!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!System Information!!!!!!!!!! !!!!Fh2T5 Reactive Scattering!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! $Title_Labels Title1='F+H2 reactive scattering using the T5A potential' Title2='channel(1)=F+HH, channel(2)=HF+H, channel(3)=HF+H' Title3='FH2 T5A PES' $END Title_Labels -------------------------------------------------------------------------- Main option parameters: LSFUNC logical variable set equal to .true. if sfunc is to be executed. LMATELM logical variable set equal to .true. if matelm is to be executed. LOVERLAP logical variable set equal to .true. if overlap is to be executed. CRAY true when exectuing on a Cray and false otherwise. SCHEME if 1, use harmonic oscillators for the basis if 2, use Sturmians for the basis. -------------------------------------------------------------------------- $options lsfunc=.true.,lmatelm=.false.,loverlap=.false., cray=.false.,scheme=1 $end ----------------------------------------------------------------------- debug printing options nsubs ...... number of subroutines which will have their debug writes turned on The following variables must be defined for each subroutine for which you wish to turn on debug writes: subs(i) ...... name of the subroutine to turn on debug writes; must be a Hollerith character string of no more than eight characters iprt(i) ...... what level of debug writes: 0=none 1=minimum 2=moderate 3=maximum 4=combination (must read in iter(j,i), j=1 to 3) iter(j,i) ...... how many times to loop thru subroutine i with the jth debug level turned on (j=1 to 3) ----------------------------------------------------------------------- $debug nsubs=8, subs(1)='matbas ',iprt(1)=1, subs(2)='setbasis',iprt(2)=1, subs(3)='readinb ',iprt(3)=0, subs(4)='potelmnt',iprt(4)=1, subs(5)='sfunbas ',iprt(5)=2, subs(6)='ovrbas ',iprt(6)=1, subs(7)='ovlaps ',iprt(7)=1, subs(8)='readabf ',iprt(8)=0 $end -------------------------------------------------------------------------- Read in the masses (carbon 12 mass units) for each atom. MASSES: massa=mass(Hydrogen), massb=mass(Hydrogen), massc=mass(Hydrogen) -------------------------------------------------------------------------- $mass amass=18.9984032d0, bmass=1.00782503d0, cmass=1.00782503d0 $end ----------------------------------------------------------------------- Specify the following: JTOT total angular momentum PARITY parity (=0 => even-parity, =1 => odd-parity) SYMMETRY true use C2V symmetry. Particle B must be identical to partical C. JEVEN used only when symmetry is true. When true obtain even states. When false obtain odd states. MEGAMAX Maximum projection of the total angular momentum to be used. ----------------------------------------------------------------------- $momentum jtot=0,parity=0,symmetry=.false.,jeven=.true.,megamax=0 $end ------------------------------------------------------------- VPOT shift the potential by this amount (hartrees). $setpot vzero=0.0d0 $end ----------------------------------------------------------------------- Read in the distances used to make the surface functions: rhomin Value of the first rho for calculating surface functions. (units of Bohr) rhomax Value of the last rho for calculating surface functions. (units of Bohr) ----------------------------------------------------------------------- $sfundist rhomin=2.20d0,rhomax=2.2001d0 deltarho=0.01d0 $end --------------------------------------------------------------------------- Read in convergence parameters. eigmin minimum eigenvalue of overlap matrix to be kept in making linearly independent basis ovrerr overlaps between channels are printed if two evaluations differ by more than ovrerr. ngood number of good eigenfunctions and eigenvalues wanted. $convrg eigmin=1.d-06, ovrerr=1.d-04, ngood=300 $end --------------------------------------------------------------------------- Read in data to determine the asymptotic vibrational-rotational states of the isolated diatoms. MINVIB the minimum vibrational state for each arrangement channel. MAXVIB the maximum vibrational state for each arrangement channel. JMIN the minimum rotational state for each vibrational state and each arrangement channel. JMAX the maximum rotational state for each vibrational state and each arrangement channel. --------------------------------------------------------------------------- $quantum minvib(1)=0,0,0,maxvib(1)=3,7,7, jmin(0,1,0)=4*0,jmax(0,1)=12,12,8,3, jmin(0,2,0)=8*0,jmax(0,2)=31,31,31,29,26,22,21,16, jmin(0,3,0)=8*0,jmax(0,3)=31,31,31,29,26,22,21,16 $end --------------------------------------------------------------------------- Read in data necessary to generate the asymptotic basis and for expanding the interaction potential so that interaction matrix elements can be calculated analytically. NOSCIL number of harmonic oscillators basis functions. NGLEGN number of Gauss-Legendre points used to expand the interaction potential in a Legendre polynomial. NHERMT numer of Gauss-Hermite points used in calculating the Hamiltonian matrix elements. RE equilibrium position of the diatom for each arrangement channel. RX RX times RE is the position of the minimum of the parabola which defines the harmonic oscillator basis. This parameter can usually be set equal to 1.1 for each arrangement channel. This parameter should be greater than one because the long range part of the potential is softer than the short range part of the potential. ALPHA Curvature of the parabola. RALFA RALFA times ALFA is curvature of the parabola which defines the harmonic oscillator basis. This number should be slightly less than one so that the harmonic oscillator basis will have amplitude over a large enough range to adequadely expand the exact wavefunction. This parameter can usually be set equal to 0.95 for each arrangement channel. --------------------------------------------------------------------------- $gauss noscil(1)=3,7,7,nhermt(1)=26,36,36, nlegndre(1)=12,31,31,nglegn(1)=50,50,50, calpha(1)=0.92d0,0.88d0,0.88d0,rx(1)=1.095d0,1.05d0,1.05d0, re(1)=1.40112d0,re(2)=1.732517d0,re(3)=1.732517d0, weau(1)=0.02005340d0,0.01885557d0,0.01885557d0, wexeau(1)=5.52847d-04,4.0952d-04,4.0952d-04, anharm(1)=0.75d0,1.20d0,1.20d0, dalpha(1)=0.00d0,0.00d0,0.00d0, balpha(1)=1.00d0,1.00d0,1.00d0, ralpha(1)=5.2d0,3.05d0,3.05d0, intwt(1)=1,1,1 $end