c c c function rint(r) C C H2O INTERPOLATIONS POTENTIAL C implicit real*8 (a-h,o-z) real rlgdre*8 C dimension r(3),gamma(5),a(5,5),b(5,6),p(5),x(6) C data d0,alpha0,r0/4.621d0,2.294d0,0.971d0/ data gamma/45.0d0,75.0d0,104.52d0,135.0d0,180.0d0/ data b/-0.69629d0,-0.48884d0,-0.45792d0,-0.44409d0,-0.41761d0, * 1.40886d0,1.39153d0,1.39691d0,1.46819d0,1.54303d0, * 0.12042d0,0.14350d0,0.17865d0,0.19215d0,0.19151d0, * 0.19193d0,0.15280d0,0.13400d0,0.09861d0,0.05140d0, * 0.62717d0,1.38163d0,1.43055d0,1.36016d0,1.22214d0, * 0.31021d0,0.12674d0,0.18001d0,0.38321d0,0.51142d0/ C logical nfirst data nfirst/.true./ C if (nfirst) then nfirst=.false. C C BESTIMMUNG DER LEGENDRE ENTWICKLUNGS KOEFF. C do 1 i=1,5 do 1 j=1,5 1 a(i,j)=rlgdre(j-1,cos(1.7453292d-2*gamma(i))) C call mat56(a,5,b,6,det) C end if C rmax=dmax1(r(1),r(3)) rmaxa0=rmax/0.529177249d0 - 3.5d0 rmin=dmin1(r(1),r(3)) cosgam=-(r(2)**2-r(1)**2-r(3)**2)/(2*r(1)*r(3)) C do 2 i=1,5 2 p(i)=rlgdre(i-1,cosgam) C do 3 j=1,6 x(j)=0.0d0 do 3 i=1,5 x(j)=x(j)+b(i,j)*p(i) 3 continue C d=d0+x(1)*exp(-x(2)*rmaxa0-x(3)*rmaxa0**2) alpha=alpha0+x(4)*exp(-x(5)*rmaxa0-x(6)*rmaxa0**2) C C rint=d*(exp(-alpha*(rmin-r0))-1.0d0)**2-d C return end