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ABSTRACT

We compute the deflection angle to order (m /ry)* and m /ro x Arg for alight ray traveling in a flat ACDM cosmology
that encounters a completely condensed mass region. We use a Swiss cheese model for the inhomogeneities and
find that the most significant correction to the Einstein angle occurs not because of the nonlinear terms but
instead occurs because the condensed mass is embedded in a background cosmology. The Swiss cheese model
predicts a decrease in the deflection angle of ~2% for weakly lensed galaxies behind the rich cluster A1689
and that the reduction can be as large as ~5% for similar rich clusters at z &~ 1. Weak-lensing deflection angles
caused by galaxies can likewise be reduced by as much as ~4%. We show that the lowest order correction
in which A appears is proportional to m/ry X \/Arg and could cause as much as a ~0.02% increase in the
deflection angle for light that passes through a rich cluster. The lowest order nonlinear correction in the mass is
proportional to m/ro x 5/m/rg and can increase the deflection angle by ~0.005% for weak lensing by galaxies.

Key words: cosmology: theory — gravitational lensing: strong — gravitational lensing: weak

Online-only material: color figure

1. INTRODUCTION

Recently, Rindler & Ishak (2007) have stirred interest in the
possibility of measuring the cosmological constant A through
its effect on the deflection of light that traverses large galaxy
clusters by asserting that A has a non-negligible effect on small
angle bending. Several papers have since appeared to support
the existence of an effect (Ishak 2008; Ishak et al. 2008, 2010;
Sereno 2008, 2009; Schiicker 2009a), although qualitatively
disagreeing on its value and/or interpretation, but others (Park
2008; Khriplovich & Pomeransky 2008) contest the existence
of an effect arguing that the additional bending caused by A
vanishes when measured by observers moving with the Hubble
flow. We purport to give the definitive answer to this question as
well as several other related ones. When comparing observations
with and without a A, one must compare observations of two
different sets of events, by two different observers, in two
different universes. One ideally attempts to make common as
many kinematic and dynamic properties as possible in the two
gedanken experiments. To conclude whether A does or does not
cause bending can easily depend on what is held in common and
what property is compared in the two experiments. For example,
a photon orbit in a Kottler (1918) spacetime (Schwarzschild
with a cosmological constant) does not depend on A if static
coordinates are used, see Equations (3) and (11). One could
hence conclude that A does not affect bending. However,
as Rindler & Ishak (2007) point out, observers, stationary
relative to the Schwarzschild mass, will measure an angle
between the photon direction and the radial direction that does
depend on A. From this observation, one could conclude that
A does affect bending. Both conclusions are valid, but neither
answers the outstanding question, “how does A contribute to
deflections caused by large inhomogeneities in the otherwise
homogeneous background cosmology?” This is just one of the
questions we definitively answer, subject to the condition that the
inhomogeneity is significantly condensed and has no peculiar
motion.
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To correctly analyze A’s nonlinear effect on bending, we
found it necessary to use exact solutions to Einstein’s equations.
These solutions reveal a somewhat surprising value for the low-
est order nonlinear correction in the deflecting mass m to the
familiar Einstein deflection formula 4Gm /c?ry (see the square
root term in Equation (32)). This correction, like the A correc-
tion, increases the deflection and occurs because the deflector
is embedded in a universe that expands. By using an exact in-
homogeneous cosmology, the largest correction to 4Gm/c’ry
is revealed not to be a nonlinear term but instead is caused by
the limited time the deflector has to influence a passing photon

(see the cos® ¢, term in Equations (32) and (33)). The limited
time or equivalently the limited range of the inhomogeneity can
be thought of as a result of shielding by the homogeneous back-
ground in which the deflecting mass is embedded and decreases
the deflection (relative to the Einstein value). General relativity
(GR) requires that the two gravity fields, the homogeneous back-
ground and the local inhomogeneity, be appropriately matched
at their bounding surface. We use the Swiss cheese models
because they are the only known exact GR solutions that
embed spherical inhomogeneities in expanding homogeneous
universes. Gravitational lensing calculations in cosmology are
usually done by superimposing a deflecting mass on top of a ho-
mogeneous mass density and ignoring any boundary matching.
The resulting deflection angle is obtained by a simple summa-
tion of the Einstein expression 4Gm/c?ry. The results can at
best be accurate to first order in the ratio of mass m to minimum
impact distance ry, and if the shielding predicted by boundary
matching in Swiss cheese is accurate, the linear term can be in
error by a few percent in physically realizable circumstances
(see Figure 4).

Because our goal is to correctly present the higher order cor-
rections and because a simple superposition of the masses is
not satisfactory, we resort to using exact solutions to Einstein’s
gravity (see Section 2). It is in the nonlinear corrections that
the cosmological constant first appears. What we calculate in
this paper is (in a series approximation) the angle o« = &, — &
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(see Figure 1) between two spatial directions &, and & as seen
by comoving observers in a flat Robertson—Walker (RW) space-
time, where &; is the spatial direction of a photon before it
encounters an inhomogeneity here described by the vacuum
Kottler spacetime (see Equation (3)) and &, is the direction
of the photon after it has emerged from the Kottler conden-
sation. The dynamics of the RW metric is determined by GR
sourced by pressure-free matter (often referred to as dust) and
includes a cosmological constant. These are relatively simple
Friedman—-Lemaitre—Robertson—Walker (FLRW) cosmological
models, see Equation (1). Because the RW cosmology used is
spatially flat and non-rotating, (1) the angle between any two
comoving spatial directions is well defined independently of
when or where the directions are measured and (2) the spatial
direction of an undeflected photon remains fixed.

In Section 2, we describe the inhomogeneous cosmology we
use and in Section 3 we outline some details of how we compute
the bending angle of a photon that encounters an inhomogeneity.
In Section 4, we discuss limits on the usefulness of our results
and compare the Einstein angle with our corrected results for
deflections caused by inhomogeneities ranging from galaxies to
rich clusters.

2. SWISS CHEESE: LOCALLY INHOMOGENEOUS
COSMOLOGIES

We use a single condensation in a Swiss cheese cosmology
to compute light deflections caused by local inhomogeneities so
there can be no doubt about errors introduced by gravity approxi-
mations. Because Swiss cheese is an exact solution to Einstein’s
equations (Einstein & Straus 1945; Schiicking 1954), its use
ensures the accuracy of the superposed gravity field and auto-
matically takes into account the finite range of the mass density
perturbation as well as observer aberration. The model was first
used by Kantowski (1969a) without the cosmological constant
to settle the dispute as to whether or not inhomogeneities af-
fected mean luminosities. At that time, the validity of predictions
(Zel’dovich 1964; Dashevskii & Zel’dovich 1965; Dashevskii
& Slysh 1966; Bertotti 1966; Gunn 1967) obtained using ap-
proximate GR solutions, which indicated that mass concen-
trations caused the average distance—redshift relation to differ
from the pure homogeneous value, were being questioned. Even
though the results are occasionally doubted by some, the Swiss
cheese model gave the definitive answer—there is an effect
(see Kantowski et al. 1995). This model again comes to the
rescue by clearly demonstrating the extent to which the cosmo-
logical constant A influences the small angle bending of a photon
that passes a single mass concentration (see Equation (32)). Even
though others have computed bending angles that depended on
A, until now, questions abound as to their usefulness and/or ac-
curacy in a cosmological setting. We have succeeded in giving
a rigorously derived expression for this deflection.

The Swiss cheese model simultaneously accounts for the fi-
nite size of the deflector’s influence, the motion of the cosmic
observers, and the nonlinear effects of gravity. The basic idea of
Swiss cheese is to remove non-overlapping comoving spheres
of homogeneous dust from one of the homogeneous FLRW
cosmologies and replace them with gravity fields representing
appropriately condensed spherical mass distributions. If the cos-
mology is without a cosmological constant, the simplest replace-
ments are Schwarzschild metrics and if there is a A, the sim-
plest replacements are Kottler metrics (Dyer & Roeder 1974).
These condensations are the most extreme for Swiss cheese.
An infinite number of less extreme models can be constructed
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by using the Lemaitre—Tolman—-Bondi metrics (Lemaitre 1933;
Tolman 1934; Bondi 1947) to represent spherically symmet-
ric dust concentrations (Kantowski 1969b). In all Swiss cheese
models, the metric that is used to fill a dust condensation must
match first and second fundamental forms on the boundary.
In the case of Schwarzschild, the metric’s mass is fixed by
the dust’s density and the size of the condensed hole, and in
the case of Kottler, A is additionally required to be the same
inside as it is outside. In this calculation, we stick with the ex-
treme but unique condensation, the Kottler metric, to arrive at a
unique deflection angle. Schiicker (2009b) uses this same model
but because he only considers a single numerical example, his
results are difficult to compare with ours.
The two metrics are: outside, flat (Qp + Q,, = 1) FLRW

ds®> = —c*dT? + R(T)*[dx* + x*(d6* +sin* 0 d¢p>)], (1)

with the cosmic time development given by the Friedman
equation
R Ro\>
— = Hyp, |QA+Qp | — ] 2
R 04/ 2 ( R) ()

and inside, the static Kottler metric (Kottler 1918)
ds* = —y(r)2c*dt* + y(r)’dr® + r*(d6* +sin’ 0 d¢*), (3)
where y(r) is defined by
re  Ar?
y(r)zl/ L )
r 3

Boundary matching at comoving FLRW radius y;, constrains
the Schwarzschild radius r, of the condensed mass to be

H2
ry = Qm_g(ROXb)3v (5)
C

and the additional Kottler parameter A to coincide with the
FLRW value, i.e.,
H2
A=3Q,—. (6)
c

The Kottler and RW angular coordinates are matched at the
boundary and the radius of the Kottler hole expands according
to

rp(T) = R(T) x» )

(for some numerical examples, see the mass and r, columns
of Table 1). As seen by a stationary Kottler observer, the dust
boundary of the Kottler hole moves with Lorentz parameters 8,
and y, given by

Vo = Y (rp),

Br=+/1- vy © = Hprp/c, (8)

where H; is the time-dependent Hubble parameter of the
boundary. The normalized 4-velocity of the boundary coincides
with the RW comoving dust velocity #rw at the boundary and
is of the form

Urw = Y lix + Bo¥s Pk, )

when expressed in terms of unit Kottler time and radial vectors,
respectively, iix and 7.
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Table 1
Examples of Gravitational Lensing Corrections in ACDM Cosmology
Name Lensing Redshift Mass h Impact Angle ¢ 1 — cos’ ¢y Ratiol? Ratio2?
(Mo)  (Mpc) (arcsec) (deg)
A1689 Strong 0.18 8x108 66 45 1.2 0.00065 2.2 x 107° 1.4
A1689 Weak 0.18 1055 15.3 600 6.8 0.021 0.00017 1.4
RDCS 1252-2927  Weak 1.24 1019 8.0 180 11 0.052 0.00040 0.20
Elliptical galaxy Strong 0.5 3 x 101 0.8 2 0.87 0.00035  1.7x 1077  0.69
Elliptical galaxy Weak 0.5 1013 2.6 70 9.6 0.041 6.6x107°  0.69
Notes.

. = (AT s g n . . .
2 Ratiol = 4 tan ¢ % + :T‘) sin3 ¢; (the ratio of the next order correction to the lowest order term, see Equation (32)).

-2
Arg

b Ratio2 = % (measures the relative importance of A in the square root term).
7o SO

3. THE PHOTON’S PATH

In Figure 1, we show the spatial orbit of a slightly deflected
photon r(¢) that enters and exits a Kottler condensation. The
coordinates have been rotated to put the orbit in the 6 = 7 /2
plane and to make it symmetric about ¢ = 7 /2 while in Kottler.
The tangent to the photon’s geodesic path is

14 r) . 2 2. o A
k=—|:y—uK:|: e Pt % IRGT1)
| Y Yo r r

where ¢ is an angular momentum like constant; ry is the
minimum r and occurs at ¢ = 7/2; yp = y(ro); and ig, 7g,
and 43 k are unit vectors pointing respectively in the static time,
radial, and azimuthal Kottler directions. The actual orbit r(¢) is
approximated as

2
r/ro = CSC¢{1 - <r_s) [-1+2cscop —sing] + (V—S>
2?‘0 27‘0

X |:_14—7+§ <¢— %)cot¢+4csez¢+%sin2¢]}

3
s
+0O|(— . 11
[(27 o) } (b
For this to be a valid expansion, not only must r,/ry < 1 but
¢ must also satisfy sin¢ > r,/ry. The tangent to the photon as

it travels in the & = 7 /2 plane of a flat RW spacetime is of the
form

con

k= R(T)[l2RW +cos(¢ — €)X —sin(¢ — E)frwl,  (12)

where Urw, X, and quw are respectively unit comoving time,
radial, and azimuthal vectors in RW. The significance of the
constant angle £ is that tan £ is the slope of the photon’s straight
line orbit in the comoving x—y plane (see Figure 1). When the
photon’s tangent vector is matched across the boundary of the
dust hole, the following single (exact) constraint results

sin(¢p — &)

Yo

[1+ By cos(dy — s>]:—z = (13)

where rp,, ¢p, and B, are evaluated at the photon’s entrance /exit
point on the boundary of the Kottler hole. From Equation (13),

we obtain the following exact expression for &

3
sinf= {-B 214 1—<r—°> —r—s[l—<r—°>}/
rp rp ro rp
3
I o
ro rp
where
AECOS¢b,3br—O—S1n¢b,
Tp Yo
ro CcoS ¢y

15)

B = sin¢>b ﬁb — +
T'p Yo

The —A choice is made in Equation (14) at the exit point
and the Kottler coordinates on the boundary are taken as
ry =12, ¢p = ¢». The +A choice is made at the entrance point
and the Kottler coordinates are taken as r, = r|, ¢ = 7 — Py,
(¢ is the supplement of the entrance azimuthal coordinate; see
Figure 1).

In what follows we give some of the details necessary to
approximately evaluate the deflection angle o = &, — & caused
by encountering a condensation in the homogeneous dust. The
reader not interested in the details can jump to the result called
ol given in Equation (32). The calculation is somewhat
complicated because the Kottler hole expands as it is traversed
by the photon. The deflection angle naturally divides into a
part that depends on the initial size of the hole (ouc given in
Equation (23)) and an additional part caused by the extended
path required of the photon to exit the expanded hole (texpand
given in Equation (31)). The extended path, described by Ar and
Ag@, is given in Equations (28) and (30) (see Figure 1). We will
see that the expansion part gives the most significant nonlinear
part of the correction to the familiar Einstein term 4Gm/cry.

3.1. Approximation Details

To compute the photon’s direction £ in the dust approxi-
mately, we assume that both Ar? and r,/ry are small (perhaps
even of the same order) and expand Equation (14) in the two
small parameters:

(=2
1

A2 ry 3
iﬂ_(’_o) — B, (16)

3 ro \rp
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Figure 1. Photon travels from left to right entering a Kottler hole at = r|, ¢ = 7 — ¢, and returns to the FLRW dust at » = r, ¢ = ¢,. The photon’s orbit has been
chosen to be symmetric in Kottler about the point of the closest approach r = rg, ¢ = m/2. Due to the cosmological expansion, Ar = r, — r; > 0. The slope of the
photon’s comoving trajectory in the x—y plane is £&; when incoming and &; after exiting. The resulting deflection angle as seen by comoving observers in the FLRW

background is @ = & — &;.

and 5
g2=" (V—°> . (17)
ro rp

£ = —8+cz<¢>b>a,%1—éa3+cg<¢b>53,,a+c4(¢b>8;t+c9(85>, (18)

The result is

where the coefficients are defined by
1
Cap) = — coty (5 +csc? ¢>b) :
1
Cs(gn) = 51 = csc’ ),
6 15 .
Calp) = csc” ¢y 3—2(2% — 7)) +cotgy| 3 —singy

15_2¢ 1,3¢+1,4¢+1_6¢

— — S1n — — Si1n — SIn — Sin .

16 b7 2 bTg b4 b
19)

From Equation (14), we can conclude that when r, —

0,sinf > —§ = —«/ Ar§/3 exactly with no dependence on
rp or ¢p. This limit is consistent with Equation (18). The con-
clusion is that when r; = 0O there is no A bending. This is an
obvious conclusion because the spacetime inside and outside of
the hole is exactly the same, i.e., no physical difference exists
between the inside and the outside. The only difference is in
which coordinates are being used.

When 0 < ry < ry, we proceed by eliminating r; and r

using Equation (11) and then expanding ¢, about ¢, by writing

¢ = 1 +A¢. (20)
This gives us two terms to evaluate
Asutic = E2(P1) — E1(T — 1), 1)
and
_(dé 1 [d% , 1 [(d%
Oexpand = (%)q}, A¢ + E (W)q}l (Ag)” + 6 <$)&1
x (Ad)® + O (Ag)* . (22)

The first term can be evaluated immediately using
Equations (18) and (19) giving the A independent expression:

s z .27 s :
Ostatic = -2 2_ COS¢1[2+SII1 ¢1]+ a

ro 27‘0

15 - ~ 15 . - ey
X Z(2¢1—n)+cos¢1 4—751n¢>1+2sm b1

3
+7 sin3 g + 2 sin’ &1)} +o<i> . (23)
2r, 0

By overlooking the expansion term, one would obviously
conclude that there is no A bending. To evaluate otexpang, the
expansion’s contribution to bending requires that we compute
A¢ (or equivalently Ar) caused by the expansion of the Kottler
hole that took place during the time it took the photon to transit
the hole. In Figure 2, we indicate how we compute Ar. We
start by giving the entrance radius r; and look for the common
solution to the boundary expansion r,(¢) and the photon’s radial
coordinate 7,(?); i.e., we put

2 /d -1 n/d -1
c/dt =c/ (ﬁ) dr =c/ (ﬁ) dr. (24)
no \ dt n \ dt

We rewrite the time it takes the photon to cross the hole as the
sum of the time it takes to cross from r; on the left to r; on
the right plus the extra time it takes to go from r; on the right
to r, = r; + Ar. We then move this last time difference to the
left-hand side and obtain the following equation to solve:

s -1 -1 " -1
) ) T ()
" dt dt "o dt
é1 d -1
zch <ﬂ> dé.
/2 dl

(25)

The right-hand side, RHS, is evaluated approximately using
Equations (10) and (11) to obtain

RHS = 2r0{cot¢~$1 + (;—Y) [cot&l(l — 2csc¢~>1)

ro
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Figure 2. While a photon travels through a Kottler hole entering at r = ry, ¢ =
m — ¢ and exiting at r = ra, ¢ = ¢», its radial coordinate varies with time as
rp(t) and the boundary of Kottler hole continually expands according to 7, ().

The exit coordinates differ from the entrance values by A¢p = ¢ — é1 and
Ar =ry —ry.
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2
T 2
+ (9|:(2—r0> +Aro} } (26)

We call the two terms on the left-hand side of Equation (25)
LHS; and LHS,, and evaluate LHS;, by expanding in Ar,

2 1 d 2
LHS, = <V—”> (Ar) + = — <”_’°)
Bv /., 2dry \Bv /,,

2 2
<A+l (V—”> (Ar) + O, (27)

~ A2 ) )
—2log <tan %>i| + icotd)l [1 +2(:sc2¢]]

6 dr7 \ By

where B, and y,, as functions of r;, are defined in Equation (8).
Equation (11) can be used to convert Ar into A¢ resulting in

Ar = ro{—cosél csc2¢31 |:1 + (r_s) (11— 4csc¢~>1)
27‘0

+ 0 i>2 Ap+ 1| esc? di2 = sin? G+ O i)
<2r0 ]d) 2 csc” ¢1(2 — sin” ¢ (2ro

1 ~ . ~ rs
x (Ap)* + 3 |:cot¢1 csc (1 —6esc® @) + O <—):|

2)"()
x (Ap)’ + O(Ap)* } (28)

The second term on the left-hand side of Equation (25) can be
evaluated by using ¢,(¢) from Equation (10) rather than r,(#)
(just as was done with RHS) and gives

LHS, = rgcsc® ¢ { |:1 +0 (ri +Ar§>:|(A¢)

ro
ot Ts 2 2 3
—cotd [1 +O (r— +Ar0)](A¢) +0O(Ag) }
0
(29)

3.2. The Resulting Deflection

Combining Equations (26), (27), and (29) in Equation (25),
we obtain the change that occurs in the exiting value of ¢;
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ie, Ap = ¢ — ¢y, caused by the expansion of the hole’s
boundary as the photon traverses,

Ap = —2B;sing; + (r_s) |:3 cos ¢y sin® ¢,

o
; ) ) -
— B <2+ gsinqu] — 6sin* ¢; — 2log {tan%}

- 1 y ) 2
X tan ¢, sin¢1):| ) Bi Arg sing; + O (r_ +Ar§> ,

ro
(30

where f; is the expansion velocity (v/c) of the dust as seen
by observers (who are stationary relative to the condensed
mass) at the time the photon enters the Kottler hole, see
Figure 1. Inserting this into Equation (22), we have the additional
deflection angle ctexpang caused by the extended trajectory of the
photon in the Kottler void

2}"()

N ~ 8 20 ~
X sin ¢y % + :—O sin? ¢ +Ar§<§ iy sin? ¢>1>:|

2
+ (r_s) |:6cos é1(4sin @, — sin® ¢y + 2 sin’ ¢,

Olexpand = (r—°> cos ¢~>1 |:6 sin’ ¢~>1 — 12 cos ¢~>1

2}’()
.57 ¢;1 .37
— 11sin’ ¢;) — 121og { tan 5 sin” ¢

’ 5/2
+0 <i +Ar§) . 31
ro

Combining Equations (23) and (31), we obtain the total bending
angle o, caused by a photon entering and exiting a Kottler
condensation

Ciotal = (r—Y> cos ¢, |: —4cos® ¢y — 12 cos ¢,

27‘0

nd Ar§+rs G+ A2 8 20,2(]3
X Sin _— — Sin T, — — — SIn
W3 T U R :

2
+ (;—;{)) [?(2({51 — 1) +cos¢~51 (4+ ? sin¢~$1

— 45in’ ¢ + 19sin® ¢; — 64 sin’ (]31>

@ i leo(men)”
— 12log tan = sin® ¢, +0(1+Ar§> . (32)

ro

The reader should observe that a negative contribution to the
bending angle is toward the lens and a positive contribution is
away from it. Also recall that these approximate expressions
were derived assuming sing; > ry/ro. Our deflection angle
accounts for the finite time (equivalently range) that gravity
has to act on the passing photon as well as aberration effects
caused by switching between moving observers. A finite range
is equivalent to a shielding of the perturbation’s mass by the
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Figure 3. Three sets of the deflection angles « corresponding to three deflector
masses 10'! Mg (lower in red), 10'3 M, (middle in green), and 10'3 My (top
in blue) at redshift z = 1 are shown as functions of the azimuthal angle él.
The thick lines are |oora1| of Equation (32), the short dashed lines are |oatic|
of Equation (23), the dashed lines are dexpand Of Equation (31), and the thin
solid lines are the Einstein values 2r;/rg. All deflection angles are toward
the deflector except drexpana Which is away from the deflector, i.e., in this plot
[@total] = |etstatic] — Qexpand -

(A color version of this figure is available in the online journal.)

homogeneous distribution of its neighbors; i.e., beyond r;, of
Equation (7) the effect of the neighbors completely suppresses
the effects of the inhomogeneity. The deflection angle ootal
appropriately vanishes in the limit ¢; — /2, i.e., when the
photon only grazes the condensation, and for small ¢, the lowest
order term in the bending angle approaches the Einstein value
4Gm /c*ry as expected. For an arbitrary impact ¢, however, the
linear term in ooy 1S

Iy ~
finear = —4 (2—> cos® ¢y, (33)

ro

and, in some weak-lensing circumstances, predicts potentially
detectable differences from the Finstein value. In standard
lensing calculations (see Bourassa & Kantowski 1975), there
is no attempt to make the deflector’s gravity field part of
the cosmology’s gravity field as GR really requires. Deflector
masses are simply taken as additions to the cosmology’s mean
mass density and consequently have “oco” range. Swiss cheese,
the only known and relevant GR solution, makes the deflector
mass a contributor to the cosmology’s mean density and as a
consequence, the gravity field of the deflector is limited in range.
This limited range is seen to be important when the impact angle
is above a tenth of a radian (Figure 4).

Another somewhat surprising result is that the lowest order
correction to the Einstein value, other than the finite time effect
represented by the dependence on ¢y, is the dependence on the
expansion rate, i.e., the square root term in Equations (31) and
(32) (see Equation (16)). We can interpret the source of this term
as the extra time (or equivalently distance) the Schwarzschild
mass has to act on the passing photon. The Kottler hole expands
in size as the photon traverses, and since the cosmological
constant contributes to the Hubble expansion, it contributes
to the extra time. Others have also argued that A affects «,
e.g., Sereno (2009) finds a A contribution to small angle bending
of order (r;/ ro)Arg which we do find even if of opposite sign
and differing amount, Ishak (2008) and Ishak et al. (2008) find
a term of order Argrp ~ Arg csc q~5 1, which we do not. The most
important A correction that we find, i.e., the square root term in
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Figure 4. Fractional difference of the Einstein deflection angle 2r /ro and ctotal
given in Equation (32), i.e., (2rg/ro — |twotal|)/|®otal| @s @ function of ¢ in
radians. For the domain of ¢; plotted and to the accuracy shown, the fractional

error is remarkably independent of the mass of the deflector (10''-10"> M)
and its redshift (0 < z < 2).

Equation (32), seems to have gone undetected by others because
of the approximations they used. In the next section, we estimate
justhow important these corrections to the Einstein result can be.

4. DISCUSSION

In Figure 3, we have plotted three sets of bending angles
for three deflecting masses ranging from a large galaxy mass
to a rich cluster mass, respectively 10'' My (lower in red),
10" M (middle in green), and 10'> My (top in blue) all at
redshift z = 1. Note that redshift z plays a part because
redshift influences the entrance/exit size of the Kottler hole,
see Equations (5) and (7). The cosmological parameters we
used are Q,, = 0.3, Q) = 0.7, and Hy = 70kms~'Mpc~". For
each mass, we have plotted four bending angles in arcseconds as
functions of ¢, (the supplement of the azimuthal impact angle).
The thick lines are || of Equation (32), the short dashed
lines are |ogqiic| of Equation (23), the dashed lines are ofexpand
of Equation (31), and the thin solid lines are the Einstein values
2r/ro. All deflection angles are negative (attractive), i.e., toward
the deflector, except dtexpand, Which is away from the deflector.
Because of the log—log scale, it was necessary to plot absolute
magnitudes, i.e., || = |@static| —expana- The reader can easily
see (to the accuracy of the plot) that if ®expand is neglected the
deflection angle follows 2r;/ry out to ~30°, however, when
Qexpand 18 included the deflection angle follows 2ry/ro only
out to ~10°. This observation is clearly independent of the
masses shown and in fact is quite independent of the deflectors’
redshifts. The fractional difference in oy, and the Einstein
value plotted in Figure 4 is independent of the deflector’s mass
(10''-10' M) and redshift (0 < z < 2) for the range of
@, plotted. Noticeable redshift-dependent differences would
begin to appear for the three masses only below ¢, ~ 2°.
From Figure 4, we can conclude that for angles above ~4°
the fractional differences of ttexpang and the Einstein values are
greater than 1% and above ~40° the differences are above 100%.

In Table 1, we use our corrected bending angle Equation (32)
to estimate corrections in bending angles for strong and weak
lensing by clusters and elliptical galaxies. We look at the
following cases: the large image separation cluster lens A1689
at z = 0.18, the high redshift cluster RDCS 1252—-2927 at
z = 1.24, and a typical z = 0.5 elliptical galaxy. In A1689,
we calculate the bending angle corrections for the largest arc



No. 2,2010

separation of 45" for strong- and weak-lensing measurements at
10’ away from center (Umetsu & Broadhurst 2008) by using the
mass profile of recent X-ray measurements (Peng et al. 2009).
We also calculate the correction in a high redshift cluster RDCS
1252—-2927, where the weak-lensing signals have been detected
out to 3’ (Lombardi et al. 2005). For lensing by galaxies, we
choose a typical elliptical galaxy at z = 0.5 and use the mass
profile and weak-lensing detections in Gavazzi et al. (2007).
In general, we find that the corrections in the bending angles
for strong lensing are quite small; e.g., the largest correction
(1 — cos’ @) is just 0.07% for the largest separated arcs in
A1689. However, for weak lensing, the correction can reach
2% for the weak-lensing signals detected in the outermost
regions of the cluster in A1689, and the correction can reach
5% for the z = 1.24 cluster RDCS 1252—2927. For the weak-
lensing signals detected using an ensemble of elliptical galaxies
(Gavazzi et al. 2007), the correction is 4% for the outermost bin.
A correction of this amount will present an additional challenge
for using weak lensing as a tool for precision cosmology. For
the corrections involving the A term, the largest is 0.02% for
weak lensing in high redshift clusters, which is not detectable
in current observations. We expect our model to be relevant
for weak lensing induced by the large-scale structure including
weak lensing of the cosmic microwave background, where even
larger volumes are involved. We expect a large correction due
to the 1 — cos’ ¢; term and a presumably detectable correction
involving A.

The corrections we give for strong lensing are negligible
because ¢, is small and only a small fraction of the inhomoge-
neous mass appears inside the Einstein ring. For these cases, our
corrections may not be accurate because the effective lensing
mass is not spherically distributed as it is in our model. Non-
linear corrections are conceivably sensitive to the difference in
cylindrical and spherical symmetry. More realistic models are
needed to fully constrain corrections for strong lensing. In gen-
eral, the applicability of the corrected deflection angle oo in
Equation (32) is limited to spherical inhomogeneities, the major-
ity of whose mass is within the minimum impact of the light ray.
This is because we used a fully condensed Swiss cheese model;
i.e., the homogeneity is represented by a Schwarzschild mass.
Because we are calculating nonlinear corrections, one cannot
expect Equation (32) to give an accurate answer by simply in-
cluding that fraction of the mass within the impact cylinder
as is normally done in lensing. Consequently, more accurate
mass profiles in the Swiss cheese would be appropriate for the
strong-lensing examples in Table 1.

Work on this paper was initiated to correctly quantify the
cosmological constant’s effect on small angle deflections of
photons caused by mass inhomogeneities in an otherwise
homogeneous cosmology. By using an exact solution to GR,
we established that A’s effect is nonlinear thus requiring use of
a gravity theory beyond Newton’s. The model we used, a flat
Swiss cheese cosmology, also predicts a significant decrease in
the deflection angle caused by the shielding of an inhomogeneity
by its homogeneously distributed neighbors. Shielding occurs
because the deflectors are contributors to the cosmology’s mean
density. Standard lensing calculations completely overlook
shielding because deflectors are treated as additions to the mean.

Perturbations to o, Would obviously exist if the neighbors
generated a shear at the site of the deflector. The accuracy

GRAVITATIONAL LENSING CORRECTIONS IN FLAT ACDM COSMOLOGY 919

of Swiss cheese predictions depends on the scale at which
inhomogeneous matter follows the background Hubble flow,
i.e., on what scale the cosmological principle is satisfied. The
simple Swiss cheese model used here does not allow for peculiar
motions but does account for the scale of the cosmology affected
by an inhomogeneity; i.e., beyond r, the perturbed spacetime
returns to the mean cosmic flow. In the neighborhood of the
Local Group, where good observational data are available, most
galaxies follow the Hubble flow with only small deviations
(e.g., Karachentsev et al. 2009). A hierarchical Swiss cheese
condensation could be used to include shear and peculiar motion
but it would not only complicate this calculation by introducing
several additional parameters, it would most certainly obscure
the source of the A term in the results. To keep the result as
simple as possible, we did not attempt to estimate the size of
these additional perturbations.

Our results, e.g., Equation (32), are stated in terms of the

parameters $1 and ry described in Section 3 and Figure 1
and are not necessarily the most convenient ones to use in
lensing applications, however, they were convenient for the
above derivations. To have the incoming photon travel parallel
to the x-axis, one only has to rotate the coordinates clockwise
an amount &; given in Equation (14).
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and US DOE Grant DE-FG02-07ER41517. B.C. also thanks the
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