

Room temperature polaritonics in all-inorganic cesium lead halide perovskite

Carole Diederichs

Mixed light-matter quasi-particles : exciton-polariton

Photons confined in an optical cavity:

- Very light
- Very fast
- No interaction

$$E_C(k) = \frac{\hbar c}{n_c} \sqrt{k_{\parallel}^2 + \left(\frac{p\pi}{L_c}\right)^2} \longrightarrow E_C(k) = E_C(0) + \frac{\hbar^2 k^2}{2M_{phot}}$$

Mixed light-matter quasi-particles : exciton-polariton

Excitons confined in a quantum well:

- Very heavy
- Very slow
- Interaction

Mixed light-matter quasi-particles : exciton-polariton

A. Amo et al., Nature 457, 291 (2009)

Mixed light-matter quasi-particles : exciton-polariton

Mixed light-matter quasi-particles : exciton-polariton

- Composite bosons
- Excitonic components → **Strong interactions**
- Photonic component

• Short lifetime (few ps)

- \rightarrow Low mass
- \rightarrow Coupling to free space

Strong to weak coupling regime

- Low-cavity finesse
- Phonons interactions \rightarrow Low temperature
- Coulomb interactions, many body effects
 (collisional broadening) → Low optical densities

At the heart of polaritonics applications

Bose-Einstein Condensation in atomic physics (Nobel Prize 2001) :

 \rightarrow A group of atoms cooled to temperatures close to absolute zero (~ 100 nK)

 \rightarrow A large fraction of bosons occupy a single quantum state

 \rightarrow Coherence properties (temporal and spatial)

$$T_c = \left(rac{n}{\zeta(3/2)}
ight)^{2/3} rac{2\pi\hbar^2}{mk_B} pprox 3.3125 \; rac{\hbar^2 n^{2/3}}{mk_B}$$

What about exciton-polariton? \rightarrow Key parameter: low effective mass polariton (10⁻⁸ m_{at}) $\rightarrow T_c^{pol} \propto \frac{\hbar^2 n^{2/3}}{m_{pol}k_B} \propto 10^8 T_c^{at} \propto 10 K$ \rightarrow Polariton-Polariton interactions

At the heart of polaritonics applications

T. Byrnes et al., Nature Physics 10, 803 (2014)

Non-resonant pumping (optical or electrical)

- \rightarrow Polariton scattering to the excitonic reservoir
 - \rightarrow Polariton Phonon interactions
 - \rightarrow Polariton Polariton interactions ("magic angle")
 - \rightarrow Macroscopic occupation of the LP branch at k=0

First demo of polariton condensate *at non-thermal equilibrium*: J. Kasprzak *et al.,* Nature **443**, 409 (2006)

At the heart of polaritonics applications

Solid state platform to study the physics of BEC

- Superfluidity
- Vortices
- Quantum fluid of light

A. Amo et al., Nature Physics 5, 805 (2009)

Low-threshold polariton laser

- Analogy with VCSELs (QW in a µcavity)
- Short polariton lifetime (~ps)
- Out of equilibrium BEC
- Coherent emission in strong coupling regime, without population inversion

H. Deng et al., PNAS 100, 15318 (2003)

At the heart of polaritonics applications

Exciton-polariton circuits

- Propagation of polariton condensates
- All-optical information processing elements

T. Gao et al., PRB 85, 235102 (2012)

Exciton-polariton condensates in lattices

• Quantum simulators

Credits to N. Berloff (Univ. of Cambridge)

• Topological insulators

S. Klembt et al., Nature 562, 552 (2018)

Polariton condensation and polariton lasing at room temperature

Hybrid organic-inorganic perovskite at room temperature

Experimental results in all-inorganic perovskite-based microcavities at room temperature

Polariton condensation in CsPbCl₃ microplatelets
 R. Su *et al.*, Nano Letters **17**, 3982 (2017)

Polariton condensate flow in CsPbBr₃ microwires
 R. Su *et al.*, Science Advances 4, eaau0244 (2018)

Polariton condensation in a CsPbBr₃ lattice
 R. Su *et al.*, Nature Physics 16, 301 (2020)

All-inorganic Cesium Lead Halide perovskite

A new class of materials for photonics and polaritonics

- Ease of platelets synthesis by CVD
- Direct bandgap semiconductors
- Wavelength tunability in the visible range
- Large exciton binding energies $> k_B T$
- High crystalline quality by CVD growth
- High PL quantum efficiencies (~70% @ RT)
- Better stability than hybrid perovskite

All-inorganic Cesium Lead Halide perovskite

Whispering Gallery Mode photonic lasing

Perovskite-based microcavity

1.2 1.2 Polariton Emision Emision 1.0 Absorption 0.8 Emission (a.u) 0.4 0.4 Absorbance 8.0 0.4 0.2 0.0 0.0 3.2 3.1 3.0 2.9 2.8 Energy (eV)

- Epitaxy-free fabrication techniques
- In-situ growth or dry transfer of perovskite on the bottom DBR
- Stop band (2.75 eV to 3.15 eV) with maximum reflectivity of 99.3% after CVD
- Various platelet thicknesses (~ 370 nm)
 - \rightarrow different detunings
- Quality factor Q ~ 300

Room temperature exciton-photon strong coupling

Angle-resolved spectroscopy (image of the Fourier plane)

Room temperature exciton-polariton condensation

• Negative detuning Δ = - 25 meV

• Pulsed excitation (100 fs @ 1 kHz)

Macroscopic occupation of the LP ground state above a threshold

Polariton condensate & polariton lasing properties

- Linewidth narrowing \rightarrow Temporal coherence
- Blueshift of 10 meV << $\Delta E = E_C E_{LP} = 120$ meV \rightarrow still in strong coupling
- Modeled by the driven dissipative GP equation coupled to an excitonic reservoir

Polariton condensate & polariton lasing properties

- Michelson interferometer in the retroreflector configuration
- First-order spatial coherence g⁽¹⁾(r, -r)

Real space image

Centro-symmetric real space image

Interference fringes

Build-up of a long range spatial coherence in the condensate

From strong coupling to weak coupling regime

- Positive detuning Δ = + 70 meV
- Room temperature
- CW excitation

Rabi splitting ~ 273 meV

From strong coupling to weak coupling regime

Weak coupling

From strong coupling to weak coupling regime

Oklahoma University - CQRT seminar | February 2021 | 24

Experimental results in all-inorganic perovskite-based microcavities at room temperature

Polariton condensation in CsPbCl₃ microplatelets
 R. Su *et al.*, Nano Letters **17**, 3982 (2017)

Polariton condensate flow in CsPbBr₃ microwires
 R. Su *et al.*, Science Advances 4, eaau0244 (2018)

Polariton condensation in a CsPbBr₃ lattice
 R. Su *et al.*, Nature Physics 16, 301 (2020)

1D microwire microcavities

Motivation

Ideal platform for polariton propagation

 \rightarrow Flow / momentum controlled by the incident angle of a resonant laser or the spot size of a non resonant laser

 \rightarrow Toward all-optical information processing elements and polaritonic circuits

D. Ballarini et al., Nat. Commun. 4, 1778 (2013)

Gate / Switch (condensate)

T. Gao et al., PRB 85, 235102 (2012)

Polariton propagation at room temperature

Bloch surface wave polaritons (no condensation)

Polariton superfluid (resonant excitation)

G. Lerario et al., Light Sci. Appl. 6, e16212 (2017)

Room temperature long-range propagation of a coherent polariton condensate under non resonant excitation in perovskite ?

- Etching-free 1D microcavity
- Microwire of length \sim 30 μm and width \sim 2 μm
- PMMA protection layer
- Quality factor Q ~ 1200

Room temperature strong coupling regime – 1D polaritons

Lateral confinement along y \rightarrow additional quantization

$$E^{c}_{1D}(j,k_{x}) = E_{0}\sqrt{1 + \left[\frac{(j+1)\pi}{L_{y}}\right]^{2}\frac{1}{k^{2}_{z}} + \left(\frac{k_{x}}{k_{z}}\right)^{2}}$$

$$K_{y}(j = 0, 1, 2...)$$

- 2Ω ~ 120 meV
- $\Delta_1 = -80 \text{ meV}$; $\Delta_2 = -40 \text{ meV}$

Room temperature exciton-polariton condensation

Initial blueshift converted into kinetic energy

Polariton condensate flow

Interference pattern throughout the whole microwire \rightarrow some polaritons have propagated over 60 μm

- Solving the driven-dissipative mean field dynamics
- Polariton group velocity < 10 μm/ps
- Observation of the interference fringes depends on the polariton decay rate in the calculation (0.2 meV)
- \rightarrow Polariton lifetime of 3 ps

Control of the polariton condensate flow

- Non-symmetric far-field emission due to dominant propagation in one direction
- Propagation controlled by changing the position of the pumping spot

Experimental results in all-inorganic perovskite-based microcavities at room temperature

Polariton condensation in CsPbCl₃ microplatelets
 R. Su *et al.*, Nano Letters **17**, 3982 (2017)

Polariton condensate flow in CsPbBr₃ microwires
 R. Su *et al.*, Science Advances 4, eaau0244 (2018)

Polariton condensation in a CsPbBr₃ lattice
 R. Su *et al.*, Nature Physics 16, 301 (2020)

Polariton condensation in lattices

Motivation

Strong lattice

 \rightarrow Robust trapping of polariton condensates in periodic potentials

(large forbidden bandgap opening)

 \rightarrow Strong inter-site coupling for coherent motion of polariton within the lattice (large lattice bandwidth)

C. Lai et al., Nature 450, 529 (2007)

E. Cerda-Mendez et al., PRL 105, 116402 (2010)

y y x Microcavity

A. Askitopoulos *et al.*, PRB **88**, 041308(R) (2013)

T. Jacqmin et al., PRL 112, 116402 (2014)

Quantum simulators

Credits to N. Berloff (Univ. of Cambridge)

150 nm-thick CsPbBr₃ perovskite platelet
Patterning of the 60 nm-thick PMMA spacer layer on top of the perovskite
Array of 10 pillars of 1 μm diameter connected with channels of 0.5 μm width
Deep periodic potential of 400 meV (to compare to the 6 meV linewidth)

3D confinement in a pillar
Orbital states in a single pillar: a non-degenerate symmetric s state and a twofold-degenerate antisymmetric p state

Room temperature strong coupling regime

• Lower band = s-orbital state of the pillars + channel states

• Upper band = p-orbital states of the pillars + channel states

Room temperature strong coupling regime

Large lattice bandwidth (8.5 meV)

Inter-site coupling (2 meV) allowing motion of the polaritons within the lattice sites

Room temperature polariton condensation

Room temperature polariton condensation

Superposition of the real-space image and its inverted image

- \rightarrow interference fringes within a distance as large as 12 μm
- \rightarrow build-up of the long-range spatial coherence

Conclusion

Room temperature polariton condensation in perovskite of different compositions and different geometries

→ Low cost room-temperature polariton devices based on wavelength tunable epitaxy-free materials

Room temperature long range polariton condensate flow in perovskite microwires
 → Polaritonic circuits

 ✤ Room temperature polariton condensation in a perovskite lattice with sizable tunability in terms of potential landscape engineering and lattice design
 → Realization of arbitrary lattice geometries for polaritonic devices