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Rochester Institute of Technology 

• Private university in upstate New York 
– ~18,000 students 
– 5.5 km2 campus in suburban Rochester 
– Specialize in engineering and science 
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NanoPV Group 

• Steve Polly, Mike Slocum, Zac Bittner, 
Yushuai Dai, Brittany Smith and George 
Nelson: Microsystems Eng. PhD 

• Alumni: Dr. Chris Bailey (NRL), Chelsea 
Mackos (Emcore), Chris Kerestes 
(Emcore), Kristina Driscoll (RIT), Adam 
Podell (Photonics), Wyatt Strong (HRL), 
Mitch Bennett (NRL) 
 

Research Support 

http://images.google.com/imgres?imgurl=http://ciara.fiu.edu/images/logos/NSF.jpg&imgrefurl=http://ciara.fiu.edu/logos.htm&h=775&w=774&sz=74&hl=en&start=2&tbnid=bqJS_L-7lq8WSM:&tbnh=142&tbnw=142&prev=/images?q=nsf&svnum=10&hl=en&lr=&rls=GGLC,GGLC:1969-53,GGLC:en&sa=N


Colloquia, University of Oklahoma,  March 27, 2014 4 Dr. Seth Hubbard 

III-V Growth, Fabrication, Characterization 

Veeco D125LDS OMVPE SYSTEM 

Device Characterization 

NASA-RIT Space Act 

• 50, 75, 100 mm capability 
• Sources include: Ga, In, Al, P, As, Dopants include: Zn, Si, C and Te 
• In-situ “Real-Temp” control and in-situ stress measurements 

III-V Epitaxial growth 

• Wet/Dry Etching, lithography 
• Dedicated III-V metallization tools 
• Annealing furnace up to 150mm 

III-V Processing technology 

• TS Space systems 300 mm close-match solar simulator 
• Bruker D8 HRXRD and XRR, Veeco D3100 AFM/STM 
• Agilent B1500 Parametric Analyzer 
• Cascade RF probe station 
• Optronics and Newport spectral response 
• Janis cryogenic (2K) probe station 
• Photoluminescence and Photo-reflectance 
• DLTS, FTIR, Raman, Hall 
• Hitachi FE-SEM and Zeiss LEO SEM 

Characterization 

Aixtron 3x2” CCS MOVPE 
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• Solar Energy Overview 

• Nanostructured 
Photovoltaics 

Outline 
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Average insolation kWh/m2/day 

Global Solar Energy Resource 

• Enough energy from the sun hits the Earth every hour to power 
mankind’s entire energy needs for an entire year. 
• The U.S. has the best solar energy resource of any industrialized 
country on the Earth. 
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Solar Energy Potential 

Theoretical: 120,000 TW  
    Energy in 1 hour of sunlight  14 TW-yr 
Practical:  ≈ 600 TW 

Source: Nathan S. Lewis, California Institute of Technology 

3.6 TW US Consumption 

10% 20% 30% 40% 
Efficiency 

Worldwide Solar Energy Currently, solar provides less than 0.1% of 
the electricity used in the U.S. 
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Alternatives to Fossil Fuels 

Biofuels Nuclear 

Wind 

Tidal 

Solar Geothermal PV Status Report, European Commission's Joint Research Centre (JRC), 2011 

8 

1997  2007: 10x increase (10 years) 2007  2012: 10x increase (5 years) 
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Photovoltaic Technologies 

20x-100x 500x Cu(In,Ga)Se2 ~ 1-2 um c-Si ~ 180 um 

9 
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Tailoring Materials for Color 

5/28/2014 
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Research…going forward 

Amorphous Silicon, CdTe, CIGS  

Silicon 

Increased Efficiency and/or 
Lower Cost 

11 
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Next Generation Strategies 

Next Generation PV 

Less 
Photovoltaic 

Materials 

Concentration PV 
Light Trapping 

Increased 
work per 
photon 

Multi-junction III-V 
Multi-exiton 

IBSC 

Cheaper 
Photovoltaic 

Material 

Thin Film PV 
Organic materials 

12 
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WORLD RECORD EFFICIENCIES 
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• Solar Energy Overview 

• III-V & Nanostructured 
Photovoltaics 

Outline 
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Solar Cell Electrical Model 

 Solar Cell Loss Mechanisms 
1. Thermalization Loss (33%) 
2. hν<Eg (23%) 
3. Carrier Recombination  
4. Contact and Junction Voltage 

Single junction 
solar cell band diagram 

SC
kTqV JeJJ −−= )1( /
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Solar Spectrum 

7% 47% 
46% of total energy 1
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Air Mass # = sec θz 
AM1.5 → θz = 48.19° 
AM0 → Extraterrestrial 
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Single-Junction Limits 
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Material Bandgap 
(eV) 

Short-
circuit  

Current 

Open 
Circuit 
Voltage 

Si 1.1 62 mA .88V 

GaAs 1.4 46 mA 1.16V 

GaP 2.2 18 mA 1.81V 
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Solar Cell Loss Mechanisms 

–Shockley-Queisser Limit approaches 40% at high Concentration 
–Optimal bandgap approaches 1.2eV 

•Bandgap tuning with QD or QW 

Replace solar blackbody expression with 
ASTM solar data. 
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State of the art lattice matched triple junction 

InGaP ~ 1.90 eV 
 
GaAs = 1.42 eV 
 
Ge = 0.66 eV 

The Lattice Matched Triple Junction 

Auburn University – Lecture, Slide 19 5/28/2014 

Three series 
connected diodes 
 
Current-matching 
required 

Hubbard, et al., J. Nano Photonics, 2009 

E.F. Schubert,  
Light Emitting Diodes  
(Cambridge U. Press) 
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The Bandgap Engineering Approach 

• Extra current generated from QW or QD regions can aid in current 
matching in multi-junction solar cells 

20 
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Nanostructured Absorption 
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21 
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A Revolutionary Approach to Bandgap 
Engineering 

• Intermediate band  due to QD 
coupling. 

– A. Luque and A. Marti, Phys. Rev. Lett. 
78, 5014 (1997).  

• Allows for enhanced 
photogeneration mechanisms and 
two-photon effects 

– QD absorption 
– QD doping 
– QD carrier lifetime 
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Band lineups of current materials 

• 8-band k.p simulation of materials systems currently under consideration 
• For InAs in GaAs System, two-photon effect difficult due to thermal 

escape 
– Wider bandgap matrix or thicker GaAsP strain compensation? 

• InAs in InGaP shows better confinment and match to IBSC bandgaps, but 
still many VB states. 

(eV) 
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• Solar Energy Overview 

• Nanostructured 
Photovoltaics 

Outline 
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Baseline GaAs p-i-n GaAs p-i-n with InAs QDs 

InAs Quantum Dots 
w/ GaAs spacer 

Back Contact 

GaAs Substrate 

GaAs buffer 
InGaP Window 

GaAs Base 

GaAs Emitter 
Window 
Contact 

Back Contact 

GaAs Substrate 

GaAs buffer 
InGaP Window 

GaAs Base 

Intrinsic region 
GaAs Emitter 

Window 
Contact 

InAs QD Enhanced GaAs Growth 

• Increased stacking to increase absorption 

Veeco D125LDS OMVPE SYSTEM 

Dot Density:  
5×1010 cm-2  
Dot Size: 
5nm × 30nm 



Colloquia, University of Oklahoma,  March 27, 2014 26 Dr. Seth Hubbard 

QD Strain Compensation 

GaP 
GaAs 

InAs 
GaAs 

   

Compression Tension

        
         

       

   

Compression Tension

        
         

       

S.M. Hubbard, et al. Appl. Phys. Lett 92, 
123512 (2008) 
C.G. Bailey, S.M. Hubbard, et al., Appl. 
Phys. Lett, 95, 203110 (2009) 

~7.2% compressive mismatch, InAs on GaAs 
~3.6 % tensile mismatch, GaP on GaAs 

GaAs 

InAs QD 

Wetting 
Layer 

GaP strain 
balance 

• QD weighted stress 
minimization 
– Target single QD size 

and density 
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Strain Compensation of InAs QDs 

Assumptions: 
Dot Size=6nm 
Density=5X1010 cm2 

No strain balancing strain balancing 
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Cell Fabrication and Testing 

1 cm2 
cells, 
4% grid 
shadowing  No ARC 

TS Space Systems Dual Source 
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Effect of Strain Balancing 

•  Fit indicates no emitter degradation 

No AR Coating, AM0, 1 sun 

η = 13.8% 

η = 13.5% 

τe (ns) τb (ns) µe (cm2/Vs) µb(cm2/Vs) Le (µm) Lb (µm) 

1 40 1500 350 1.70 5.70 

η = 13.8% 
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Time Resolved Photoluminescence 

QD emission 1000 nm  

• Parasitic recombination processes increase at ML coverage above ML = 2.2  

Working hypothesis: fast non-radiative processes scale with QD 
areal density and coalescence.  

ML τ0(ns) 
1.8 0.93 
2.1 1.14 

2.17 1.07 
2.24 0.17 
2.31 0.18 
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AM-0 Illuminated J-V 

40 period QD solar cell showed a 0.5% abs (3.6% rel) 
efficiency improvement over control GaAs cell 

Non-AR-coated AM0 

C.G. Bailey et. al., IEEE Journal of Photovoltaics, v.2, 2012 

Isc  
(mA/cm2

) 

Voc 
(V) 

FF 
(%) η (%) 

Control 22.47 1.039 80.0 13.8 

10x 23.21 0.997 78.5 13.4 

20x 23.42 0.986 80.8 13.7 

40x 23.78 0.990 82.3 14.3 
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External Quantum Efficiency 

32 

Consistent improvement in sub-GaAs-bandgap 
absorption with increasing # of QD layers 
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Quantum Dot Epitaxial Lift-off 

• Substrate removal allows for reduced weight and 
direct light management at rear surface to 
enhance QD absorption 

• Other methods to improve absorption involve 
increasing the optical path length of light (OPL) 
through the QDs. This can be taken advantage of 
with a back reflector and a thin cell, which is 
accomplished through epitaxial lift-off (ELO). 
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QD ELO Quantum Yield 

• Cavity resonance enhances 
QD absorption 

• Further improvement in 
rear surface reflectance 
possible  

• QD contribution to short 
circuit current density 
past the GaAs bandedge 
is 0.23 mA/cm2 for QD 
ELO cell when compared 
to ELO baseline. 
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Conclusions 

• Investigated strategic placement of QDs within the 
intrinsic region and how this affects device performance 
• Positional dependence of sub-Eg QE, JSC, VOC  
• Position and background doping must be considered in design 

and optimization of QD-enhanced solar cells 
• Demonstrated QD doping using MOVPE 

– Successfully increased Voc of QD cell through reduction of 
SRH recombination 

– Explored minority carrier action as QDs are removed from a 
region of high electric field 

– Deeper confinement necessary for 2-photon effect at room 
temperature 

• Epitaxial Lift-Off QD solar cells show enhanced absorption 
due to Faber-Perot cavity effects and enhanced backside 
reflectance 
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