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Physics 4213/5213

Lecture 18

1 Introduction

In the last few lectures a method for calculating differential and total cross sections has been
developed. The method was developed for the case of the electromagnetic interaction, but in fact
is more general, and can be applied to almost any interaction as long as the coupling constant is
small. The method is based several approximation:

1. That the beam is prepared a large distance from the scattering center, so that a plane wave
solution can be used;

2. That the outgoing particles are measured a large distance from the scattering center, so that
a plane wave solution can be used;

3. The time variations of the potential are large compared to the interaction time;

4. That only terms to first order in the charge are kept in the transition amplitude.

Based on these approximations, the general form of the differential cross section is given by:

dσ =
|M|2

F
dQ (1)

where the flux factor F is given by:

F = |vA − vB |2EA2EB (2)

and the phase space factor dQ is given by:

dQ = (2π)4δ4(PB + PD − PA − PC)
d3pC

(2π)32EC

d3pD

(2π)32ED
(3)

where this describes two outgoing particles (for the general case, there is one density of states factor
per outgoing particle, and the delta function describes energy momentum conservation).

In this lecture, the Rutherford cross section will be derived. This cross section describes the
scattering of a very light particle (small compared to the energy) off a very heavy particle that is
initially at rest. The derivation will not assume this but we will put it in as a last step, so that the
general form of the cross section can be examined.

2 The Rutherford Cross Section

The calculation starts with writing down the Feynman diagram that describes the process (see fig.
1). First write down the invariant amplitude (matrix element):

−iM = [ie(PA + PB)µ]

(

−i
gµν

q2

)

[ie(PC + PD)ν ] (4)
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Figure 1: This is the Feynman diagram that is being calculated in this lecture note.

where:

q2 = (PB − PA)µ(PB − PA)µ = (PC − PD)µ(PC − PD)µ (5)

Next comes the flux factor, it is given by:

F = |vA|2EA2EC = 2|pA|2mC where |v| =
|pA|

EA
(6)

Finally the phase space factor is given by:

dQ = (2π)4δ4(PB + PD − PA − PC)
d3pB

(2π)32EB

d3pD

(2π)32ED
(7)

With all the factors written out explicitly, the differential cross section can be calculated. But
before proceeding, it must be decided what quantity is to be measured. In this problem, particle
A is incident on particle C, which is at rest. After the scatter particle A becomes particle B,
while particle C becomes particle D; note that A and B are the same particle, the label is used
to distinguish before and after, with the same holding for particles C and D. Since particle D is
assumed to be very heavy, it will not travel far so will most likely be unmeasurable, therefore the
only quantity that will be measurable will be particle B. The cross section will then be given in
terms of the angular distribution of particle B relative to the incident particle A.

Given the quantity that is to be measured, the first step is to do the integral over the 3-momenta
of particle D. This integral imposes momentum conservation, through the delta-function; the
condition imposed is pD = pA − pB + pC . At this point in the calculation, the differential cross
section is in the form:

dσ =
δ(EB + ED −EA −EC)|Mif |

2

64π2m2

C |pA|EB

|pB |
2dpBdΩ (8)

where the relation d3pB = |pB |
2dpBdΩ has been used. Since the delta-function involves the energy,

and there is an energy (EB) in the equation (note that the energy depends on the momentum),
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the integral should be converted from a momentum integral to one over the energy. The change of
variables can be achieved through the relation:

|pB |
2 = E2

B −m2

B ⇒ 2|pB |dpB = 2EBdEB (9)

With this change of variables, the delta function can be integrated out. This yields:

dσ =
|Mfi|

2

64π2m2

C

|pB |

|pA|
dΩ (10)

notice that the invariant amplitude is just carried along, since the it contains only 4-momenta, and
the integrals over the delta function impose energy-momentum conservation.

The final step is to simplify the matrix element. First of all simplify q2. Since the final result
is to be written in terms of the kinematic variables of particle A-B, q2 is given by:

q2 =(PB − PA)µ(PB − PA)µ = 2m2 − 2EiEf + 2|pi||pf | cos θ (11)

⇒ 4EiEf sin2 θ/2 for E � m

note at this point the subscripts are changed to indicate that particles A and B are the same, and
define the initial and final kinematic quantities. The numerator, which is the sum of 4-momenta,
as given in equation 4, is simplified by using energy-momentum conservation to remove particle D
the final state of particle C:

e2(PA + PB)µ(PC + PD)µ = e2(PA + PB)µ(2PC + PA − PB)µ (12)

= e2(2PA · PC + m2 − PA · PB + 2PB · PC + PB · PA −m2)

= 2e2(Ei + Ef )mC

Finally, from these expressions, the differential cross section is given by:

dσ

dΩ
=

α2

4

|pf |

|pi|

(Ei + Ef )2

(m2 −EiEf + |pi||pf | cos θ)2
(13)

where the relation α = e2/4π was used. In the limit where the energy of particle A is much larger
than its mass, and the mass of the target particle is extremely large, the differential cross section
is given by:

dσ

dΩ
=

α2

4

1

E2 sin4 θ/2
(14)

where the kinematics yields the relations Ei = Ef , and |pi| = |pf |. This equation is referred to as
the Rutherford cross section.
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