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Talk Outline 

•  Who I am and who are Sharp? 
•  What motivates us to look at Hot Carrier cells? 
•  What progress have we made? 
•  What next? 
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About Sharp Corporation 
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About Sharp Labs Europe 
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History and Mission 
 
•  Established in 1990 and was the first overseas 

R&D base of Sharp Corporation 
 
•  To provide SHARP Corporation with  
  unique technologies and capabilities which 

match customer needs in order to create new 
business opportunities 

 
•  SLE is actively pursuing Global technology 

platforms and Local Fit (Europe-Middle-Africa) 
opportunities. 
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SLE’s main R&D themes 
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Energy & Environment Displays & Embedded Systems Health & Medical 

System Devices & Modules 
Technologies to address 
health care challenges 

• Point of care systems 
• Sensors and detectors 
• Imaging and diagnosis 

Energy solutions & 
materials beyond solar 
panels 
 
Technologies for 
environmental issues 
related to water, food, air  

Semiconductor 
based systems and 
devices 
 
•  LEDs and Lighting 
•  Power electronics 
•  Ultraviolet light 
•  Sensors and 
Systems 

Building next generation 
technology in display 
systems 
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SLE’s role in Sharp 
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SLE 
Accessing  
technologies  
from European  
Companies 

Local-fit 
technology  
for EMEA 
 

Accessing  
technologies  
from European 
Universities 

Developing 
Technology 

& 
supporting 
customers 

Accessing  
Government  
funding 

Global  
Technology  
Platforms 
& IP 

“To provide Sharp Corporation with  
 unique technologies and capabilities  
 which match customer needs in order to 
 create new business opportunities.” 

•  SLE is actively pursuing Global 
technology platforms and Local Fit 
opportunities in Energy & 
Environment, Health & Medical, 
Displays and System Devices & 
Modules. 

•  SLE is actively pursuing Open Innovation to 
leverage European expertise, reduce 
capital need, grow market opportunity and 
shorten time to market. 

•  SLE has a good track record in 
bringing major technology platforms 
to market, with Sharp partners. 

Understanding 
local needs and 
attracting local 
talent 
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The limitations of First Generation PV 

•  Largest efficiency losses for a solar cell are spectral: 1.Inability to use photons 
with energy lower than its band gap 2.Thermalisation losses, when it absorbs 
photons with energy in excess of its band gap.  
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The limitations of First Generation PV 

•  First generation photovoltaics fundamentally 
limited to ~31% at 1 sun due to a variety of loss 
mechanisms 

•  Hirst-Ekins-Daukes Plot* 

•  30% of loss at the maximum power point 
attributed to thermalization losses 

•  Two options: 
1.  Minimise initial excess energy generation by light 

(multi-junction, intermediate band…) 
2.  Use excess energy to drive other processes 

(multiple excitons, hot carrier solar cell…)  

 * L.C. Hirst, N.J. Ekins-Daukes, Fundamental losses in solar cells, Prog. Photovolt. Res. Appl. 19 (2011) 286–293. 
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The Solar cell as a heat engine 
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•  Purpose of all solar driven heat engines (Photovoltaic and photothermal) is to do 
useful work with a temperature gradient: namely SunàEarth 

•  By exploiting this temperature gradient directly we can achieve significantly higher 
efficiency than the Shockley-Quiesser limit 

•  Problem of limiting efficiency has been tackled many times, coming up with 
efficiency limits spanning 93.3%à78% depending on the nature of the process 

•  Problem in realizing these efficiencies is in keeping one side of your heat engine 
at a high temperature and the other side at a low temperature – otherwise we just 
end up with the Shockley-Quiesser efficiency.  

•  We show a new approach to this and a proof of concept device demonstrating a 
temperature gradient driven PV cell 

93.3% 

Landsberg: 
reversible 

Curzon-Ahlborn: 
Irreversible 
maximum power 

78% 

Markvart: 
Constant 
Pressure 

85.2% 42% 

Shockley-Quiesser 
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Why Hot Carrier Cells? 

•  Similar principle to thermophotovoltaics (TPV) to overcome losses:  
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Hot Carrier Cells 

•  Hot carrier cells address the problem of thermalisation and high lattice 
temperature by decoupling temperature of electron distribution and the lattice 

•  P/N junction is not necessary – instead they are driven by temperature gradient 
between hot part and cold part of the cell 

•  So any hot carrier cell must meet two key criteria: 
1.  Stop (or minimise) the loss of energy from photo-generated electrons to the lattice 
2.  Keep photo-generated electrons at a different temperature to electrons in the rest of the 

cell while allowing them to be extracted   

Sharp Laboratories of Europe – J. Dimmock 

Conventional hot carrier  Our approach 
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Requirements of a Hot Carrier Cell 

•  How do we implement the two key criteria of a hot carrier solar cell? 
•  In three features: 

1.  Slow Electron Cooling Rate 
2.  Energy Offset 
3.  Fast tunneling with Energy Filtering 
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Why Do We Need Energy Selectivity? 

•  To prevent thermalization in the collector 
•  Reduces entropic loss of hot carriers from absorber thermalizing in cold collector 
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•  To prevent thermalization in the collector (again) 
•  Optimum offset acts to: 

1.  Minimize width of energy selectivity 
2.  Minimize temperature of electrons in absorber region 

•   N.B optimum operating temperature of the hot carrier cell same as optimum TPV 
 

Why Do We Need an Offset? 
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•  Conduction band offset structure: Two undoped semiconductors (GaAs/AlGaAs) 
either side of a quantum well 

•  Device absorbs 790-810nm in the GaAs but not in AlGaAs or QW 

 

Device – the HOT Cell 

93K PL from 660nm illumination 
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•  Photoluminescence to confirm energy levels and a control 
structure to confirm no photocurrent from AlGaAs 
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Experimental Setup 

•  Ti:Sapphire: wavelengths from 790nm-810nm, only exciting in the GaAs 

Wavelength tuneable  Ti: 
Sapphire (790-810nm) 80MHz 
repeat, detuned to give >1ns 
pulse and 0.2nm bandwidth   

Variable ND 
filter 

CCD 

IV measurement 

Sample on cryogenic 
translation stage 

Sharp Laboratories of Europe – J. Dimmock 
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Theory of Offset Tunneling 

•  We have extended the theory of Esaki and Tsu* to calculate the current density 
from a narrow band gap material with a hot carrier distribution into a wider band 
gap material 

•  The positive integrand for Th>Tc shows that there can be a tunnel current from the 
hotter distribution to the cooler one at zero bias 

*Tsu R, Esaki L. Tunneling in a finite superlattice. Appl. Phys. Lett. 1973; 22: 562-564 
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Outcome if Structure Extracts Hot Carriers 

•  From modelling the tunneling current 2 key features expected from the IV 
characteristics: 
1.  Maximum power point shifts to higher voltage for shorter wavelength illumination (hotter 

electrons). [observed by Yagi* in symmetric structures] 
2.  Decreasing peak to valley current ratio (PVR) with shorter illumination wavelength 

* Yagi S, Okada Y. Fabrication of resonant tunneling structures for selective energy contact of hot carrier solar cell based on III-V semiconductors. 
Proceedings of the 35th IEEE Photovoltaic Specialists Conference 2010, Hawaii, USA; 1213-1217 

Calculated IV Electron density under illumination Schematic band diagram 
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Observed Results 

•  Current at zero bias and forward bias demonstrating a photovoltaic response 
(Voc = 0.5V) 

•  Hot carrier extraction characteristics: 
1.  0.08V shift in current peak voltage 
2.  PVR shift of 2.6à1.8 from illumination at 810à790nm 

Sharp Laboratories of Europe – J. Dimmock 
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Observed Results - controls 

•  Not a carrier density phenomenon – carrier density kept constant (to within ±5%) 
•  If carrier density is doubled we do not see the large changes observed under wavelength 

changes (change in peak position is negligible and PVR only changes very slightly) 
•  Not a lattice heating phenomenon 

•  Increasing lattice temperature causes shift in Vmpp to lower voltages (shift to higher 
voltages observed when increasing electron temperature) 

Sharp Laboratories of Europe – J. Dimmock 
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PVR Shift in Observed Results 

•  PVR shift in observed results over all wavelengths and temperatures plotted as a 
function of measured lattice temperature and calculated electron temperature 

•  PVR is dependent on electron temperature, not lattice temperature à further 
evidence that tunneling is from a population of carriers which are not thermalized 
with the lattice 

Sharp Laboratories of Europe – J. Dimmock 
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Conclusions 

•  Developed a hot carrier PV cell using offset 
tunneling between undoped semiconductors 

•  Shown a photovoltaic response under 
monochromatic illumination 

•  Demonstrated two wavelength dependent features 
in the IV consistent with hot carrier extraction: 
1.  A shift in peak current voltage 
2.  A reduction in peak to valley ratio 

•  Next steps, extend proof of concept device to:  
1.  Higher operating temperatures 
2.  Broadband illumination 
3.  Improve absorption 
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Questions? 
 

J. Dimmock 
Sharp Laboratories of Europe Ltd, Edmund Halley 
Road, Oxford Science Park, Oxford. OX4 4GB, 
United Kingdom 
E-mail: james.dimmock@sharp.co.uk 
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