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Chapter 6

The Feynman Calculus

In this chapter we begin the quantitative formulation of elementary particle dynamics, which
amounts, in practice, to the calculation of decay rates (T') and scattering cross sections (). The
procedure involves two distinct parts: (1) evaluation of the relevant Feynman diagrams to
determine the “amplitude” (M for the process in question, and (2) insertion of #'into Fermi’s
“Golden Rule” to compute T or 0, as the case may be. To avoid distracting algebraic
complications, I introduce here a simplified model. Realistic theories—QED, QCD, and GWS—
are developed in succeeding chapters. If you like, Chapter 6 can be read immediately after
Chapter 3. Study it with scrupulous care, or what follows will be unintelligible.

6.1 LIFETIMES AND CROSS SECTIONS ?M Mo M / T

As I mentioned in the Introduction, we have three experimental probes of elementary particle
interactions: bound states, decays and scattering. Nonrelativistic quantum mechanics (in
Schrodinger’s formulation) is particularly well adapted to handle bound states, which is why we
used it, as far as possible, in Chapter 5. By contrast, the relativistic theory (in Feynman’s
formulation) is especially well suited to describe decays and scattering. In this chapter I’ll
introduce the basic ideas and strategies of the Feynman “calculus”; in subsequent chapters we
will use it to develop the theories of strong, electromagnetic, and weak interactions.

To begin with, we must decide what physical quantities we would like to calculate. In the
case of decays, the item of greatest interest is the {ffit_iin_e of the particle in question. What-
precisely do we mean by the lifetime of, say, the muon? We have in mind, of course, a muon at

rest; a moving muon lasts longer (from our perspective) because of Eime dilation' But even

stationary muons don’t all last the same amount of time, for there is an intrinsically random

element in the decay process. We cannot hope to calculate the lifetime of any particular muon;

rather, what we are after is the average (or “mean”) lifetime, 7, of the muons in anyEarge sample
Now, elementary pzzrticles havc?o memories, so the probability of a given muon decaying in thel
next microsecond isjindependent| of how long ago that muon was created. (It’s quite different in
biological systemsﬁmﬂfiéa_;c‘)‘ld man is much more likély to die in the next year than is a 20-
year-old, and his body shows the signs of éight decades of wear and tear. But all muons are

R
identical, regardless of when they were produced; from an actuarial point of view they’re all on

e

an equal footing.) The critical parameter, then, is thWhe probability per unit time -




e

that any given muon will disintegrate. If we had a large collection of muons, say, N(¥), at time ¢,

then N I'dt of them would decay in the next instant dr. This would, of course, decrease the

‘number remaining:

dN = —T'Ndt 6.1)

It follows that _
N(t) = N(0)e™™ (6.2)

Evidently, the number of particles left decreases exponentially with time. As you can check for

yourself (Problem 6.1), the mean lifetime is simply the reciprocal of the decay rate:

(6.3)

T =

1
T

Actually, most particles can decay by several routes. The 7", for instance, usually decays
into p* + v, but sometimes goes into e + v,; occasionally a " decays into u* + v, +7, and they
have even been known to go into ' + v, + n°. In such circumstances the total decay rate is the

sum of the individual decay rates:
| Z T, 6.4)
=1

and the lifetime of the particle is the reciprocal of T’y
T = l/Ftot (6.5)

In addition to 7, we want to calculate the various branching ratios, that is, the fraction of all

particles of the given type that decay by each mode. Branching ratios are determined by the

decay rates:



Branching ratio for the ith decay mode = T'; /T';: (6.6)

For decays, then,the essential problem is to calculate the decay rate I'; for each mode; from there

it is an easy matter to obtain the lifetime and branching ratios.

How about scattering? What quantity should the experimentalist measure and the theorist

. calculate? If we were talking about an archer aiming at a ‘“bull’s-eye,” the parameter of interest
would be the size of the target, or more precisely the cross-sectional area it presents to a stream
of incoming arrows. In a crude sense, the same goes for elementary particle scattering: If you fire
a stream of electrons into a tank of hydrogen (which is essentially a collection of protons) the
parameter of interest is the size of the proton—the cross-sectional area ¢ it presents to the
incident beam. The situation is more complicated than in archery, however, for several reasons.
First of all the target is “soft”; it’s not a simple case of “hit-or-miss,” but rather “the closer you
come the greater the deflection.” Nevertheless, it is still possible to define an “effective” cross
section; I’1l show you how in the next paragraph. Second, the cross section depends on the nature
of the “arrow” as well as the structure of the “target.” Electrons scatter off hydrogen more -
sharply than neutrinos and less so than pions, because different interactions are involved. It
depends too, on the outgoing particles; if the energy is high enough we can have not only elastic
scattering (e + p — e + p), but a variety of inelastic processes, suchase+p —e+p+y,ore+p
+ 1%, or even in principle, v. + A. Each one of these has its own (“exclusive”) scattering cross
section, 0; (for process 7). In some experiments, however, the final products are not examined,

and we are interested only in the fotal (“inclusive”) cross section. Y\dhow‘éwt" cAgM O
v Cpss $ethren

Otot = zn:(fi W \Mﬁ 6.7)

=1

Srreans 9, e

Finally, each cross section typically depends on the velocity of the incident particle. At the most

naive level we might expect the cross section to be proportional to the amount of time the
incident particle spends in the vicinity of the target, which is to say that o should be inversely
proportional tov. But this behavior is dramatically altered in the neighborhood of a
“resonance”—a special energy at which the particles involved “like” to interact, forming a short-

lived semibound state before breaking apart. Such “bumps” in the graph of ¢ versus v (or, as it is



more commonly plotted, ¢ versus E) are in fact the principal means by which short-lived
particles are discovered (see Fig. 4.6). So, unlike the archer’s target, there’s a lot'of physics in an

elementary particle cross section.

Let’s go back, now, to the question of what we mean by a “cross section” when the target
is “soft.” Suppose a particle (maybe an electron) comes along, encounters some kind of potential
(perhaps the Coulomb potential of a stationary proton), and scatters off at an angled. This
scattering angle is a function of the impact parameter b, the distance by which the incident
particle would have missed the scattering center, had it continued on its original trajectory (Fig.
6.1). Ordinarily, the smaller the impact parameter, the larger the deflection, but the actual
functional form of @ (b) depends on the particular potential involved.

EXAMPLE 6.1 Hard-Sphere Scattering < P%‘ff/\ Ar / AL

Suppose the particle bounces elastically off a sphere of radius R. From Figure 6.2, we

have

b= Rsina, 2a+0:£ - ¥: T g
Thus sin o = sin(7/2 — 0/2) = cos(6/2)
and hence b= Rcos(0/2) or 6=2cos™(b/R)

This is the relation between @ and b for classical hard-sphere scattering.

If the particle comes in with an impact parameter between b and b + db, it will emerge
with a scattering angle between 6+ d6. More generally, if it passes through an infinitesimal area
do, it will scatter into a corresponding solid angle d<2 (Fig. 6.3). Naturally, the larger we make
do, the larger d¢2 will be. The proportionality factor is called the differential scattering cross

section, D: rruah b —— SW‘;“Q WV\" ASL .
Moo & W““Mbao\c :W&

do = D(6)dQ2 A—Q 6.8) !
nesS Sedhen

In principle, D might depend on the azimuthal angle ¢; however, most potentials of interest are

spherically symmetrical, in which case the differential cross section depends only on 8 (or, if you



prefer, on b). By the way, the notation, D, is my own; most people call it simply do/d(2, and in
the rest of the book I’ll revert to the standard terminology. The name “differential cross section”

is poorly chosen; it’s not a differential at all, in the mathematical sense (the words would apply

more naturally to do than to do/d<2).
YA

Cyoss Sedhon
do = |bdbdg|,  d = |sinfdodg| i\rff b(6.9)

Now, from Figure 6.3 we see that

(Areas and solid angles are intrinsically positive, hence the absolute value signs.) Accordingly,

do b [db
D) =30 = |sne (@) l (6.10)
EXAMPLE 6.2
In the case of hard-sphere scattering, Example 6.1, we find i\o= [260; Q
2
d R . (0 N o}
0= —58111(5) | Ab—-% Q(M-g—_ AG’
and hence.

Rbsin(0/2) _ R*cos(9/2)sin(6/2) _ R®
2sinf 2 sin 6 4
G2 - ’2.5%900?9
Finally, the fotal cross section is the integral of do over all solid angles: > QMG Gb‘s'e' = gw\ﬁ'

g

D() =

a-—-/do:/D(O)dQ 6.11)
EXAM;T;'Eh:r.Z-Sphere scattering o= (d\c (DU}\ AQ §& Aq’ & & QWQO\GM
a=/ﬁzdsz_mz /%K gwd&' J@({M&) ) ng )
,«T\K"‘

which is, of course, the total cross section the sphere presents to an incoming beam: Any

particles within this area will scatter, any outside will pass unaffected.

g‘



As Example 6.3 indicates, the formalism developed here is consistent with our naive sense of the
term “cross section,” in the case of a “hard” target; its virtue is that it applies as well to “soft”

targets, which do not have sharp edges.

EXAMPLE 6.4 Rutherford Scattering
A particle of charge ¢q; scatters off a stationary particle of charge ¢,. In classical

mechanics the formula relating the impact parameter to the scattering angle is

see  uncQudoed,
cg‘;(,u QD Qo\dS'HM ,3ded-

¢\ -ne &
o\@\lwﬁm 'S inrponck fosarf

where E is the initial kinetic energy of the incident charge. The differential cross section

_ae
b= Yo cot(0/2)

is therefore

00) - (pters)

In this case the total cross section is actually infinite:

T

2
q192 1 .
=2 —_— _— =
o W(4E) /Sin4(0/2)sm0d0 00
0

o . L ) St
Suppose now, that we have a beam of incoming particles, with uniform mznoszty L L

is the number of particles passing down the line per unit time, per unit area). Then dN = £ do is
the number of particles per unit time passing through area do, and hence also the number per unit

time scattered into solid angle d(2:

dN = Ldo = LD(6)d2
It follows that




do 1dN

= P0=za@

= (6.12)

This is frequently a more convenient way to think of the differential cross section: It is the
number of particles per unit time scattered into solid angle d¢2, divided by d(2 and by the
luminosity. (Or, as accelerator physicists like to put it, “the event rate is the cross section times

the luminosity.”)
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Exponential decay - Wikipedia, the tree encyclopedia http://en.wikipedia.org/wiky/ Exponential_deca

)

Derivation of the mean lifetime

Given an assembly of elements, the number of which decreases ultimately to zero, the mean lifetime, T,

(also called simply the lifetime) is the expected value of the amount of time before an object is removed
from the assembly. Specifically, if the individual lifetime of an element of the assembly is the time
elapsed between some reference time and the removal of that element from the assembly, the mean
lifetime is the arithmetic mean of the individual lifetimes.

Starting from the population formula
N = Npe™.
we firstly let ¢ be the normalizing factor to convert to a probability space:

12/ c-NoeMdt =c- f’io erbs (7
0

or, on rearranging,
A
No
We see that exponential decay is a scalar multiple of the exponential distribution (i.e. the individual
lifetime of a each object is exponentially distributed), which has a well-known expected value. We can

compute it here using integration by parts.

oo 1
T=(t)=/0 t-c-Nag“"*dt=/;lte“"tdt= X

=

N
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