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Lecture 22

1 Introduction

2 Gauge Invariance of Electromagnetic Fields

Maxwell’s equations define both the electric and magnetic fields completely. That is, these equations
can be used to calculate the field or these equations can be used to verify that a given field is
correct. An alternative method to solving the Maxwell equations directly is to rewrite them in
terms of potentials. In many cases, it is easier to solve for the potential first and the determine the
fields later.

First, the Maxwell equations are given by:
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The two equations on the first line lead to the definition of the potentials
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Notice, in the case of no time dependent magnetic fields, the relation between the electrostatic
potential is recovered. It is important to notice that the fields are given by taking derivatives of the
potentials. That is the potential are not uniquely defined, only potential differences matter. The
potential A can be changed by A A+ ﬁx and the B field remains the same. This transformation
imposes the condition that ®

A5 A+Vx = <I>—><I>—g—>; (4)
This is referred to as a gauge transformation.

One consequence of this transformation, is that the photon has to be massless. This is best
seen by using the Lorentz covariant formulation of electrodynamics. Recall that the field strength
tensor (this is composed of all the components of the electric and magnetic fields) is related to the
vector potential as follows:

FH = grAY — 9" A¥ (5)

The Lagrangian that defines Maxwell’s equations is given by
1
£ == ZFMVFNV (6)

(to prove that this is the correct Lagrangian, use the Euler-Lagrange equation to show that the
Maxwell equations are recovered). This equation is both Lorentz invariant and gauge invariant. To
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add a mass term, recall that in the Klein-Gordon Lagrangian this corresponds the self-interacting
field (¢*¢). In the case of this equation, the field is the vector potential, so a self-interacting term
that is also Lorentz invariant gives a Lagrangian of the form:

1 1
L= 3F"Fu+ imQA“Au (7)

The first term in the Lagrangian is gauge invariant, since it leads to Maxwell’ equations (also very
straight forward to show). On the other hand, the mass term changes under this transformation

A AR+ Ot = APA, — AFA, + 2470, x + (0%X) (Oux) (8)

clearly not gauge invariant unless m = 0.

3 Gauge Invariance in Quantum Mechanics

Instead of asking what condition does gauge invariance impose on the Klein-Gordon equation (note
this is true also of the Schrodinger equation and the Dirac equation), first ask what symmetry the
wave-function has. If the wave function is multiplied by a phase, the Lagrangian does not change
(® — ®e'X). This states that the wave-function is invariant to a global phase transformation,
that is only phase differences are measurable. But applying this as a global phase transformation
doesn’t make sense since this says that the phase changes everywhere at the same instant—this is
not allowed by relativity.

Instead of applying a global phase transformation, apply a local phase transformation (& —
dex(#)). The Klein-Gordon equation is not invariant to this transformation due to the derivatives

(0"®)1(0,®) — m2®*® — (9"® + i@ x(2))(0,® + 199, x(z)) — M?D*® 9)

The difference is the gradient of a scalar function. If the partial derivative is replaced by o* —
DH = 0" + ieAH (this is referred to as the gauge covariant derivative) and require transformation
AP — AF — (1/e)0* x(z) whenever a local phase transformation is performed the Lagrangian is
invariant.

This implies that the requirement of local gauge invariance, produces interactions among the
scalar fields. The interaction terms can be seen by expanding out the covariant derivative terms:

L= (0"3)1(0"®) — m?D*® — je A (310D — 39, ®1) + 2 A4 A, 01 (10)

where the last two terms correspond to the interaction. The first is a scaler current with a single
photon, the second is a single scaler current with two photons at the same vertex.

4 Charged Particle in Electromagnetic Field—The Minimal Sub-
stitution

Before starting the discussion of gauge invariance, the introduction of the electromagnetic field into

the Lagrangian is discussed. First recall that the Lagrangian, in classical mechanics, is defined

as the difference between the kinetic and potential energies. The potential energy for a charged
particle in a static electric field is given by ¢®. If a magnetic field is present, then the potential
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has to be derived from the Lorentz force F = qE + qU X B. First substitute the potential for each
of the fields: _
E=-Vvo-24 . - A O
. . L M A= F=gq —V<I>—8—+17><VXA (11)
B=VxA ot
The Lorentz force after some manipulation can be reduced to

ﬁ:q{—ﬁ(@—ﬁ-l)—%(%(5-,&))} (12)

where V, is the gradient in terms of the velocity. This expression in the language of Lagrangian
mechanics is a generalized force (that is it does not come from conservative force) it also leads to
a Lagrangian of the form

oU d [(oU
Qj= (

AT (il L=T— ith —g(®—7- 4 1
50 " di aq‘j)ﬁ U with U=gq(®-7 ) (13)

Given the Lagrangian above, the canonical momentum can then be derived. This is given by
o =P—q4 (14)

Notice that the total energy is given by:
E=m+T+q® (15)

Since these expressions are totally relativistic, the 4-momenta for a charged particle in an elec-
tromagnetic field is obtained by substituting the 4-momenta for a free particle with the canonical

momenta
pH = ph — gAF (16)

This expression allows the simple transformation of the Klein-Gordon equation for a free particle to
one under the influence of an electromagnetic field. This is referred to as the minimal substitution.
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