
THE FEYNMAN RULES

I. Introduction:

Very generally, interactions can be viewed as the result of a ”scattering” operator (S),
a unitary operator acting on an initial state (\i >) leading to a multitude of possible final
states such that:

S \ i >=
∑

possible f

< f | S | i > . \ f >

The transition probability to a particular final state (\f >) is given by the square of
the S matrix element (| Sfi |2) such that:

Sfi =< f | S | i >

The initial state (\i >) must result in some combination of final states (\f >), which
may include (\i >) itself in which case no interaction took place. To separate the non-
interaction case from the cases with interaction, we introduce a transition operator T such
that:

S = I + iT

With Tfi =< f | S | i > when (f 6= i)

It is also convenient to redefine the operator (T ) in a way that makes the energy mo-
mentum conservation explicit:

Tfi = (2π)4δ4(pf − pi)Mfi

Where (pi and pf ) are the initial and final four vector momentum respectively. (Mfi)
also represented by (M) is known as amplitude.

II. Rules for Feynman diagrams:

The Feynman rules, are the set of instructions used to calculate the contribution of a
particular diagram to the total amplitude (M) of the process.

Example:

The figure below illustrates the second order (two vertices) and forth order (four vertices)
Feynman diagrams for the electron-electron (Moller) scattering. Each Feynman diagram
corresponds to the probability amplitude for the process depicted in the diagram. In the
feynman calculation Each diagram is contributing to the total probability amplitude of the
process (e + e → e + e).
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Figure 1: Feynman diagrams for electron-electron (Moller) scattering: (a) second-order
diagram (two vertices); (b-j) fourth-order diagrams.
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II-1. Feynman rules for a toy theory:

Consider a particular Feynman diagram, describing the interaction among spinless par-
ticles. To find the amplitude one needs to proceed as follow:

1. Label the incoming and outgoing four-momenta. Also label the internal momenta.
Put an arrow on each line to keep track of the positive direction (if the arrow leads
toward the vertex).

Example:

For the scattering: A + A → B + B. One of the lowest Feynman diagrams corre-
sponding to this interaction is:

2. For each vertex, write down a factor of (−i g), where g is the coupling constant, it
specifies the strength of the interaction.

3. For each internal line, write a factor (
i

q2
j −m2

jc
2
).

Where (qj) is the four vector momentum of the jth internal line, and (mj) is the mass
of the particle the line describes. Notice that (q2

j − m2
jc

2 6= 0), because a virtual
particle does not lie on its mass shell.

4. For each vertex, write a delta function of the form [(2π)4 δ4(k1 + k2 + k3)], to enforce
conservation of energy and momentum. Where the k’s are the four-momenta coming
into the vertex.

5. For each internal line (j), write down a factor (
1

(2π)4
d4qj), and integrate over the

internal momenta.

6. The result after enforcing overall conservation of energy and momentum is equal to
(−iM).
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II-2. Application:

Imagine we have three spinless particles labeled A, B, and C with masses mA, mB,
and mC , each of which is its own antiparticle, with particle A being the heaviest of
the three and in fact weighs more than B and C combined, so it can decay to B +C.

The lowest order Feynman diagram describing this decay (A → B + C):

As can be seen there are no internal lines, and the diagram includes only a single
vertex. Using the Feynman rules as listed in the previous paragraph:

(a) We label the incoming and outgoing four-momenta

(b) For the only vertex, we write down a factor of (−i g).

(c) We skip step #3 since there are no internal lines

(d) For the only each vertex, we write a delta function (2π)4 δ4(P1 − P2 − P3) to
enforce conservation of energy and momentum.

The result up to this step is:

(−ig). (2π)4 δ4(P1 − P2 − P3)

(e) Enforcing overall conservation of energy and momentum (P1 = P2 + P3)
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The amplitude of the decay to the first order is:

iM = ig or M = g

Now assuming that the contribution of the higher order diagrams is negligible compared
to the first order amplitude, the total amplitude is approximately equal to M . Next Using
equations (6.31) and (6.32) from the book with:

1. S=1, (no groups of identical particles present in the final state of the decay)

2. m1 = mA, m2 = mB and m3 = mC

The decay rate is then:

Γ =
S | P |

8πh̄m2
Ac

| M |2= | P | g2

8πh̄m2
Ac

Where

| p |= c

2mA

√
m4

A + m4
B + m4

C − 2m2
Am2

B − 2m2
Am2

C − 2m2
Bm2

C

And the life time of the particle A is

τ =
1

Γ
=

8πh̄m2
Ac

| P | g2

We can actually check for the consistency of the above result

Unit(τ) = Unit(
8πh̄m2

Ac

| P | g2
) =

(Mev s) (Mev/c2)2 c

(Mev/c2 c)2 (Mev/c)
= s
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