Single and Multi-junction Quantum Dot Solar Cells

ROCHESTER INSTITUTE OF TECHNOLOGY

Seth Hubbard Associate Professor Physics/Microsystem Engineering Rochester Institute of Technology

Rochester Institute of Technology

- Private university in upstate New York
 - ~18,000 students
 - 5.5 km² campus in suburban Rochester
 - Specialize in engineering and science

NanoPV Group

- Steve Polly, Mike Slocum, Zac Bittner, Yushuai Dai, Brittany Smith and George Nelson: Microsystems Eng. PhD
- *Alumni*: Dr. Chris Bailey (NRL), Chelsea Mackos (Emcore), Chris Kerestes (Emcore), Kristina Driscoll (RIT), Adam Podell (Photonics), Wyatt Strong (HRL), Mitch Bennett (NRL)

III-V Growth, Fabrication, Characterization

NANOPOWER Research labs

Aixtron 3x2" CCS MOVPE

<section-header>

III-V Epitaxial growth

- 50, 75, 100 mm capability
- Sources include: Ga, In, Al, P, As, Dopants include: Zn, Si, C and Te
- In-situ "Real-Temp" control and in-situ stress measurements

III-V Processing technology

- Wet/Dry Etching, lithography
- Dedicated III-V metallization tools
- Annealing furnace up to 150mm

Characterization

- TS Space systems 300 mm close-match solar simulator
- Bruker D8 HRXRD and XRR, Veeco D3100 AFM/STM
- Agilent BI 500 Parametric Analyzer
- Cascade RF probe station
- Optronics and Newport spectral response
- Janis cryogenic (2K) probe station
- Photoluminescence and Photo-reflectance
- DLTS, FTIR, Raman, Hall
- Hitachi FE-SEM and Zeiss LEO SEM

Dr. Seth Hubbard

Outline

- Solar Energy Overview
- Nanostructured
 Photovoltaics
- SJ QD Solar Cells
- InAlAsSb Top Cells
- Conclusions

Global Solar Energy Resource

Average insolation kWh/m²/day

- Enough energy from the sun hits the Earth every hour to power mankind's entire energy needs for an entire year.
- The U.S. has the best solar energy resource of any industrialized country on the Earth.

Solar Energy Potential

Whr/sq m per day

1,000 to 1,500

1,500 to 2,000

2,000 10 2,500

2,500 to 3,000

3,000 to 3,500

3500 to 4 000

4 000 to 4 500

4.600 to 5.000

5.000 to 5.500

5,600 to 6,000 6,000 to 6,500

6,600 to 7,000 7,000 to 7,500

Worldwide Solar Energy Currently, solar provides less than 0.1% of the electricity used in the U.S. Theoretical: 120,000 TW Energy in 1 hour of sunlight ⁽³⁾ 14 TW-yr Practical: $\approx 600 \text{ TW}$ Efficiency 10% 20% 40% 30% 3.6 TW US Consumption CANADA WASH MONT. Salem Helena **Bismarck**[®] Boise S.D. Minneapolis WIS IDAHO MICH Pierre WYO. Milwaukee UNITED STATES IOWA CALIF. NEV Chicago Carson City Salt Lake City Cheyenne Des Moines IND. OHIO NEB. Sacramento incoln® San Francisco UTAH Topeka. KAN effersor Vegas. RIZ. os Angeles Santa Fe OKLA TENN Albuquerque . ARK Oklahoma City® Phoenix Memohis San Dieno N.M. Little Rock Atlanta MISS. ALA. Dallas . TEXAS acksonville PACIFIC MEXICO Austin lew Orleans San Antonio HAWAII 22° OCEAN Honolulu ALASKA 300 @1998, Encyclopædia Britannica, In

Solar resource for a concentrating collector

Dr. Seth Hubbard

Alternatives to Fossil Fuels

Br. Seth Hubbard

Photovoltaic Technologies

Tailoring Materials for Color

NANOP

RESEARCH LABS

Research...going forward

Increased Efficiency and/or Lower Cost

Amorphous Silicon, CdTe, CIGS

Dr. Seth Hubbard

Next Generation Strategies

Dr. Seth Hubbard

Efficiency (%)

WORLD RECORD EFFICIENCIES

NANOPOWER Research labs

Best Research-Cell Efficiencies

Colloquia, University of Oklahoma, March 27, 2014 niversity - Lecture, Slide 13

Outline

RESEARCH LABS

- Solar Energy Overview
- III-V & Nanostructured
 Photovoltaics
- SJ QD Solar Cells
- InAlAsSb Top Cells
- Conclusions

Solar Cell Electrical Model

Solar Cell Loss Mechanisms

- I. Thermalization Loss (33%)
- 2. $hv < E_g(23\%)$
- 3. Carrier Recombination
- 4. Contact and Junction Voltage

$$J = J_0 (e^{qV/kT} - 1) - J_{SC}$$

$$FF = \frac{P_{\max}}{J_{sc}V_{oc}} = \frac{J_{\max}V_{\max}}{J_{sc}V_{oc}}$$

$$\eta = \frac{P_{\max}}{P_{inc}} = \frac{J_{\max}V_{\max}}{P_{inc}}$$

Dr. Seth Hubbard

Solar Spectrum

Single-Junction Limits

Solar concentrations: 1x, 10x, 100x, 518x, 1000x, 5180x, 10000x, 46198x

Solar Cell Loss Mechanisms

Replace solar blackbody expression with ASTM solar data.

-Shockley-Queisser Limit approaches 40% at high Concentration -Optimal bandgap approaches 1.2eV

•Bandgap tuning with QD or QW

The Lattice Matched Triple Junction

Wavelength (µm)

State of the art lattice matched triple junction

InGaP $\sim 1.90 \text{ eV}$

Three series connected diodes

Current-matching required

The Bandgap Engineering Approach

• Extra current generated from QW or QD regions can aid in current matching in multi-junction solar cells

NANOPOWER Research labs

Nanostructured Absorption

NANOPOWER Research labs

Dr. Seth Hubbard

A Revolutionary Approach to Bandgap

Engineering

N A N O P O W E R Research labs

- Intermediate band due to QD coupling.
 - A. Luque and A. Marti, Phys. Rev. Lett.
 78, 5014 (1997).
- Allows for enhanced photogeneration mechanisms and two-photon effects
 - QD absorption
 - QD doping
 - QD carrier lifetime

Band lineups of current materials

- 8-band k.p simulation of materials systems currently under consideration
- For InAs in GaAs System, two-photon effect difficult due to thermal escape
 - Wider bandgap matrix or thicker GaAsP strain compensation?
- InAs in InGaP shows better confinment and match to IBSC bandgaps, but still many VB states.

Outline

- Solar Energy Overview
- Nanostructured
 Photovoltaics
- SJ QD Solar Cells
- InAlAsSb Top Cells
- Conclusions

InAs QD Enhanced GaAs Growth

Dot Density: $5 \times 10^{10} \text{ cm}^{-2}$ Dot Size: $5 \text{nm} \times 30 \text{nm}$

Increased stacking to increase absorption

NANOPOWER

QD Strain Compensation

S.M. Hubbard, et al. *Appl. Phys. Lett* 92, 123512 (2008) C.G. Bailey, S.M. Hubbard, et al., *Appl. Phys. Lett*, 95, 203110 (2009) ~7.2% compressive mismatch, InAs on GaAs~3.6 % tensile mismatch, GaP on GaAs

- QD weighted stress minimization
 - Target single QD size and density

Strain Compensation of InAs QDs

GaP Thickness

5.0 ML

4.2 ML

3.7 ML

3.1 ML

4000

Tensile

(b)

8

6

4

2

0 └── -10000

-5000

0

Strain (ppm)

GaP Thickness (ML)

Theta (arcsecs)

HRXRD Data
 Assumpti
 Dot Size=
 Density=

5000

Mod. CET (this work)

– – ·CET

Compressive

Assumptions: Dot Size=6nm Density=5X10¹⁰ cm²

No strain balancing

strain balancing

10000

Dr. Seth Hubbard

Cell Fabrication and Testing

Effect of Strain Balancing

• Fit indicates no emitter degradation

1500

40

Dr. Seth Hubbard

Colloquia, University of Oklahoma, March 27, 2014

350

5.70

1.70

ML	τ _o (ns)		
1.8	0.93		
2.1	1.14		
2.17	1.07		
2.24	0.17		
2.31	0.18		

• Parasitic recombination processes increase at ML coverage above ML = 2.2

<u>Working hypothesis</u>: fast non-radiative processes scale with QD areal density and coalescence.

AM-0 Illuminated J-V

Non-AR-coated AM0

	I _{sc} (mA/cm²)	V _{oc} (V)	FF (%)	η (%)
Control	22.47	1.039	80.0	13.8
l0x	23.21	0.997	78.5	13.4
20x	23.42	0.986	80.8	13.7
40x	23.78	0.990	82.3	14.3

40 period QD solar cell showed a 0.5% abs (3.6% rel) efficiency improvement over control GaAs cell

C.G. Bailey et. al., IEEE Journal of Photovoltaics, v.2, 2012

Dr. Seth Hubbard

Consistent improvement in sub-GaAs-bandgap absorption with increasing # of QD layers

Quantum Dot Epitaxial Lift-off

- Substrate removal allows for reduced weight and direct light management at rear surface to enhance QD absorption
- Other methods to improve absorption involve increasing the optical path length of light (OPL) through the QDs. This can be taken advantage of with a back reflector and a thin cell, which is accomplished through epitaxial lift-off (ELO).

NANOPOWER Research labs

QD ELO Quantum Yield

- Cavity resonance enhances QD absorption
- Further improvement in rear surface reflectance possible

 QD contribution to short circuit current density past the GaAs bandedge is 0.23 mA/cm² for QD ELO cell when compared to ELO baseline.

Intensity (Arb. Units)

- Investigated strategic placement of QDs within the intrinsic region and how this affects device performance
 - Positional dependence of sub-Eg QE, J_{SC} , V_{OC}
 - Position and background doping must be considered in design and optimization of QD-enhanced solar cells
- Demonstrated QD doping using MOVPE
 - Successfully increased Voc of QD cell through reduction of SRH recombination
 - Explored minority carrier action as QDs are removed from a region of high electric field
 - Deeper confinement necessary for 2-photon effect at room temperature
- Epitaxial Lift-Off QD solar cells show enhanced absorption due to Faber-Perot cavity effects and enhanced backside reflectance