Halide perovskites - a game-changer for photovoltaics?

<u>Giles Eperon</u> Marie Curie Fellow Ginger Lab Department of Chemistry University of Washington Seattle, WA USA

eperon@uw.edu

UNIVERSITY of WASHINGTON

SOLAR POWER - OVERVIEW

World Energy Resources TW years

(1 TeraWatt year = 8760 TWhr)

© R. Perez et al

How much solar PV do we need?

Area required at8% efficiency

http://www.ez2c.de/ml/solar_land_area/

A light absorbing material connected to an external circuit in an asymmetrical manner, allowing physical separation of photoexcited charge carriers to generate current and voltage.

Choice of material

Trade-offs in thermalisation and absorption mean E_g of ~1.1-1.4eV optimum. PCE of up to 33% achievable (in single layer) with this bandgap.

Silicon PV – Dominant Technology

In 2001 electricity produced from Si PV was around 20 times as expensive as that from burning fossil fuels.

Now, cheapest power in some areas.

Figure 1. PERL (passivated emitter, rear locally-diffused) cell structure

Silicon may not be enough in the future

Germany

10–100kW

Rooftop systems

4

3

- **New factories** very expensive
- Price [\$/W] Data from 2 PV Report, Fraunhofer ISE Non-module (2016)costs (Balance 1 BOS of Systems, $\left(\right)$ 2012 2008 2010 2014 2016 BOS) Year

Module

Best way to decrease installation cost per Watt is to make module more efficient – but Si reaching max efficiencies.

Need something that can be scaled fast, cheap, and has potential for higher efficiencies.

THE DEVELOPMENT OF PEROVSKITE PHOTOVOLTAICS

All materials with the same crystal structure as CaTiO₃, namely **ABX**₃, are termed perovskites.

Über die Cäsium- und Kalium-Bleihalogenide.

Von

H. L. Wells.¹

Als Fortsetzung der in diesem Laboratorium² begonnenen Arbeit über Doppelhalogenide ist von den Herren G. F. CAMPBELL, P. T. WALDEN und A. P. WHEELER eine Untersuchung über die Cäsium-Bleisalze unternommen worden. Diese Herren haben die Untersuchung mit vielem Eifer und Geschick durchgeführt, und es macht mir Freude, ihnen meinen Dank auszusprechen. Sie haben die Existenz folgender Salze konstatiert:

Cs ₄ PbCl ₆	Cs4PbBr6	—
CsPbCl _s	CsPbBr _s ³	CsPbJ _s
CsPb_Cl	CsPb,Br,	_

Sheffield Scientific School, New Haven, Conn., Oktober 1892.

Structure deduced 1959:

Kongelige Danske Videnskabernes Selskab, Matematisk-Fysike Meddelelser (1959) 32, p1-p17 Author: **Moller, C.K**. Title: The structure of cesium plumbo iodide Cs Pb I3

1978[:] Hybrid Pb and Sn halide perovskites W

CH₃NH₃PbX₃, ein Pb(II)-System mit kubischer Perowskitstruktur

CH₃NH₃PbX₃, a Pb(II)-System with Cubic Perovskite Structure

Dieter Weber

Institut für Anorganische Chemie der Universität Stuttgart

Z. Naturforsch. 33b, 1443-1445 (1978); eingegangen am 21. August 1978

Synthesis, X-ray

 $CH_3NH_3PbX_3$ (X = Cl, Br, I) has the cubic perovskite structure with the unit cell parameters a = 5,68 Å (X = Cl), a = 5,92 Å (X = Br) and a = 6,27 Å (X = I). With exception of $CH_3NH_3PbCl_3$ the compounds show intense colour, but there is no significant conductivity under normal conditions. The properties of the system are explained by a "p-resonance-bonding". The synthesis is described.

$CH_3NH_3SnBr_zI_{3-x}$ (x = 0-3), ein Sn(II)-System mit kubischer Perowskitstruktur

CH₃NH₃SnBr_xI_{3-x} (x = 0-3), a Sn(II)-System with Cubic Perovskite Structure

Dieter Weber

Institut für Anorganische Chemie der Universität Stuttgart

Z. Naturforsch. 33b, 862-865 (1978); eingegangen am 5. Mai 1978

Synthesis, X-ray, Mössbauer Spectra

CH₃NH₃SnBr_xI_{3-x} (x = 0-3) has the cubic perovskite structure with the unit cell parameters a = 5.89 Å (x = 3), a = 6.01 Å (x = 2) and a = 6.24 Å (x = 0) and Z = 1. The compounds show intense colour and conducting property. The ¹¹⁹Sn Mössbauer data are consistent with the high symmetry environment of the Sn(II)-ion. A bonding model, using a "p-resonance-bonding", can explain the properties of the cubic system. The synthesis is described.

90s perovskite research

Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors

C. R. Kagan, D. B. Mitzi, C. D. Dimitrakopoulos

www.sciencemag.org SCIENCE VOL 286 29 OCTOBER 1999

Chem. Mater. 1998, 10, 403-411

Synthesis and Characterization of Organic–Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique

Kangning Liang, David B. Mitzi,* and Michael T. Prikas

Figure 7. Emission spectra of perovskite thin films prepared using the dipping technique, with an excitation wavelength of 480 nm, for (a) $(C_4H_9NH_3)_2PbI_4$, (b) $(C_4H_9NH_3)_2(CH_3-NH_3)Pb_2I_7$, and (c) $CH_3NH_3PbI_3$.

First Solar Cells

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

Akihiro Kojima,[†] Kenjiro Teshima,[‡] Yasuo Shirai,[§] and Tsutomu Miyasaka*.^{†,‡,II}

J. AM. CHEM. SOC. 2009, 131, 6050-6051

Solution-processed sensitizing layer of MAPbl₃

Methylammonium lead iodide

Kim H-S et al, *Scientific Reports* 2012, 2, 591

Transport IN the perovskite

- Found we could replace TiO₂ with inert material (Al₂O₃) and get more efficient cells!
- Long-range carrier transport possible within perovskite layer

Lee et al, Science 2012, **338**, 643 Ball et al, Energy & Environmental Science 2013, **6**, 1739

Mesostructured perovskite solar cell W

Diffusion length for electrons **and holes** > 1um

Stranks, Snaith, et al, *Science*, 2013 Dong, Huang, et al, *Science* 2015

Perovskite physical parameters

- Long PL lifetimes 500ns+
- Mobility 10-30cm²V⁻¹s⁻¹
- Exciton binding energy 5-10meV
- PLQE 30%+
- Defect tolerance

Wehrenfennig et al, Adv Mat 2013; Ziffer et al, ACS Phot. 2016; Deschler et al JPCL 2014; Yin et al APL 2014

nesostructure TH_z/PL CH_NH_Pbl, CI Rate $\mu \ge 12 \text{ cm}^2 \text{ V}^1$ Recomb. 10¹⁶ 1017 10¹⁹ 1018 1020 Carrier Concentration [cm] PMMA/SiO₂/Aq 30 63 CH₃NH₃Pbl₃ ITO/Al₂O₃ ħω

hv

Spiro-OMeTAL

ALO.

What's this mesostructure doing?

• Mesostructured approaches have shown efficiency up to >15%

• 'Flat' solution-processed films only up to **5%** efficient so far

Kim H-S et al, *Scientific Reports* 2012 Ball et al, *Energy & Environmental Science* 2013

Dewetting during annealing limited planar junctions W

Time

As spin-coated

Final crystallized perovskite

Eperon GE, Snaith HJ et al, AFM 2013

Now, high quality polycrystalline films

Xiao, Spiccia et al, Angewandte 2014

Solution processing options

Chemical Bath

Spin-coating

Spray-coating

Dip-coating

Screen Printing

Doctor Blade

Inkjet Printing

Metering Rod

Aerosol Jet

Pasquarelli et al, Chem Soc Rev 2011

Can also evaporate perovskites

N-type contacts:

TiO₂, SnO₂, PCBM, C60, PEIE,
polyTPD

P-type contacts - Spiro-OMeTAD, NiO_x,V₂O₅ PEDOT:PSS, CuSCN, CuI, MoO_x, P3HT...

Tuneable bandgaps allow more ideal materials

Bandgap tuneable smoothly between 1.2 and 3.0eV

More advances continually made...

900

Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells†

Energy Environ. Sci., 2014, 7, 982-988 | 983

Giles E. Eperon, Samuel D. Stranks, Christopher Menelaou, Michael B. Johnston, Laura M. Herz and Henry J. Snaith*

LETTERS	nature
PUBLISHED ONLINE: 22 DECEMBER 2013 DOI: 10.1038/NPHOTON.2013.341	photomics

Perovskite solar cells employing organic charge-transport layers

Olga Malinkiewicz¹, Aswani Yella², Yong Hui Lee², Guillermo Minguez Espallargas¹, Michael Graetzel², Mohammad K. Nazeeruddin^{2*} and Henk J. Bolink^{1*}

LETTER

doi:10.1038/nature12340

Sequential deposition as a route to high-performance perovskite-sensitized solar cells

Julian Burschka¹*, Norman Pellet^{1,2}*, Soo-Jin Moon¹, Robin Humphry-Baker¹, Peng Gao¹, Mohammad K. Nazeeruddin¹ & Michael Grätzel¹

FTTFR

doi:10.1038/nature14133

Compositional engineering of perovskite materials for high-performance solar cells

Nam Joong Jeon¹*, Jun Hong Noh¹*, Woon Seok Yang¹, Young Chan Kim¹, Seungchan Ryu¹, Jangwon Seo¹ & Sang Il Seok^{1,2}

476 | NATURE | VOL 517 | 22 JANUARY 2015

Rapid progress

https://www.nrel.gov/pv/assets/images/efficiency-chart.png

FAPbl₃ perovskite

Seok et al, Science 2017

ARE PEROVSKITES 'STABLE'?

- Stability to ambient atmosphere
- Biasing stability
- Optical stability
- Thermal stability: need -40°C to 85°C cycling stability for international IEC standards

Ambient Sensitivity - moisture

A. Leguy, T. Bein, J. Nelson, P. Docampo, P. R. F. Barnes, Chem. Mater. 2015

Ambient atmosphere stability

Solution 1:

Employ a top charge transporter which protects the perovskite

Solution 2: Encapsulate the devices well

Encapsulation selection using 1000hr 85°C/85% baseline

Habisreutinger et al, Nano Lett 2014

 $E_A \sim 0.23 eV$ for iodide ion movement

Is this facile movement of lattice constituents problematic?

Li et al, Adv mat 2016 Snaith et al, JPCL 2014

Mixed halides shown to have strong PL shifts under illumination, corresponding to halide segregation.

Will critically limit voltage to the lowest value of bandgap

Hoke et al, Chem Sci, 2014

Thermal stability: MA critically unstable at 85°C

From Conings et al, Adv En. Mat, 2015

Even under pure N₂, MA lost at 85°C!

How can we avoid this?

Replace MA...?

0.4

0.2

0.0 ∟ 450

MAPbl₃

FAPbl,

550

500

1.57

1.48

650

Wavelength (nm)

700

750

Eperon et al, EES, 2014

800

850

600

ionic radii of the 3 components

Tolerance factor between ~ 0.8 and 1.0 allow cubic perovskite at room temp.

Tune cation

FA-Cs Pb X3

Li et al, Chem Mat 2016

Unencapsulated performance

CURRENT HOT TOPICS IN PEROVSKITE RESEARCH (A.K.A., WHAT I'M WORKING ON NOW)

What's currently limiting perovskites?

Cathodoluminescence

PL intensity and lifetimes

Trap state densities

DeQuilettes et al, Science, 2015 Draguta, S. et al. J. Phys. Chem. Lett. 7, 715–721 (2016) Bischak, C. G., Sanehira, E. M., Precht, J. T., Luther, J. M. & Ginsberg, N. S. Nano Lett. 15, 4799–4807 (2015)

LBIC / LBIV / PL

Some extraction heterogeneity, but small impact. Contact limited!

Little difference in PL magnitude implies high non radiative losses at open circuit.

Tandem solar cells

Hoerantner et al, ACS Energy Lett 2017 Meillaud, Miazza et al, Sol. En. Mat. Sol. Cells 2006

Wide bandgap perovskites for perov-Si tandems

Mcmeekin et al, Science 2015; Bush et al, Nat Energy 2017

Perovskite-Si tandems – max PCE

W

1.2eV perovskite solar cells?

...not so promising morphology.

Tin-based materials crystallise very rapidly, during spin-coating

Noel et al, EES 2014

New deposition technique

2. After

immersion

in anisole

bath

1. After spincoating 4. After annealing.

Enabled 18% efficient low gap perovskites

Sputtered ITO interlayer enable 2T tandems

No lattice matching needed!

2T and 4T perovskite tandems - >20%

TMM + diode model

Feasible PCEs: Si-perov-perov – 35% Perov-perov-perov – 33%

Layered (2D) perovskites

Tsai, Mohite et al, Nature 2016

nature nanotechnology PUBLISHED ONLINE: 27 JUNE 2016 | DOI: 10.1038/NNANO.2016.110

Perovskite energy funnels for efficient light-emitting diodes

Mingjian Yuan¹, Li Na Quan^{1,2}, Riccardo Comin¹, Grant Walters¹, Randy Sabatini¹, Oleksandr Voznyy¹, Sjoerd Hoogland¹, Yongbiao Zhao^{1,3}, Eric M. Beauregard¹, Pongsakorn Kanjanaboos^{1†}, Zhenghong Lu³, Dong Ha Kim²* and Edward H. Sargent¹*

- Perovskites are an efficient, rapidly scalable and low cost technology
- Stability issues valid, but being worked out
- Potential for multi-junction perovskite devices with very high efficiency