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Lecture 15

1 Introduction

In the previous lectures, the scattering amplitude was derived in terms of two parameters η ` and δ`.
These parameters describe how an arbitrary potential affects the wave-function, but no mechanism
for deriving these parameters was presented. Without definite predictions for these parameters, the
most that will come out of this model is a classification of the different scattering processes in terms
of the two parameters. This of course is useful information that can be used to build theories, but
does not allow tests of current theories.

In this and the next few lectures, a method of calculating cross sections will be developed. This
method will be connected to the Feynman diagrams that have already been discussed. The theory
will be initially developed for relativistic spinless particles interacting with the electromagnetic
field. To start the derivation, Fermi’s golden rule is derived. Even though it is derived in the
context of the Schrödingerequation, it also holds in the relativistic case.

2 The Golden Rule

For a particle scattering off a potential, the Schrodinger equation is given by:

[H0 + V (~r, t)]ψ(~r, t) = i
∂ψ(~r, t)

∂t
(1)

where ψ is the wave function. Depending on how complicated the potential is, this may or may not
be easy to calculate. Yet in scattering experiments, the measured incident and final state particles
are a very large distance from the scattering center. Based on this assumption the problem can
be turned into calculating the transition probability of an initially free particle state to a final free
particle state. Given this assumption, the wave function ψ can be expanded out in terms of the
free particle wave function, which is given by:

H0φn = Enφn (2)

where H0 is the free particle Hamiltonian. Remember that the φn are orthogonal to each other:

〈φn|φm〉 = δnm (3)

Therefore, unless an interaction term is added to the Hamiltonian, there can be no transition from
one free particle state to another.

The wave function for the complete Hamiltonian in terms of the free particle wave functions is:

ψ(~r, t) =
∑

j

aj(t)φj(~r)e
−iEj t (4)

Where the initial state of the system is given by:

ψ(~r,−T/2) =
∑

j

aj(−T/2)φj(~r) = φn(~r) (5)
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To calculate the coefficients for an arbitrary time, substitute equation 4 into the Schrodinger equa-
tion (eq. 1):

∑

j

aj(t) (Ej + V (~r, t))φj(~r)e
−iEj t = i

∑

j

[

(−iEj)aj(t) +
daj(t)

dt

]

φj(~r)e
−iEj t

⇒
∑

j

aj(t)V (~r, t)φj(~r)e
−iEj t = i

∑

j

daj(t)

dt
φj(~r)e

−iEj t (6)

Next multiply both sides by φ∗f and integrate over all space (note, only that portion of space where
the potential is non-zero contributes to the integral):

daf (t)

dt
= −i

∑

j

aj(t)e
−i(Ej−Ef )t

∫

V
φ∗f (~r)V (~r, t)φj(~r)d

3x (7)

where the integral connects any two states; for now this corresponds to an arbitrary time.
This equation is extremely difficult to solve since it has two unknowns. One way around this,

is to find an approximation to this equation that has only one coefficient. Once this is done
this solution can be inserted back into the equation, and solving the new equation continuing the
iteration process up to the desired level of accuracy. First consider the potential to be finite in
range, with an effective range that is much smaller than distance over which the experiment is
to be performed. Next assume that the potential is independent of time, or at least that the
time variation is small compared to the interaction time. (For the strong interaction, the range is
10−13 cm, while the interaction time is typically 10−23 sec). Therefore consider the following initial
conditions for the wave-function:

ψ(~r,−T/2) =
∑

j

aj(−T/2)φj(~r) = φi(~r) (8)

Imposing this condition on the derivative of af (t) gives:

daf (t)

dt
= −ie−i(Ei−Ef )t

∫

V
φ∗f (~r)V (~r)φi(~r)d

3x (9)

This last equation can be integrated out over time, to give af (t):

af (T/2) = −i

∫ T/2

−T/2
e−i(Ei−Ef )tdt

∫

V
φ∗f (~r)V φi(~r)d

3x (10)

Finally, since the potential is being assumed independent of time, the time integral on the right
hand side can be evaluated:

Tfi ≡ af (T/2) = 2Mfi

[

sin [(Ef −Ei)T/2]

(Ef −Ei)

]

(11)

At this point, it would make sense to define |Tfi|
2 as the transition probability. But a problem

occurs with the energy term in equation 11, due to the approximation being made. This approxi-
mation assumes that the initial and final states occur in the limit T →∞. In this limit, the energy
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term becomes 2πδ(Ef − Ei), making |Tfi|
2 a meaningless quantity due to the square of the delta

function.
One way around this is to define the transition probability per unit time:

W = lim
T→∞

|Tfi|
2

T
(12)

In this case, the two time integrations, one for each of the Tfi in the magnitude squared, are carried
out separately:

lim
T→∞

|Tfi|
2

T
= |Mfi|

22πδ(Ef −Ei) lim
T→∞

1

T

∫ T/2

−T/2
e−i(Ef−Ei)tdt

= |Mfi|
22πδ(Ef −Ei) lim

T→∞

1

T

∫ T/2

−T/2
dt = 2π|Mfi|

2δ(Ef −Ei) (13)

where the first equation on the second line is due to the delta function being zero everywhere
except at Ei = Ef . Even though this equation has a delta function, its purpose is to impose energy
conservation, this equation is far better behaved than that for |Tfi|

2.
To finish this off, and take care of the delta function, W is multiplied by the density of possible

final states ρ(Ef ). Remember, that after the particle is scattered, it will go into some final state.
The probability of a specific state depends on the number of final states available and how closely
spaced they are. The transition rate is therefore given by:

Wfi = 2π

∫

|Mfi|
2δ(Ef −Ei)ρ(Ef )dEf (14)

which is referred to as Fermi’s Golden Rule.
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Figure 1: The evolution of the sin[(Ei −Ef )T ]/(Ei −Ef ) as T →∞. This is the definition of the
Dirac delta function.
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