

zg— 2= (1+2) [AZlSt(Zb ¢~51) + Az (2, 7o, &1) + A2z, 1, &1)

+Az4th(21> 70, &1)}7 (17)
where
1st — _@1 COs ¢1’ (18)
A 1m
A22nd — TO + 517 sm2 ¢1 + —— sin (bl (3 — 7Sln2 ¢1) (19>
3 21

Ar2 ~ 1 - - -
A3 —ﬁlAro cos g251 _ 2o Xxe cos ¢y + fﬁlm coS ¢ (7 + 26 sin qﬁf) + 12log tan ﬁ sin ¢
3 Xd 3 1o 2

—Z—& cos ¢y sin® ¢y, (20)

2710 Xd

and

3

1 1 - . - -

Az = 6&/\7“(2)&(1 — 2sin ¢7) + 751&@(4 + 9sin ¢? — 18sin¢‘11> sin ¢1 + fﬁl <Xb> sin ¢
Xd X

d
3
+ om ([ Xe sm5 b1 — — Aro cse ¢y (61 + 24 sin ¢y + 124 sin gb2 — 227 sin qb‘ll
8 To \ Xd 36 To
- " ) ) ]
+ 48 cos ¢ log tan ¢21) + E— (36 — 18sin ¢y — 431 sin ¢? 4 42sin ¢°
— 188sin ¢ + 595 sin ¢° — 240 cos ¢; sin® ¢, log tan (21) (21)



In the above

1/3
v_ 1 ()P (22
Xa L4 zg \Qw Hf Dy’
is taken as an additional small parameter no larger than 1% order.
Equations (17), (15) and (16) are three equations relating four variables zy, o, r1, and

$1. They can be solve iteratively (four iterations) giving z1, 79, and r; as functions of 1.

For an example, to obtain z; correct to the first order in 3, we use Egs. (17) and (18)
21 =2a — (14 2a) A2 (24, 1) = 24 + (1 + 24)B(24) cos b1, (23)

this can be inserted into Eq. (16) to obtain 7y correct to first order in ;. This r; is then
inserted into Eq. (15) (only the lowest order is needed here, i.e.,ry = r1sin¢;) to obtain
ro correct to first order. For the next iteration, we include Eq. (19) and the r;/rg term in
Eq. (15), and so on. With z(zq, ggl), ro(24, gz~51) and r1(zq, gz~51) in hand, we can compute 67,
&1, Ag, and « in terms of ¢, and finally solve the embedded gravitational lensing equation
(11) for (1) which can be tabulated to give fs(6;) for a given image.

In Figs. 2 and 3 we have solved the embedded point mass Swiss cheese lens equation (11)
and compared the results with those of the conventional Schwarzschild point mass lensing
theory. We chose deflector/source redshift respectively z; = 0.5, z, = 1.0, cosmological
parameters 0, = 0.3, Qy = 0.7, and Hy = 70kms~' Mpc™". In Fig. 2, we chose a deflector
mass m = 10 M, (a rich cluster). For each source angle fg, we solved Eq. (11) using the
iteration scheme described above obtaining 951, z1, To, T1, 07, etc., for both the primary and
secondary images. The conventional Schwarzschild results are given by Eq. (6). The impact
parameter in conventional lensing is simply taken as roscn) = 0r(schyDa. The dashed/dotted
curves are for primary /secondary images, and the solid curve is the fractional correction to
the angle between image pairs, i.e., ;1 —672. The symbol ¢ is used for the difference between
the embedded lens value and the conventional Schwarzschild value. In the left panel, we
compute the relative correction in the image position, i.e., 66;/0(sen) (blue-upper bifurcating
pair of curves), and the relative correction of the impact parameter rg, i.e., 079 /7o(scn), Where
drg = 19 — To(sch) (red-lower bifurcating pair of curves).

In the right panel, we compute the net correction of the bending angle v (central pair
of green curves), the effect of the linear correction alone, i.e., cos® ¢ —1 (lower pair of red
curves), and the contribution of the cosmological constant A (upper pair of blue curves).

Figure 3 is the same as Fig. 2 except that it is for m = 10'2 M, (a typical large galaxy). For
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FIG. 2. The embedded point mass lens versus the Schwarzschild lens. The deflector/source redshifts

are respectively zg = 0.5, z; = 1.0; the cosmological parameters are 2, = 0.3, Qy = 0.7, and

Hy = 70kms~ ' Mpc™!; and the deflector mass is m = 10'® M. The abscissa fg is the source

angle measured in units of the classical Einstein ring angle §p and the dashed/dotted lines are for

primary/secondary images. Quantities being plotted are the fractional differences (represented by

a d) between the conventional Schwarzschild results and the corresponding embedded lens results

divided by the conventional results.

The bifurcating blue curves are above the corresponding

bifurcating red curves. The green bifurcating pair of curves in the right panel are between the

upper blue pair and lower red pair. The solid curve in the left panel measures the relative correction

of the angle between the primary and secondary images.

m = 10' M, corrections in the image angle #; can be as large as 0.2%, and corrections in

the bending angle a can be as large as —0.8%. For m = 102 M, corrections in the image

angle 6; can be as large as 0.01%, and corrections in the bending angle o can be as large as

—0.18%. As can be seen from the right panel of Figs 2 and 3, the most important correction

is from the linear term, i.e., the cos él correction, the contribution of the next order (A term)

is at least two orders smaller than the linear correction. We will concentrate on obtaining

analytic results for the linear term in the next section.
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FIG. 3. The embedded point mass lens versus the Schwarzschild lens

the deflector mass m = 10'2 M,

III. IMAGE MAGNIFICATION AND ELLIPTICITY

In this section we include only the lowest order correction to

. Same as Fig. 2, except that

the standard lensing equa-

tion caused by the finite range of the embedded point mass Swiss cheese lens. Sereno [20]

computes alterations in the magnification but only within the

Kottler void. We assume

sinfl; < 1, sinfg < 1, and that the Kottler hole is much smaller than the observer-deflector

distance, i.e., g(ggl) — 1« 1, see Eq. (10). From Eq. (5) we obtain

Dds

95—91:—D

(-Oé),

(24)

which is the same as the standard lens equation (6) except that the bending angle to the

lowest order now contains a cos® ¢ factor caused by the finite range of the deflector

T ~
a=—2-2cos® ¢y,
To

see Eq. (32) of [7].
expression for the deflection angle a.

To lowest order the minimum Kottler impact is
ro = Dabr + O(B1),
[see Egs. (3), (12) and (15)] and the embedded lens equation to 1

0% 32
s — 0 = —0—1 cos” ¢q.

11

(25)

Equation (5) is the form assumed correct by [19] but with a different

(26)
owest order becomes

(27)



The angle 6 is the familiar Einstein ring radius

Ddsrs
=4/2 2
QE Dst7 ( 8)

and from Eq. (12) 6; is related to ¢, by

sin ¢y = XbH/IXd + O(B1). (29)

This gives us a modified Einstein ring radius (to lowest order)

Ddsrs 7
O = \/Qﬁ(cosqsl)?’ﬂ, (30)

(see [21] for modifications in the Einstein ring within the Kottler void). The two images for

the standard point mass lens are easily found at

1
07 = 2{&:&#93—%4%}, (31)

however, to find the corresponding image positions for the embedded lens you must solve
Eq. (31) with g replaced by 6.
The amplification and shear for the embedded lens can be found by a familiar [16] rescaling

(0s — 0s/0g =y, 0 — 0;/0g = ). Equation (27) simplifies to

cos® ¢y
where
sin ¢y = S (33)
Y (w/xa) /08
The 2-d Jacobian A = dy/0x is found to be [17]
A= (1 B C0832Q~51> [1 01 | cos h1(2 4; sin® ¢;) [ a3 ffﬂz] | (34)
x 0 1 x T1Ty T
which has two eigenvalues
~ ~ o1
ay = 14 cos ¢ (1 + 2sin® gbl)?,
~ 1
_ 3
as =1 — cos gblﬁ (35)

Writing

l—rk—7v —
A:< ' ’ ) (36)
—72 l—Kk+m
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as is commonly done in standard gravitational lensing theory, we immediately obtain a

negative surface mass density

3 . 9~ ~ 1
= g — 37
K 5 sin” ¢ cos ¢ 2 (37)
and two shear components

~ 2 g2

_ 9 1 sin? 1 2

" oS 9%1( + sin g?l)x 295374 ,
Yo = — cos ¢1(2 + sin? ¢y ) ;42, (38)

with total shear
- o~ 1
v =\/VE 4+ 2 :cos¢1(2+sm2¢1)2—x2. (39)

The amplification p for an image is given by

pl(x) =det A= (1 —kr)?—7*=aa,

N S 1 s -1
= 1+ 3cos ¢ sin® oy — — cos” ¢y (1 + 2sin® ¢1)—.
s xXr

The image of a circular source (eccentricity e = 0) will be an ellipse of eccentricity

= (40)

e 1o a3 \/(2$2 + 3sin? ¢y cos ¢ ) (2 + sin® ¢y cos ¢,
ai 22 + cos ¢y (1 + 2sin? @) '

The standard lensing results are obtained by putting cos¢; = 1 and sing; = 0 in the
above. Deviations from standard image amplification x4 and the image ellipticity e caused by
embedding are shown in Fig. 4. The left panel is for a deflector mass m = 10'® M, and the
right is for m = 102 M. In each plot, the red solid and the (identical to accuracy shown)
black dotted (upper) curves show the corrections in ellipticity, i.e., d¢/e for the primary and
secondary images. The solid blue (lower) curve is the relative correction in the magnification
ratio, i.e., 8 (g1 /p2)/(11/ o). For the m = 10'° M, case, the correction in ellipticity can be as
large as 0.03%, and the correction in magnification ratio can be as large as —0.17%. For the
m = 10'2 M, case, the correction in ellipticity can be as large as 0.004%, and the correction
in magnification ratio can be as large as —0.019%.

These lowest order shielding effects, i.e., no bending outside the Kottler void, are far
larger than approximation errors in the standard linear theory caused by assuming the
photon’s path is infinite. The classical Einstein bending angle 4V /r depends only on the

impact parameter r and not the comoving source/deflector distances x; or x4 because it is
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FIG. 4. Linear corrections to Schwarzschild lensing caused by the finite range of embedding— the
magnification ratio u;/u2 and the ellipticity e are plotted as a function of source position. The

cosmological parameters and redshifts are same as in Figs. 2 and 3.

obtained by integrating from —oo to 400 along an approximated photon trajectory. The
effect of finite integration along the line of sight in standard lensing does make the bending
angle smaller but only by terms of order [r/xq4]* and [r/(xs — xa)]>. Because bending occurs
only within the Kottler hole, our lowest order correction, i.e., the 1 — (cos ¢)? term, is much
larger than the angle reduction caused by excluding bending in conventional theory beyond a
distant source and observer. Our cos ¢ correction is of order [r/x;)* where Yy is the comoving
size of the Kottler hole and is significantly smaller than x4 and (xs — xq). For an example,
assume M = 10*2M,, z4 = 0.5, and same cosmological parameters as used in the paper, we
found x3/xa = 9.54 x 107%. Therefore, the effect of finite line of sight integration is ~ 1077
order smaller than the lowest order corrections predicted in current paper, and ~ 10~* order

smaller than the A correction (refer to the right panel of Fig. 3).

IV. CONCLUSIONS

We have given a lens equation (5) valid for use on highly concentrated lenses (point
masses) which are embedded into the otherwise spatially homogeneous and flat background

FLRW cosmology. We have also given the additional equations necessary to iteratively solve
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this embedded lens equation and have outlined a procedure for doing so. As an example
we have looked at differences in strong lensing predictions made by this new theory as
compared to the conventional theory. We used a large galaxy size lens (m = 10'? M)
and a rich cluster size lens (m = 10" M) and found, as was suggested before in [7, 9],
that predictions for strong lensing effects made by embedded lens theory differs by less
than 1% from predictions made by the conventional theory. In Section II we looked at
image angle differences and in Section III we looked at lowest order analytic expressions for
image magnification and ellipticity differences. We expect more significant effects to occur
for weak lensing applications where impact distances are much larger and where shielding

effects (cos® ¢;) are more significant.

We have found that embedding affects time delays, image positions, magnifications and
ellipticities differently than does the presence of substructure. For example, substructure has
a large effect on magnification, but has almost no effect on the time-delay; our model predicts
corrections in magnifications and even larger corrections in the time delays. The small size
of the effect of embedding on magnification and ellipticity in strong lensing ~ 0.1% that
we have found here is an order of magnitude smaller than we have found on time delays in
strong lensing ~ 4% (Chen et. al. 2010). Knowing this is important to all standard lensing
calculations; you only make a small embedding error using the standard theory when you use
it for strong lensing magnification and ellipticity calculations; not so for time delays or for
weak lensing applications. However, because of the size of the effect, embedding differences
can only be tested when we have better knowledge of lens mass distributions. Some current
observations (such as Hubble observations of lens image positions) are accurate enough
to resolve the embedding corrections we predict; however, degeneracy in mass modeling
currently prohibits confirmation. As soon as the mass models are appropriately accurate,

embedding effects can be tested.

An additional special feature presented by this model is the analytic dependence of lensing
on the cosmological constant Lambda. This model absolutely settled the argument about
how the cosmological constant effects lensing. Prior to its use many from the astrophysics
community believed that the cosmological constant did not affect lensing at all, even though
the GR community argued that it must (see [10, 18-20]). The exact analytic nature of the
dependence was in dispute prior to the introduction of this model. For example the most

significant effect of the cosmological constant on the bending angle appears in square-root
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terms (see equations such as (32) of [7]) and is an order of magnitude larger effect than
previously estimated. All other work also missed the most significant effect of embedding
on lensing, the shielding effect. Because the range of a real lens is not finite, this model
becomes useful when 0.5% accuracy in strong lensing deflection angles is desired or when 5%
accuracy in time delays is required or when 5% accuracy in weak lensing deflection angles

is required.
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