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Physics 4213/5213
Lecture 20

1 Introduction

In the previous lectures, a theory and method of electromagnetic interactions was developed. The
theory has been primarily applied to the case of particle scattering. In this lecture a simple theory
of weak interactions is developed. This theory will then be applied to the case of particle decays,
in particular the case of pion and kaon decays.

2 A Simple Theory of Weak Interactions

The first observed example of a weak decay, was what is popularly referred to as nuclear S-decay.
The reaction involved the nucleus of the atom changing by one unit of charge, and the emission of
an electron (positron) plus a neutrino; initially the neutrino was not observed, but was postulated
in order that energy and momentum be conserved. The reaction as viewed initially, was postulated
to represent the decay of either a neutron or a proton through the following modes:

n—opte + (1)
p—>n+e++1/e

note that the second reaction can only occur for a proton bound in a nucleus.

These reactions were all characterized by a single coupling constant (Gr). Further, other
processes such as neutrino scattering are also characterized by the same coupling strength. In
neutrino scattering, the cross section was also found to be proportional to the center of mass
energy squared:

Ovtpontet X GEs (2)

This is unlike the case of electron-electron scattering that is proportional to the inverse of an energy
squared. This implies that G is inversely proportional to a fixed mass (ay /M?). Therefore, to
make the weak interaction analogous to the electromagnetic interaction, the exchanged particle is
characterized by 1/¢? where ¢ = M? a fixed value, as opposed to the variable virtual photon mass.

Based on a desire to make a theory that describes the data, and one that is similar in structure
to the electromagnetic interaction, the Feynman rules for this theory require the following change
from the electromagnetic case: e2/q* by Gp.

3 Composite Particle Decay and Decay Constants

The first question that must be answered, is how to treat the decay of a composite particle. In
the case to be treated here 7= — £~ 4 Uy, the 7~ is known to be composed of a quark and an
antiquark (da). These in principle annihilate producing a virtual W that then decays to the lepton
and neutrino. The problem with doing the calculation in this manner, is that the forces that bind
the two quarks is ignored, but the this force is large compared to all other forces in the problem,
so must be taken into account in some manner.
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To see how the pion with all its binding energy is accounted for, recall that this term becomes
part of the invariant amplitude. The invariant amplitude is a Lorentz scalar, that is it is composed
of the product of two 4-vectors. The pieces of the invariant amplitude that are known are the factor
accounting for the weak interaction, and the pieces associated with the lepton vertex:

M =Gp(P,— P,)* (3)

To complete this another 4-vector is needed. This 4-vector must describe the pion in some manner.
The only 4-vector that is available, is its 4-momentum ¢g,. This can still be multiplied by a scalar
function, which can at most be a function of its 4-momentum squared (mass). Again this is the
only kinematic variable available to describe the pion. Therefore the pion is described by the
form-factor:

fﬂ’(mﬂ')qﬂ = fﬂ'qlt (4)
where the last equality is due to the mass of the pion being a constant.

4 The Decay of the Pion

Having come up with a method of describing the pion, the calculation of the decay width can
proceed. Starting with the form-factor given above the invariant amplitude is:

Myi = Grfrqu(Pe — P))" = G frma(Ey — Ey) (5)

which is clearly a scalar.

Given the amplitude, the decay width is given with factors similar to the cross section. This
includes a density of states factor for each outgoing particle, and a normalization associated with
the total number of initial particles. The density of states factors are the same as used in the cross
section, but the initial flux is replaced by the total number of initial particles 2m,. This makes the
differential decay width:

_ |/Vlfi|2 4 d3p£ d3p,,

a0 = = @m (P = P = P (o o oy, (6)

Since the total width is desired, the integrals over both momenta have to be carried out. Integrating

over the lepton momentum imposes momentum conservation on the system; three of the delta-
functions are removed. This leaves:

Myil? o 14 1 &p,

amy ) OB = B = By (o oo, @

Since the delta function contains only energies, the integral must be converted to an integral over

energy. The following change of variables is used:

dl' =

p°=E.—-m. = |p,|dp, =E,dE, (8)
This leads to: M |2 R
_ fi 4 _ o 1 v v
dl' = 72m7r (2m)*0(Er — E¢ — E)) @n)2E, (27)%2 (9)

where the fact that the neutrino is massless was used.
The final integral can now be carried out. This leaves:

|-A/lf1,|2 EI/
= —
8mmy Ey

(10)
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4.1 2-Body Decay Kinematics

The expression for the decay width is now given in terms of the energy of the two leptons. Since
this is a two body decay mode, the energies must be constants that are related to the masses of
the three particles. To determine tha relation, start with energy-momentum conservation laws:

my; = E, + Ey P, =P, (11)
The second relations can be written in terms of the energy:
P,=P, = E;-mi=E (12)

Solving the two equations for the energies yields:

2 2 2 2
ms, +m msz —m
B, ="' B =% " 13
¢ 2my v 2m, (13)

4.2 The Decay Rate
Taking equation 10 for the the decay width, and the relation for the two energies gives the total

decay rate equal to:
2
r— G% f2my (m%) (mi - m%) (14)
8w My 2
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