

Driving Electrons Hard ... Nanoscale Devices Under Strong Nonequilibrium

Jonathan P. Bird Department of Electrical Engineering, University at Buffalo, Buffalo, NY 14260

Collaborators: N. Aoki, D. K. Ferry, J. Han, G. He, C.-P. Kwan, J. Lee, H. Ramamoorthy, R. Somphonsane, J. Radice

Motivation

- Energy transfer in condensed-matter systems
- How high can you go?
- When negative is positive

Conclusions

Important concept from classical thermodynamics is thermal equilibrium

An <u>isolated</u> system left for sufficient time will reach a final equilibrium with a spatially uniform temperature

Some of the most difficult problems in physics concern the treatment of systems that are driven **out** of equilibrium by some suitable **stimulus**

System no longer defined by a unique temperature ... thermal equilibrium is broken

The stimulus causes **transport** in the system that can be influenced by a number of different carrier processes

Description of transport in this many-body environment can be extremely challenging

We are interested in the manifestations of this problem that arise in the discussion of transport in **nanoscale** semiconductor devices

When a stimulus is applied to such devices the energy of their carriers is **redistributed** over a **number** of characteristic time scales

The slower processes indicated here can be accessed in real time via microwave-domain pulsing approaches

Electron-phonon energy exchange can be probed by using **rapid pulsing** to investigate details of transport under **strongly-nonequilibrium** conditions

Careful application of microwave-matching techniques allows sub-100-ps time resolution in these studies

Recently **graphene** has emerged as a material whose superlative electrical properties make it attractive for many electronic-device applications

A critical question concerns the maximum (saturated) drift velocity to which graphene's carriers can be accelerated

The drift velocity in semiconductors does not increase indefinitely but rather **saturates** at high electric fields due to **optical-phonon** emission

The saturation limits the ultimate current-carrying capacity of the semiconductor

The large optical-phonon energies of graphene promise **high** saturation velocities - **better** than traditional semiconductors

M.V. Fischetti et al. J. Phys.: Cond. Matt. <u>25</u>, 473202 (2013)

LETTERS

Current saturation in zero-bandgap, topgated graphene field-effect transistors

INANC MERIC¹, MELINDA Y. HAN², ANDREA F. YOUNG³, BARBAROS OZYILMAZ^{3†}, PHILIP KIM³ AND KENNETH L. SHEPARD¹*

Published online: 21 September 2008; doi:10.1038/nnano.2008.268

T. Fang et al., Phys. Rev. B <u>84</u>, 125450 (2011)

 $\hbar\omega_{OP} = 160 - 200 \text{ meV} \Rightarrow$ $v_{sat} > 5 \times 10^7 \text{ cms}^{-1} (n, p = 10^{12} \text{ cm}^{-2})$ c.f. $v_{sat} = 10^7 \text{ cms}^{-1}$ for Si

However ... experiments show that velocity saturation typically occurs at significantly **lower** values than expected for intrinsic graphene

APPLIED PHYSICS LETTERS 97, 082112 (2010)

Mobility and saturation velocity in graphene on SiO₂

Vincent E. Dorgan,¹ Myung-Ho Bae,¹ and Eric Pop^{1,2,a)} ¹Dept. of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, University of Illinois, Urbana-Champaign, Illinois 61801, USA ²Beckman Institute, University of Illinois, Urbana-Champaign, Illinois 61801, USA

 (10^7 cm/s) a $\hbar\omega_{OP} = 160 \text{ meV}$ b) V sat V_{sat,Si} $\hbar\omega_{OP} = 55 \text{ meV}$ V_{sat,Ge} 0 12 3 6 9 15 0 $n (10^{12} \text{ cm}^{-2})$

See Also:

I. Meric et al., Nat. Nanotechnol. <u>3</u>, 654 (2008) A.M. DaSilva et al., Phys. Rev. Lett. <u>104</u>, 236601 (2010) I. Meric et al., Nano Lett. <u>11</u>, 1093 (2011)

Attributed to velocity cutoff provided by lower-energy ($\hbar\omega_{OP} = 55 \text{ meV}$) surface optical phonons of SiO₂

Detailed thermal simulations show heating of the SiO₂ - responsible for activating its optical phonons - is inherently **slow** (**nano**second scale)

A strategy of rapid pulsing should allow the intrinsic dynamics of graphene's hot carriers to be revealed

How High Can You Go?

ond range we observe the hene

Atomically-thin **transition-metal dichalcogenides** (TMDs) are another class of materials that are of interest for use as possible channel replacements

J. Phys.: Cond. Matt. <u>25</u>, 473202 (2013)

M: Transition-metal element from Groups IV (Ti, Zr, Hf, ...), V (V, Nb or Ta) & VI (Mo, W, ...)

X: Chalcogen from Group VI (S, Se or Te)

TMDs exhibit **multi-valley** bandstructures that are reminiscent of those utilized in so-called **transferred-electron** devices

- 1. Bandgap of WS_2 : $E_q \leq 2 \text{ eV}$
- K-T valley separation:
 Δ ≈ 0.1 meV
- 3. Electron mass in T valley: $m_T^* = 0.75 m_o$
- 4. Electron mass in K valley $m_{\kappa}^* = 0.32m_o$

Can TMDs exhibit negative differential conductance (NDC) like that exhibited by some conventional semiconductors?

O S CAHONE NTIFIC REPORTS

TIELE REP

SCIENTIFIC REPORTS | 7: 11256 | DOI:10.1038/s41598-017-11647-6

vww.nature.com/scientificreports

When Negative is Positive

Negative Differential Conductance & Hot-Carrier Avalanching in Monolayer WS2 FETs

G. He¹, J. Nathawat¹, C.-P. Kwan², H. Ramamoorthy¹, R. Somphonsane³, M. Zhao⁴, K. Ghosh¹, U. Singisetti¹, N. Perea-López⁵, C. Zhou⁶, A. L. Elías⁵, M. Terrones^{5,6,7}, Y. Gong⁸, X. Zhang⁸, R. Vajtai¹, P. M. Ajayan⁸, D. K. Ferry⁹ & J. P. Bird¹

We study these effects in monolayer WS₂ FETs

Published online: 12 September 2017

SCIENTIFIC REPORTS | 7: 11256 | DOI:10.1038/s41598-017-11647-6

UNIVERSITY

- 1. NDC seen for **partially-annealed** devices with currents $<1 \mu A/\mu m$
- NDC accompanied by increased noise level as expected for traveling domains in the Gunn effect
- 3. **Hysteresis** in transistor curves also typical of the Gunn effect reflects different **valley populations** for up and down sweeps

We attribute these results to the influence of annealing on mechanical **strain** in the atomically-thin WS₂ layers

Figure 2 Partial charge densities of (a) conduction band minimum (CBM) and (b) valence band maximum (VBM) states of 2D WS₂ without strain, and (c) CBM and (d) VBM states of 2D WS₂ under 5% strain. Yellow spheres represent sulfur atoms, and dark blue spheres represent tungsten atoms. All charge density iso-surfaces are shown at the same level of charge density.

Biaxial strain raises the T valleys relative to the K valleys – changing the conditions for the onset of NDC

In the unstrained state the energy separation of the T and K valleys in monolayer WS₂ is around **80 meV**

Carriers transfer to the T valleys at **vanishingly-small** fields and we thus obtain **no** negative differential conductance in EMC calculations

As we steadily raise the T valleys we find NDC begins for an inter-valley separation (Δ) of as little as 100 meV

In the unstrained state the energy separation of the T and K valleys in monolayer WS₂ is around **80 meV**

Carriers transfer to the T valleys at **vanishingly-small** fields and we thus obtain **no** negative differential conductance in EMC calculations

This corresponds to a strain level of just 1%

- Semiconductor nanodevices are ideal systems for investigating manifestations of nonequilibrium physics
- Energy-transfer processes in these devices can be probed via a strategy of nanosecond-scale electrical pulsing
- This has allowed us to reveal the superior electrical properties intrinsic to graphene¹

These results are important for the development of high-speed devices based on graphene

[1] H. Ramamoorthy et al., Nano Letters 16, 399 (2016).

- We have investigated hot-carrier transport phenomena in monolayer WS₂ transistors
- NDC is observed in partially-annealed devices² and shows all the features typical of the Gunn effect
- The influence of annealing was discussed in terms of its role in mediating strain and the T-K valley separation²

These results are relevant for the realization of high-frequency sources based on atomically-thin TMDs

[2] G. He et al., Scientific Reports 7 (2017) 11256; DOI: 10.1038/s41598-017-11647-6