Jet Wagner Noc Porticle Tall Horse copy # File: /home/jef/Desktop/NucParticleTalkOutline.txt Page 1 of 2 #### Intro *Particle Decayrates and Scattering Cross Sections *By Jef Wagner #### Outline *Decay Rates **Multiple Decay Modes **Theoretical Calculation **Experimental Measurement **Setup of Muon Measurement *Scattering Cross Sctions **Theoretical Calculation **Experimental Measurement ## Decay Rates *Probability of a particle decaying *Heavy Particles Decay into lighter ones ** Muon-> Electron + anti electron neutrino + muon neutrino *The time of decay is not always the same *particles have no memory (time until decay does not depend on how long it's been alive) *If probablity of decay is constant (in the particles rest frame) Sets up differntial *Gives us the equation $N(t)=N_0 e^{Gamma}$ ### Theoretical Calculation *Use Feynman Diagram for each decay mode, calculate Amplitude *Use the "Golden Rules" to calculate decay rate for each mode *Can then calculate total decay rate or Branching Ratios ### Expermental Measurement *Cannot make the measurement from a single particle *Start with very large number of particles, and measure the number of decays per time *Measure the lifetimes of many particles put them into bins, match to a exponential # Muon Lifetime Experiment *typical juniorlab experiment *Use Cosmic Ray Muons *Stop them in a scintillator *Detect the arival and decay with a photomulitplier tube *Measure the time with a electronic timer *Many Small details #### Cross Sections *Probabitly of Particles Interacting *Given as an area (often in the units of a "barn" or 10^-24cm) *#N of events / time = Crossection * Luminosity *Detail physical Explanation of what the cross section and differential cross section are *Hard Sphere scattering example *Different cross section for each scattering possiblity *cross section depend upon energy (velocity) *bumps in the energy vs. cross section curves can indicate short lived partcles **Example of the Hyperbion and the Top Quark Theoretical Calculation *Use feynman Diagram to calculate Amplitude M *Use Fermi's Golden Rule to calculate crosssections *Use those results in a monty carlo simpulation to get a sweep of # of events in certain energy ranges Expermental Measurement *Use incident beam of particles with known luminosity onto startionary target, Measure #N of events **Similar to Ncutrino observations in the large underground water tanks *colide two beams of particles, measure the everything you can at all angels. Use the patterns of what comes out to descibe certain events. ** Example a modern particle collider Works Cited: Griffiths, David "Introduction to elementary particles" Bugel, Leonard "Measuring Particle Lifetimes" Nave, Carl R. "Hyperphysics" Muon Decay Jet Wagner Nuc Particle Talk Hora Copy Leynmon diagrang a morn scattering event. Jet Wagner / Noc Port de Talle Pictore of the experimental apparation. Necker-Tarton Head Com diayson d'assalter ing event 4.4 $m(\pi^+\pi^-J/\psi)$ (GeV/c²) # Jet Wagner / Noc Porticle Talla Example da collision exprinental apparatus. example de a collision event.