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Accurate 3D coupled channel calculations for total angular momentum J = 0 for the reaction
F + H, - HF + H using a realistic potential energy surface are analyzed. The reactive
scattering is formulated using the hyperspherical (APH) coordinates of Pack and Parker. The
adiabatic basis functions are generated quite efficiently using the discrete variable
representation method. Reaction probabilities for relative collision energies of up to 17.4
kcal/mol are presented. To aid in the interpretation of the resonances and quantum structure
observed in the calculated reaction probabilities, we analyze the phases of the § matrix
transition elements, Argand diagrams, time delays and eigenlifetimes of the collision lifetime
matrix. Collinear (1D) and reduced dimensional 3D bending corrected rotating linear model
(BCRLM) calculations are presented and compared with the accurate 3D calculations.

. INTRODUCTION
The reaction
F+H,-HF + H, (N

has been the subject of much activity, both experimental and
theoretical, in an attempt to understand the state-to-state
dynamics of this highly exothermic process. On the experi-
mental side, both chemical laser' and infrared chemilu-
minescence’ studies have measured the product vibrational
state distributions. At thermal energies, the v = 2 and 3 dis-
tributions of vibrationally excited products HF (v) are high-
ly inverted with respect to the v =0 and 1 distributions.
More recently, Lee and co-workers® have used molecular
beam techniques to measure the differential cross sections
(DCSs) for relative collision energies ( E,,, ) of 0.7-3.4 kcal/
mol. The DCSs for v = 1 and 2 exhibited mostly backwards
scattering, whereas in the DCS for v = 3 substantial forward
scattering was observed at all energies studied. They con-
cluded from the v = 3 results that dynamical resonances
play a significant role in the reaction.

Central to any theoretical treatment (classical or quan-
tum) of the reaction dynamics is an accurate description of
the potential energy surface (PES). Numerous dynamical
studies have been performed using surface No. 5 of Mucker-
man,* which is denoted M5. Resonances for the F + H, re-
action were first observed in collinear (1D) quantum scat-
tering calculations® using the M5 PES. Subsequently, many
approximate 3D quantum scattering calculations using dis-
torted wave,® centrifugal sudden’ (CS), infinite order sud-
den® (I0S), and bending corrected rotating linear model®
(BCRLM) techniques have been carried out using the M5
PES. More recently, full 3D variational calculations for zero
total angular momentum (J = 0) have been reported by
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both Zhang and Miller'® and Yu ez al.'' employing the M5
surface.

Unfortunately, the M5 PES is known to have deficien-
cies in terms of explaining the experimental observation®
both of dynamical resonances and the lack of a delayed
threshold for producing v = 3 products. In an attempt to
improve upon the threshold behavior of the M5 PES, Truh-
lar and co-workers have developed a series of PESs'*'
which were adjusted through the use of both ab initio elec-
tronic structure calculations and variational transition state
calculations of the v = 3 and total reactivity thresholds. Al-
though they are continuing to develop improved versions,
Truhlar and co-workers'® believe that the surface No. 5A
(Ref. 13 as modified in Ref. 14) should be accurate enough
to correctly predict some of the major observations of the
experiment. This surface, which we denote as T5A, is the
PES employed in the present calculations. Some indication
of the accuracy of the TSA PES has been provided by the
BCRLM calculations of Hayes and Walker®; their DCSs
agree much better with experiment® than those calculated
with other PESs. However, the BCRLM results for the T5A
PES do not provide adequate explanations for all of the ob-
served resonance effects, and it is not clear how much of this
is due to the BCRLM approximation and how much is due
to the T5A PES.

Very recently accurate 3D coupled channel (CC) calcu-
lations using the T5A PES have appeared. In Ref. 17, we
presented J = 0 reaction probabilities for relative collision
energies of £, up to 17.4 kcal/mol. Variational calculations
for J = 0 on the T5A PES have been reported by Yu ezal.'!®
for E,., up to 3.5 kcal/mol. Reference 18 also contains J = 1
results for £, up to 3.4 kcal/mol and a J = 2 calculation for
E,., = 1.84 kcal/mol.

In this article an in-depth analysis is provided of the
calculations first reported in Ref. 17. Details are given on the
application of the discrete variable representation (DVR)
method"? for calculating adiabatic basis (surface) functions
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needed in the adiabatically adjusting principal axis hyper-
spherical (APH) theory®® of reactive scattering. The finite
element method (FEM), which was used in earlier calcula-
tions for the reactions H 4+ H, and D + H,,?*?! proved to be
too slow and too inaccurate for the F 4+ H, system. (How-
ever, since the completion of this work a different diagonali-
zation routine, the spectral transform Lanczos method?*
(STLM), has been added to the FEM code. Preliminary
calculations® show the STLM to be much more efficient
than the previous subspace iteration diagonalization meth-
od. At this time, it is not clear how the FEM-STLM will
compare to the DVR method in terms of both speed and
accuracy.)

The rest of this article is organized as follows. In Sec. II,
the APH scattering theory is briefly reviewed and the details
of the DVR method are presented. In Sec. III, the conver-
gence of the surface function basis with respect to the DVR
parameters is discussed and the production run parameters
are specified. Section IV contains the present results, which
include a correlation diagram, reaction probabilities, phase
plots, time delays and the eigenvalues of the collision lifetime
matrix. In Sec. V, the results are discussed and the reson-
ances are analyzed. Section VI contains the conclusions.

ll. THEORY
A. APH scattering formalism

The reactive scattering for the three atom system is for-
mulated using the APH theory, which is detailed in Ref. 20.
In this section a brief sketch is given of the details necessary
for understanding the application of the DVR method to the
surface function problem.

The total scattering wave function is expanded [Eq.
(70) in Ref. 20] in a set of solutions W/*7, which are regular
at the origin. J is the total angular momentum quantum
number, M is the quantum number for the projection of J
along the space frame z axis, p is the parity and / represents
the ith solution. Each W”*is expanded in a sector adiabatic
basis O (6,y;0,) as

WM — 4 EP_S/Z ,f\ﬁ(P)(DIJK(G:X;Pg)D},\pM(aQ’BQJ’Q)’
LA
(2)

where p is the APH hyperradius and € and y are the APH
hyperangles. p; is the center of a sector, where the range of p
is divided into n sectors, £ = 1,...,n. The expz}\nsion coeffi-
cients ¢7%'(p) are radial wave functions. The Dy (ap.Bos
7o) are normalized®® Wigner rotation matrix elements of
good parity p which are a function of the APH Euler angles.
For each p,, the surface functions for J = 0 satisfy the
2D Schrodinger equation
[ # [ 4 4 Jd 1 9?2 ]

— —— ——sin20 —+——=—5
2up; L sin 260 36 a6  sin® 0 dy

15%#
8up}

+ V(pe,0x) — €15 25 (pe) ] @, 528 (0,x3p:) =0,
(3)

where 4 is the three atom reduced mass and V'is the interac-
tion potential. In this work we consider only solutions of
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even parity p = 0, and we are scattering only out of initial H,
states of even j rotational quantum numbers. In the follow-
ing discussions the / = 0, p = 0 and A = Oindices from both
® and & will be suppresed.

When the APH wave function of Eq. (2) is substituted
into the full Schrédinger equation [Eq. (61) in Ref. 20] for
J = 0, a set of N coupled channel (CC) equations [ Eq. (65)
in Ref. 20] is obtained, where NV is the number of surface
functions in the CC expansion. These exact CC equations are
propagated from p, to p, using the log-derivative method,**
and at p,, the boundary conditions are applied as specified in
Ref. 20.

B. The DVR method

For each p,, &= 1,..,n, the bound state solutions
@, (6,y;p¢) to Eq. (3) must be found. This is often the most
time consuming part of the APH calculations for two rea-
sons. First, a large number of surface functions (V) have to
be calculated for each of a large number (#) of values of p,.
For F + H,, we use up to N = 150 and » = 147. Second, the
potential is highly nonseparable in € and y; its shape and
value vary strongly with p. Thus, having a fast, accurate and
very flexible method for calculating highly excited bound
states of arbitrarily shaped multidimensional (in this case,
two-dimensional) potentials is essential for the feasibility of
APH calculations.

Bound state methods using localized representations,
the discrete variable representation (DVR) 19 and distribut-
ed Gaussian bases (DGB),?* have been recently developed
by Baci¢, Light, and co-workers.’®?” They have been shown
to be exceptionally effective for calculating the high-lying,
large amplitude vibrational states of such challenging triato-
mic systems as LiCN/LiNC,??° HCN/HNC,***° H,0,*'
and H;".*? This fact, and the successful DVR surface func-
tion calculation for H 4+ H,,** have motivated us to apply
this approach to F 4+ H,.'”** We use the DVR for the calcu-
lation of surface functions and the various matrix elements
involving the surface functions which are required for the
CC scattering calculations.

1. 2D DVR calculation of surface functions

To obtain the surface functions ®, in Eq. (3), the ap-
proach of Whitnell and Light®® is adopted, in which the
DVR is used for both @ and y; the surface functions are
determined using the sequential diagonalization-truncation
procedure of Badié, Light et @/.?*>* In this approach, the
surface function Hamiltonian matrix is first formed (formal-
ly at least) in the direct product finite basis representation
(FBR); it is subsequently transformed to the DVR.!%2¢?
The FBR employed in this work consisted of (nQrmalized)
Legendre polynomials in cos 20, {P,(cos 26,
1=0,1,...,] ..}, for the § coordinate, and of a set of symme-
try adapted (normalized) trigonometric functions {I1,, (x),
m=12,.,m..,}

1 5 172
m,, (y) = <—+—i> cos 2(m — 1)y, (4)
T

for the y coordinate.*® Thus, in this direct product FBR, the
surface functions ®, could be written as
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Imax  Mimax

=33 k,,,,P,(cosZH)H (). (5)

I=0m=1
As discussed by Whitnell and Light,** a minor modification
of the 2D surface function Schrédinger equation [Eq. (3)]
was required before the Legendre polynomials could be used
as the FBR for 4. A coordinate

g'=26 (6)

was defined, which resulted in the surface function Schro-
dinger equation®’

{ # [ 6 4 . ., 4 1 3z
— — sin @ - —— =
2up; Lsin8’ 90’ a6 sin®(6'/2) dy
+ Vipe.0'.x) } o, =%, (7N
The symbol Vin Eq. (7) stands for
= , 15#*
V(,Dgﬁ ,X) = V(pg; 7,1/) + (8)
8/-‘Pg

[This is why cos 28 appears in the argument of the P,’s in the
definition of the FBR before Eq. (4).] From now on, ¢ will
no longer be primed, but it should be understood that it is
defined by Eq. (6). Let us now define

#_16 3 . 9

ho= = St smo e " G ®)
b= -2 (10)
2up; x
and
,g:[m(%)]—z‘ (11)

With the above definitions, Eq. (7) can be rewritten as
[(ke +f9h;() + V(png)X)]Qz = gzcbt' (12)
The FBR-DVR transformation matrices and points for

6 and y were obtained by diagonalizing the coordinate ma-

trices in the corresponding FBR basis. For 6, cos 8 was diag-

onalized in the {P, (cos )} basis. The eigenvalues were the

DVR points, while the eigenvectors formed the FBR-DVR

transformation matrix'® T? for the @ coordinate. A symme-

try adapted DVR?*®* (SADVR) was formed for y. The

SADVR in y was constructed from the eigenvalues of the

matrix of cos 2y formed in the {II,, (y)} basis defined by

Eq. (4). As in the case of 6, the eigenvectors of this matrix

formed the FBR-DVR transformation matrix for y, T¥. The

full 2D FBR-DVR transformation matrix for (8,y), T, is the

direct product of the 1D transformation matrices T¢ and T%,

T=TYeT" (13)
The DVR representation of the surface function Hamilto-
nian is obtained as

HDVR TTHFBRT ( 14)

where H® is the matrix representation of the surface Ham-
iltonian in Eq. (12) formed in the FBR defined in Eq. (5),
and T is defined in Eq. (13). With the help of symbols de-
fined in Egs. (9)-(11), Eq. (14) can be written as

HDVR hDVR ® I + fDVR ® hDVR + VDVR ( 15)

Bagi¢ et a/.: Quantum reactive scattering. IV

where I is the unit matrix on the y basis,

W22 =TTh, T, (x=06,) (16)
VDB ap = V(Pg’ 023X5)84005 5 (17)
and
6 -2
boa = [ sin(T“) ] bura- (18)

Equations (17) and (18) are due to the fact thatin the DVR,
operators representing functions are diagonal'®6-33; fVR
and VPVR are simply evaluated at the corresponding quadra-
ture points.

The surface functions ¢, could now be obtained by di-
rectly diagonalizing HPY® of Eq. (15). However, the se-
quential diagonalization-truncation technique?®>* can re-
duce drastically the dimension of HPY®, and therefore the
computational effort associated with its diagonalization. As
done by Whitnell and Light,*® for each 6, a=1,2,...,
Inax + 1, 2 1D ray Hamiltonian®*=? in y is formed:

Htlzl'z.ﬁ’/i = (h)(DVR)E‘B (ngR)a’aaa’a

+ VO s 8uabpps - (19)
Prior to its diagonalization, the 1D ray Hamiltonian in Eq.
(19) was truncated by keeping only those DVR quadrature
points satisfying the potential energy cutoff

V(Pg, aaXﬁ) max (20)

Diagonalization of the (truncated) 1D ray Hamiltonian in
Eq. (19)

(da)THlDda= lDEa, (21)
yields the matrix of 1D ray eigenvectors, d%, and the diagonal
matrix '°E®, containing the ray eigenvalues. The dimensions
of both matrices were N § X N 7, where N 7 is the number of
¥ DVR points retained on the cut defined by cos 6,,. d* was

truncated by retaining those 1D ray eigenvectors whose
eigenvalues 'PE ¢ satisfied the energy cutoff condition

1D p<E . (22)

The truncated d* is an N Xn, matrix, with n, being the
number of ray eigenvalues retained on the ray cos 8,,.

In the final step, H°VR, the 2D DVR surface Hamilto-
nianin Eq. (15), is transformed to the 1D (truncated) y ray
eigenvector basis.?®>* The general a,a’ block of the surface
Hamiltonian matrix in the ray eigenvector basis, HPR, is
obtained as

ﬁDVRaa’ — (da) THDVRaa’da', (23)
where HPVRe is the a,a’ block of HPYR in Eq. (15). The
dimensions of H”V®*® are n,Xn,. Diagonalization of
HPYR (which is of order n,, = 2, n,),

CTﬁDVRC — ESF’ (24)

produces the desired surface eigenvalues & , in ESY, while the
surface function eigenvectors ®, (in the ray eigenvector ba-
sis) form the columns of matrix C. Because of the relatively
small size (7., <940), HP'® can be diagonalized directly.
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2. DVR calculation of the potential coupling matrix
elements and overlap matrices

Let us define Upe.p,0,y) as

2

Solving the APH CC equations requires evaluation of the
potential coupling matrix elements [see Eq. (168) in Ref.
20] of U,

at a few values of p about the center p, of each sector. Let

U"PR be the matrix of U in Eq. (25) in the direct product
FBR defined in Eq. (5). Then,

UDVR — TTUFBRT, (27)

where, to a very good approximation, %2

URRRep =80abp5 Ulpep,cos 6,,c082(n — 1)yz). (28)
UPVR s transformed to the (contracted) 1D ray eigenvector
basis in y, since the surface functions {<IJ } were determined
in that basis. The a,a block of UPY® in the ray eigenvector
basis, UPYR, is obtained as

— (da) TUDVRaada, (29)

where d* is the 1D ray eigenvector matrix (calculated at
cos 8, ) defined in Eq. (21). Finally, the potential coupling
matrix in the basis of 2D DVR surface functions [Eq. (26) ],
U?, is obtained as

CTUPVRC, (30)

where C is matrix of the surface eigenvectors {®,} (ar-
ranged in columns) obtained by diagonalizing H°Y® in Eq.
(24).

The overlap matrix O between surface functions belong-
ing to neighboring &£ thand (£ + 1)st sectors, with elements

t :<q)t(p§)|q)1’(p§+1)>, (31)

is needed to transform the R matrix from one sector to the
next.”° Since the 1D ray eigenvector bases in y used for cal-
culating the ®,’s at p, and p, , , are different, the surface
functions had to be transformed to the (primitive, uncon-
tracted) 2D DVR, which was the same for all p values. 171 et
an arbitrary element of the ¢ th surface eigenvector ®,, stored
in the ¢ th column of matrix Cin Eq. (24), be labeled as C';,,
where a = 1,2,...,N, = /.. + 1 (order of the 6 DVR), and
p=12,.,n, (number of 1D ray eigenvectors in y, at
cos 6, retained in the final basis). Also, let 7, be an ele-
ment of the pth ray eigenvector, stored columnwise in the
matrix d* of Eq. (21), where m = 1’2""’Nx =m,,, (order
of the y DVR). Then, the #th surface eigenvector in the

fJDVRaa

(primitive) 2D DVR, with elements ¢;,, (m = 1,2,...,N,),
is obtained via
z d;,Co (a=12,.,Ng). (32)

The overlap matrix elements O,,. in Eq. (31) are given by

N(i

0.=3 3 en (33)

a=1m=1

3. Transformation of surface functions from 2D DVR to
FBR

To apply the boundary conditions at p,, (to obtain the
Delves R matrix from the APH R matrix), the surface func-
tions in the 2D DVR must be transformed to the FBR in Eq.
(5).

Transformation of a surface eigenvector in the (primi-
tive) 2D DVR, with elements ¢, [Eq. (32) ], tothe FBR in
y is accomplished by

&1 = Z TY,85%, (34)

i=1
where T%,; are the elements of the 1D FBR-DVR transfor-
mation matrix T¥. The elements [g ], appearing in Eq.
(34), are now expansion coefficients in the x FBR basis set
{11,, (x) } defined in Eq. (4),

[/ ] = ﬁ_f] [&n 110, (). (35)
The FBR expansis; of ®, in Eq. (5) can be written as

@, = i [ /.00 1. P, (cos 0), (36)
where

[fi0]. ka IL,, (x)- (37)

m=1

Transformation of the [ f*],’s in Eq. (35) to the [ £;],’s
which appear in Eq (36) is achieved by

[fiC0] = 2 T (0], (38)

Elements T§, in Eq. (38) belong to the 1D FBR-DVR
transformation matrix T? If Eq. (35) is inserted into Eq.
(38), one obtains

[fi0]. = Z ZT [g5 100, (). (39)

m=1a=
By comparing the two expressions for [ f;(y)],, in Egs.
(37) and (39), respectively, it is easily found that the expan-
sion coefficients are

Kim = Z Tlgn].

a=1

- z Z T9 TX. 42 (40)

a=1i=1

lil. SURFACE FUNCTION CONVERGENCE AND
PARAMETERS

A. Convergence

In this section the convergence of the DVR surface
functions with respect to the DVR parameters is examined
and the actual parameters used in the production run are
specified. For the scattering calculations, n = 147 sectors
were used where p, = 2.2 g, and p, =9.4054,. (1 a,=1
bohr unit). Since the topology of the potential varies signifi-
cantly as p changes from p, to p,, convergence was verified
at several representative values of p. (See Ref. 35 for perspec-
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tive plots of the stereographic projection of the TSA poten-
tial in @ and y for p = 5.2 and 7.3 g,). To apply the DVR
most efficiently, different values of /,,, and m,_,, should be
used on different subintervals within the basic interval
[P0, ] As will be demonstrated by the convergence stud-
ies, smaller FBRs can be used at small values of p where the
amplitude of the surface functions tends to be delocalized in
¢ and y. As p increases and the asymptotic arrangement
channel limit is approached, the surface functions localize in
each arrangement channel and only limited regions of  and
y contain amplitude. In this case larger FBRs must be used
which in turn define DVRs which place more grid points in
these limited regions of APH hyperangle space. In future
applications of the DVR, we plan to adjust /_,, and m,,,, as
a function of p. However, in this initial application, to avoid
calculating overlap matrices between surface functions de-
fined with different /,, and m,,, values, a single set of
(Lnax M max ) Was used which converged the surface func-
tions at p,,. This choice provides a more than adequate basis
in terms of /.., and m_,, for all p due to the reasons dis-
cussed above.

In Table I some of the convergence tests which were
performed are summarized. The focus of this study is surface
functions # = 98-100. The states 7 < 100 are as converged or
better converged than the ¢ = 100 state although some ex-
ceptions occur. States ¢t = 98-100 are representative of the
three types of surface functions which are encountered in the
F + H, problem. In general, states which correlate asymp-
totically with H,, [such as r = 100, a (v = 1,j = 0) state at
2.159 eV], converge much more quickly than those which
correlate with HF. Also, states which correlate with HF
(j = large), [such as t = 99], converge much more slowly
than those which correlate with HF ( j = small), [such as
t = 98]. This last difference is due mainly to the fact that
large j functions contain many nodes in the direction of
rotational motion and require more grid points to reproduce.
(Plots of surface functions for F + H, which correlate as-
ymptotically with a H,, a HF (v = 3, j = small), and a HF
(v =12, j = large) state are shown in Ref. 35.) Fortunately,
the HF (j = large) states receive very little flux, so their
convergence is less important. It is important, though, to be
aware of these convergence properties. One can be misled in
a convergence study if only one particular state is focussed
upon and this state turns out to be more slowly or quickly
converging than the other states of interest. This is why in
Table I three consecutive states are considered. Actually, alt
of the surface function energies are analyzed to assure con-
vergence although it is not practical to present all of the
results.

1. Convergence at p=2.2 and 3.038 a,

There are four DVR parameters, /..., m, .., V..., and
E_,., which must be determined. First, the surface functions
at the initial value of p, = 2.2 g, are considered in Table I.
For fixed values of /,, and m,,,, E_,, =20.0eVand V,,,

= 30.0 eV provide at least four figures of convergence. For
fixed values of E_, and V,,,, /.., = 30and m,,,, = 50 pro-
vide at least four figures of convergence. A general property

which can signal convergence with respect to m,,,, is ob-

Batié et al.: Quantum reactive scattering. IV

TABLE I. Surface function eigenvalues &, (p).

&, (p=22a,) (eV)

Liax Minax Mev Vinan (eV) E, (eV) =98 t=99 =100
25 40 501 30.0 25.0 14.1273  14.1581 14.2141
25 40 409 30.0 21.0 14.1288 14.1582  14.2151
25 40 381 30.0 20.0 14.1291 14.1583  14.2160
25 40 246 30.0 15.0 14.1970 14.2150 14.2751
25 40 381 35.0 20.0 14.1291 14,1583  14.2160
25 30 454 30.0 25.0 14.1663 14.2145  14.2571
25 50 517 30.0 25.0 14.1277 14.1582 14.2142
25 60 519 30.0 25.0 14.1278 14.1582 14.2142
30 40 594 30.0 25.0 14.1274  14.1605 14.2158
35 40 689 30.0 25.0 14.1326 14.1624  14.2189
50 100 885 39.4 22.5 14,1299 14.1686 14.2191

& ,(p=3.038a,) (V)
25 40 532 20.0 10.0 4.53423 4.54338 4.54893
25 40 596 20.0 12.0 4.534 17 4.54337 4.548 88
25 50 551 20.0 10.0 454233 454616 4.54840
25 60 552 20.0 10.0 454230 4.54603 4.54841
30 50 652 20.0 10.0 4,542 89 4.54662 4.548 84
50 100 886 14.0 8.0 4.544 64 454727 4.55255
%, (p=4.9754a,) (eV)
30 50 541 7.0 4.0 2.164 87 2.18024 2.189 30
30 60 546 7.0 4.0 2.16451 2.17988 2.189 32
40 60 721 7.0 4.0 2.16451 2.17986 2.18932
40 60 598 7.0 35 2.16484 2.18080 2.18951
50 100 897 7.0 4.0 2.16451 217985 2.18932
&, (p=954a,) (eV)
50 80 465 7.0 4.0 2.15302 2.15465 2.15513
50 90 488 7.0 4.0 2.14206 2.15507 2.15550
50 120 507 7.0 4.0 2.15058 2.15503 2.15521
40 100 406 7.0 4.0 2.15471 2.15528 2.15861
60 100 406 7.0 4.0 2.14993 2.15504 2.15557
70 100 703 7.0 4.0 2.14986 2.15507 2.15565
50 100 506 6.0 4.0 2.14874 2.15498 2.15517
50 100 472 7.0 3.8 2.14892 2.15503 2.15547
50 100 506 7.0 4.0 2.14871 2.15498 2.15517

served here. Eventually a change in m_,, produces a nearly
zero change in the order n., of the 2D DVR surface Hamil-
tonian matrix. This is due to the order of application of the
DVRs; we take fixed 6 values and define 1D DVRs in y.
Next in Table I convergence results for p = 3.038 eV are
presented. Note how much the energies have dropped with
respect to those at p = 2.2 a,,. This drop in energy allows for
the use of a smaller value of E_ . As apparentin Table [, E

cut
=10.0eV, /[, =25, and m,_,, = 50 provide at least four
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figures of convergence. One compromise must be made
when using values of / ,, and m,,, larger than the optimal
values: E., must be set at less than its optimal value. This
keeps the value of n., down to a reasonable size which is
necessary as the computational work to diagonalize the 2D
DVR matrix scales as (n,,)>. By setting E,, =8.0¢V,
down from the optimal 10.0 eV, a deviation of up t0 0.004 eV
is introduced in the states in Table I. Yet it appears that this
compromise does not affect the quality of the final scattering
results as we show later. This possibly suggests that require-
ment of four figure convergence for the ¢ = 100 surface func-
tion at all values of p is a bit conservative.

2. Convergence at p=4.975 and 9.5 a,

In Table I next are the results for p = 4.975 a,. By com-
paring these energies with those listed for p = 9.5 a, we see
that at p=5.0 a, the surface function energies are roughly
the same as those at the asymptotic limit. E,,, =4.0eV,/_,,

= 30and m,,,, = 60 provide at least four figures of conver-
gence. Since the surface function energies are nearly at their
asymptotic values, E_,, = 4.0eV was used for values of
p>5.0a,.

Finally, convergence results for p = 9.5 a, are presented
in Table I. E., =40¢eV, V,_,, =7.0¢eV, [, =50 and
m,... = 100 provide at least four figures of convergence for
states t = 99 and 100. State r = 98 exhibits properties that
correlate with an HF (v, j = large) state. Although the size
of the 2D DVR matrix for m,,, = 100 is nearly stationary
with respect to the m_,, = 120 matrix (n., = 506 vs n,

= 507), the ¢ = 98 energy is converged to only ~0.002 eV
with respect to m (varies by 2 in the 4th figure).

max

B. Parameters

For production runs, values of /

max = 90, My, =100
and ¥V, = 1.75 E_,, are used. Since the optimal choice for
E.. [=2%,_,0(p)] is tied to the value of p through
& ,_ 100(p), E.,. is allowed to vary using a linear interpola-
tion scheme for p = [2.2,4.028] a,. The interpolation knots
arep = 2.2,2.518, 2.79, 3.038, 3.553, and 4.028 a, with cor-
responding values of £, = 22.5, 14.8, 10.6, 8.0, 5.2, and 4.0
eV. E_,, =4.0eV for p = [4.028,9.5] a,.

Before leaving Table I, consider the variation of n,, as a
function of p using the production set of DVR parameters.
The value of n,, provides some measure of the number of
grid points on the 8, y space where the potential is less than
Viax+ Moy = 897 at p =4.975 a,, whereas n_, =506 at
p =9.5 a,. This change in n,, occurs because the surface
functions are delocalized at smaller values of p and are local-
ized at larger values of p which approach the asymptotic
limit. Also note that E,,, =2&,_ o, provides 4 figure con-
vergence for all the p values considered in Table 1. This
choice of E_,, was also found by Whitnell and Light** to

provide good convergence for the bound states of H;".

IV. RESULTS
A. Correlation diagram

The DVR surface function energies are plotted as a
function of p in Fig. 1. These curves are the effective poten-
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FIG. 1. Surface function eigenvalues &, (p) [adiabatic potential curves]
for 1>30vs p (in a,) for F + H, on the T5A PES. Notice that the scale for £
does not start at zero.

tials for the p motion. As p becomes large, these energies
correlate with the rovibronic states of H, and HF. To pro-
vide some orientation of the energy scale in Fig. 1 with re-
spect to the reaction dynamics, asymptotic correlation ener-
gies of some H, and HF states are listed in Table II. For the
initial state H, (v = 0, j = 0), the relative energy E,,, = E
— 1.6453 eV. In Fig. 1, a nest of curves is seen around 1.65
eV at large p. These correspond asymptotically to the HF
(v = 3,j = small) states and the H, (v =0, j = 0) state. If
this nest of curves is followed in towards p = 4-5 a,, other
states, which correlate asymptotically with HF
(v =2, j = large) states, cross through. At higher energies,
another nest of curves is seen around 2.10 eV at large p.

TABLE II. Asymptotic vibrational energies €(v, j = 0) for some H, and
HF fragment states. 7 is the APH quantum number for the correlation at

p=c.
Fragment v €(v,j) (eV) t
HF 0 0.2538 1
HF 1 0.7455 15
HF 2 1.2156 35
H, 0 1.6453 58
HF 3 1.6642 60
HF 4 2.0914 91
H, 1 2.1589 100
HF 5 2.4970 127
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These correspond  asymptotically to the HF
(v = 4,j = small) states. As these states are followed in
towards small p, many other states cross through the v =4
curves. This crossing of a multitude of curves complicates
the interpretation of the dynamics in terms of these adiabatic
potentials.

B. Reaction probabilities

Before presenting the scattering results some nomencla-
ture should be defined. Pf” s Jp) is the distinguishable
particle reaction probability from the initia] H, rovibrational
state (v,,j;) into borh HF arrangement channels of final
state (v, j,). The reaction probability into a v, vibrational
manifold summed over all open rotational states j, is

Py =3 Py (). (41)
Jr

The total reactivity, summed over all open vibrational chan-
nels vy, is

Pf;'j‘(total) =2Pl‘,‘;’j{(vf). (42)
l)/'

Quantities analagous to P} (Vs )s Pf (v;)and P§
(total) are defined for the nonreactive probabilities as P}
(05, Jr ), PY% (v ), and P)% (toral), respectively, where the
transition is into the final H, state (v, j, ).

ForJ =0, P} (v, j; ), where CH = R or NR, is calcu-
lated from the S-matrix element® as
2iS,(E)|* ifCH=R
IS, (E)|* if CH=NR.

Herei= (v,,j; ), f= (v, j; ), and the E dependence is ex-
plicitly specified.

In Fig. 2(a) the reaction probabilities P&, (v, ) are
shown as a function of total energy for F + H, on the T5A
PES for J = 0. A total of 95 values of E are presented where
the energy resolution is provided in Table III. These curves
show much structure. The P& (2) is far from smooth with
Jocal maxima near 1.66, 1.83,2.04,and 2.09¢V. P& (3) and
P& (total) exhibit both dips and peaks. Also note the ex-
tremely sharp threshold behavior of P} (4) near 2.10 eV.
PX (4) increases from zero to nearly 0.15 over an interval of
less than 0.01 eV. P (2) and P& (3) are replotted in Fig.
2(b) along with the results of Yu et al.’® calculated for
E =[1.671,1.797] eV using a variational method. The pres-
ent results agree quite well with those of Yu et al. This agree-
ment, coupled with the fact that two independent scattering
methods were used (our propagation vs their variational),
leads us to conclude that both calculations are converged
and accurate.

In Figs. 3(a) and 3(b) the state-to-state reaction proba-
bilities P& (vy, j ) forv, = 2 are shown as a function of total
energy and of final rotational state j,. Figure 3(b) is a con-
tinuation of Fig. 3(a) in E space. The distribution in Fig. 3 1s
fairly sharp in many regions of E and j. space. The most
probable j, value, max( j, ), for P§ (2, j; ) shifts as a func-
tion of energy. At 1.73 eV, max(j,)=6; at 1.86 eV,
max( j, ) = 11; and, at 2.04 eV, max( j, ) = 13. Also, more

PSH(E) ={ (43)

-
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FIG. 2. (a) F 4 H, reaction probabilities P § (v,) for J = O plotted vs total
energy. Legend: (lower solid line) v, = 2; (upper connected dots) v, = 3;
(lower connected dots) v, = 4; (upper solid line) total reactivity. The dots,
which are connected for clarity, are the actual calculations. The energy res-
olution is provided in Table III. Between 1.645 and 1.665 eV, PR (2)and
P& (totaly areidentical. E,, = E — 1.6453eV. (b) F + H, reaction proba-
bilities P, (2) and P&, (3) for J = O plotted vs total energy. The lower and
upper solid lines are the present results for v, = 2 and v, = 3, respectively.
The dots are the results of Yu et al. (Ref. 16). Note the change in scale of
both axes with respect to Fig. 2(a).

than one local maximum in P&, (2, Jr ) can be observed for
many fixed values of E. A second peak, with respect to the
max( j, ) peaks discussed above, occurs centered about 1.90
eV and j, = 3. At energies above 2.10 eV three and four
distinct peaks can be discerned. At the highest energy plot-

TABLE III. The resolution of the total scattering energies E on various
intervals for the calculations presented.

Resolution (eV) Interval(s) (eV)

0.001 [2.09,2.10]
0.0025 [1.65,1.68]
0.005 [1.75,1.831; {2.01,2.09]; [2.10,2.13]
0.01 [1.68,1.75]; [1.83,2.01]; [2.13,2.22]
0.02 [2.22,2.40)
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FIG. 3. (a) P§ (v, j,) for v, = 2 plotted vs total energy E along the x axis
and j, along the y axis. E runs from 1.65 ( = total reaction threshold) to2.01
eV in increments of 0.005 eV. (b) Same as (a), except that E runs from
2.015t02.375 V.

ted, 2.375 eV, four peaks are seen centered at j, = 3, 11, 16,
and 19.

Figures 4(a) and 4(b) are the same as Figs. 3, except
that v, = 3. Up to energies of 2.01 eV, the P& (3, ) consist
of a single peak in j, space for fixed values of E. Centered
about £ = 2.10and 2.18 eV, adecreasein P&, (3,j,=12)is
accompanied by a concurrent increase in P (3, j, = 6,7).
That is, the shoulders in P§, (3, j, ) at large j, line up with
the dips in P& (3,/,) at small j.. At the highest energy
plotted, 2.375 eV, the j, distribution is also bimodal with
peaks centered at j, = 1 and 6. The probabilities presented
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FIG. 4. (a) P& (v, j;) for v, = 3 plotted vs j, along the x axis and total
energy E (right to left) along the y axis. E runs from 1.65 (= total reaction
threshold) to 2.01 eV in increments of 0.005 eV. (b) Same as (a), except
that E runs from 2.015to 2.375 eV.

in Figs. 3 and 4 were generated for each value of j, by a linear
interpolation of the probabilities calculated at the E values
listed in Table III.

In Fig. 5 the nonreactive probabilities P (0, j, ) are
plotted for j, =0 (elastic) and j, =2, 4, and 6 inelastic.
These curves also show much structure. For example, it is
difficult to follow the curves around 2.00-2.10 eV as
PYR(0,0) and P51 (0,2) plunge to nearly zero while at the
same time P YX(0,4) achieves a local maximum.

The reaction probabilities out of excited initial states,
Poz(vf ), PR (v,), and PR o(v,), are shown in Figs. 6, 7,
and 8, respectively. At threshold near 2.10 eV, P& (4) and
PX (4) increase quite sharply as was the case for POO (4) in
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(solid line) j, = 4. Note the scale of the probability axis; PY*(0,0) > 0.5 for
E between threshold and 1.70 eV.

Fig.2(a). The P, in Fig. 6 are qualitatively similar in some
respects to those in Fig. 2(a); however, for £ = [1.70,2.00]
eV, the ratio of P, (2):P§, (3) is somewhat larger than the
ratio of P, (2):P§ (3). Also, near 1.83 eV the peak in
P& (2) is more pronounced than the peak in P& (2). For
the featurenear2.06 eV, P, (3) and P X, (total) look like the
P§ counterparts, while the peak in P& (2) is shifted to
higher energy with respect to the peak in PX (2).

In Fig. 7, the ratio of P§, (2):P & (3) is nearly 1:1 over
the range E = [1.80,1.90] eV. The feature near 2.06 eV ap-
pears different from that in Figs. 2 and 6. There is now a
significant dipin P §, (2) centered near 2.06 €V, and the peak
in P§, (3) is barely discernible above the monotonically in-
creasing portion of the curve before it.

The probabilities plotted in Fig. 8 are not as well con-
verged with respect to the number of adiabatic surface func-

1-0IIII

IIII‘IIIIIIIII|IIII|IIIIIIIIIII

0.8 total

llllllllllllllllllll

[=}
»
| DAL DL S AL AL AL B

0.0

lIIIIIIIIlIl]llllllillllllllllllllllll

1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40
Energy (eV)

o
oF

FIG. 6. F + H, reaction probabilities P&, (v,) for J = O plotted vs total en-
ergy E. Legend: (lower solid line) v, = 2; (upper connected dots) vy =3
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2

tions as in Figs. 2, 6, and 7. Still, these preliminary results
show that HF v, = 4 is by far the predominant final channel
for J = O scattering out of H, (v; = 1, j, = 0). This propen-
sity for v, = 4 is in direct contrast with the other probabili-
ties examined thus far for scattering out of H, (v, =0, ;)
states.

C. Convergence studies

In our earlier paper,'” a convergence study for P&, (v,)
was presented as a function of the number of adiabatic sur-
face functions N. For N = 150, P, (total), P& (4), P& (3),
and P§ (2) appear to be converged to within 2% for
E =[1.70,2.40] eV except near E = 2.10 eV where the con-
vergence is not quite as good. This sensitivity near E = 2.10
eV is due to a closed-channel resonance which will be exam-
ined later. Also, for N = 150, the S matrices are unitary to a
part per thousand or better even at E =2.40 eV. N = 150
was used for all the calculations reported in this work.
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FIG. 8. Same as Fig. 6, except that P {{, (v;) is plotted. Legend: (lower solid
line) v, =2; (lower connected dots) v, =3; (upper connected dots)

v, = 4; (upper solid line) total reactivity. Note the scale of the energy axis.
E., =E-21589¢eV.
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The spacing between successive p ¢ values was governed
by A, where

Pes1 = (1+A.)p,. (44)
A, = 0.01 was used here. If A, is too large, the expansion of
the surface functions at the outer boundary of the £ th sector
in terms of the surface functions calculated in the (& + 1)th
sector becomes incomplete. This in turn degrades the propa-
gated solution to the CC equations. Although convergence
with respect to A, was not investigated for F 4- H,, A £
= 0.01 did provide accurate reaction probabilities for J = 0
calculations®® on H + H,.

The number of log-derivative steps taken within a given
Sector, Ay, (), is based upon the de Broglie wavelength

1= 2 ,
[2 m E ] 1/2
where E is the largest scattering (total) energy (in atomic
units) for a given scattering production run. For each sector
oflength 8p, =p, .1 —p; = A.p,, Ryeps (§) 18 given as

¥
nsteps(é‘) =INT[72,1 X(—gﬁ)+09 ] .

(45)

(46)

where INT denotes integer truncation of the argument and
n, ~number of steps per A. In order to verify convergence
with respect to n, , reaction probabilities at 2.10 and 2.40 eV
were calculated using the appropriate value of A for2.40eV,
A =0.359 a,. For n; =20 vs 30, reaction probabilities at
2.10 and 2.40 eV were calculated, and the values of PYR (v)
forv =0and 1and P& (v) forv = 04 were compared. Both
the 2.10 and 2.40 eV results were identical to three figures.
Hence, the apparently converged value of r; = 20 was used
in the rest of our calculations.

The asymptotic correlation of the basis is as follows. For
transitions out of H, initial states with even j only surface
functions which correlate with even j are needed in the H,
arrangement channel whereas correlation with alljis needed
in the HF arrangements. The notation (jy, jis..., j, ) denotes
the highest j state included within the v vibrational manifold.
For N = 150, the correlations are H, channel = (12,8,2)
and HF channels (31,28,24,21,16,10). We also note that our
adiabatically determined basis is better than a strictly
asymptotic basis containing the same number of functions.

D. The S matrix and related quantities
An § matrix element can be expressed as
Sr(E) =r (E)exp[id,(E)], 47)

where 7 is the magnitude and ¢, is the phase. The phase
obtained by decomposing a calculated S, ( E) using Eq. (47)
can only be determined to modulo 2. In order to obtain a
single-valued function of E for ¢, (E) from the calculated
S (E) values, a program was implemented®’ which deter-
mines ¢, in a relative sense by adding or subtracting multi-
ples of 277 to the calculated ¢+ (£). After the relative phase is
assigned, a cubic spline fit to both In[7,(£) ] and ¢, (E) is
performed for each specified transition pair if. The results of
this procedure for the transitions i = H, (v; = 0,j, = 0) and
S=HF (v,=3,j, =0-3) arc presented in Fig. 9. Each
curve is shifted downwards by 47 radian for each subsequent
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FIG. 9. The phase ¢,,(E), for transitions { = H, (v; =0,j, = 0) to f= HF
(v, =3, j,) for j, = 0-3, plotted as a function of energy. For clarity in pre-
sentation, each successive curve is offset by 47 radians.

ifvalue for clarity in presentation. The behavior of these four
curves is qualitatively similar: ¢,.(E) is a monotonically de-
creasing function of E. Thus, d¢/dFE is negative for all values
of E. In fact, this qualitative behavior is true for af/ of the
¢,(E) we have examined where i = H, (v, =0, j, =0).
The steepness of the phase, especially at the lower energies,
reflects the repulsive nature of the interaction potential for
F + H,. There are a couple of inflection points in the curves
in Fig. 9 which are suggestive of some interesting properties
which we will discuss later in a different context.

In Fig. 10 Argand diagrams are presented for the S ma-
trix elements i=H,(, =0,j, =0) and f

= HF (v, = 2, j, = 4-7). An Argand diagram is a polar plot
of S;r(E) along the trajectory in E space, where r,.(E) is the
radial coordinate and ¢, (E) is the polar angle. The dia-
grams in Fig. 10 are plotted along the energy trajectory
E =[1.65,1.70] eV. Each point represents a calculated val-
ue and the continuous line connecting the points is obtained
from the cubic spline fit to Eq. (47). Figure 11 is the same as
Fig. 10, except that f= HF (v, = 2, j, = 9-12) and the tra-
jectoryis E = [1.83,2.115] eV. Figure 12 is the same as Fig.
10, except that f = HF (v, = 2, j, = 0-3) and the trajectory
is E=[1091],2.115] eV.

In Fig. 13 Argand diagrams are shown for two nonreac-
tive transitions where i=H,(v;, =0, j, =0) and
S=H,(v, =0, j, = 0); elastic, and f= H, (v, =0, j;, = 2);
inelastic. The trajectory is £ = [1.95, 2.13] eV. The energy
resolution of the points in Figs. 10-13 is summarized in Ta-
ble I1I.

We next consider two quantities introduced by Smith*®
for analyzing long-lived states and resonances: the state-to-
state time delay and the collision lifetime matrix. Both are
constructed from the $ matrix and its energy derivative. The
state-to-state time delay is
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FIG. 10. Argand diagrams for the reactive transitions i = H, (v, =0, j, =0) to f= HF (v, = 2, j,) along the trajectory £ = [1.65, 1.70] eV. Each dot
represents a calculated value, where the energy resolution is provided in Table IIT augmented by 4 more calculations at 1.661, 1.662, 1.663, and 1.664¢eV. (a)

Jr=8.(0)j,=5.(c)j,=6.(d)j, =T

dS,(E)

At = Realy — i#[ S, (E _1(————-)].
Ly ea[ ]S, (E)] JE

A physical interpretation of At is the time for observ-
ing a wave packet which has transversed the interaction po-
tential relative to the time of observing the same wave packet
which has transversed a zero potential.

The collision lifetime matrix is

Q= iﬁs(ﬁy .

dE
Upon diagonalization of Q, the eigenvalues (eigenlife-
times = 7) and eigenvectors contain information about re-
sonances. In particular, a positive value of 7 implies a long-
lived state and the eigenvector for 7 yields the asymptotic
states which are participating in the resonance.* At is

(48)

(49)

much easier to construct than Q for a given £, since for Az,
only a single element of S, (E) and its derivative is needed,
whereas for Q the whole S matrix and its derivative is need-
ed. This difference has some bearing on the accuracy of Az,
vs Q since d S/dE is obtained by differentiating the cubic
spline fit to Eq. (47). d S/dE will only be as accurate as the
fit. For a single transition it is easy to monitor the quality of
the fit. But to construct, for example, a 100X 100 Q matrix
we need (100X 101)/2 elements of dS/dE (Q is Hermi-
tian.) It is then assumed that all =10 000 cubic spline fits
are accurate for all transitions 7 to /. One way around this
problem is to compute d S/dE directly during the propaga-
tion of the scattering wave function. This would eliminate
the uncertainty in d S/dE due to the fitting procedure. Re-
search along this line has been demonstrated by Hayes and
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FIG. 11. Same as Fig. 10, except the trajectory E = [1.83,2.115] eV. The energy resolution is provided by Table IIT (unaugmented). (a) j, = 9. (b) j, = 10.

(©)jy=11(d) j, = 12.

Walker,* and we hope to implement their approach in the
future.

In Fig. 14(a) state-to-state time delays At are present-
ed for the transitions from /i=H,(v;, =0, j;, =0) to
f=HF(v;=3,]j,) for j, = 0-3. Time delays for the same
transitions were presented by Yu er al.'® over the range
E=1[1.676, 1.827] eV which agree quite well with the
curves in Fig. 14(a). Figure 14(b) is the same as Fig. 14(a)
except that f= HF (v, = 2, j;) for j, = 13, 12, 11, and 10.
Figure 15 is the same as Figure 14(a), except that
i=H,(v; =0,j; =0) tof=HF (v, =2, j,) forj, = 6-9.

Eigenlifetimes of the Q matrix are presented in Tables
IV, V, and VI. In Table IV, the eigenlifetime is listed whose
eigenvector is predominantly a nearly equal mixture of HF
states (v = 2, /) forj = 2-9 in the range £ = [1.655, 1.665]
eV. In Table V, the eigenlifetime is listed whose eigenvector

is predominantly a nearly equal mixture of H, states (v
=0, j) forj=0, 2, and 4 and of HF states (v = 3, j) for
j=1,2,and 3 in the range £ = [2.03, 2.065] eV. Finally, in
Table VI, the eigenlifetime is given whose eigenvector is pre-
dominantly a nearly equal mixture of H, states (v = 0, j) for
j=0,2 and 4 and of HF states (v = 3, j) for j = 1-6 in the
range E = [2.093, 2.098] eV.

V. DISCUSSION

A. Reaction probabilities, Argand diagrams, time
delays, and collision lifetimes

To provide some continuity in presentation, this section
will be arranged by discussing the results, presented in the
last section, in order of total energy starting from the reac-
tion threshold of 1.6453 eV.
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FIG. 12. Same as Fig. 10, except v, = 3 and the trajectory £ = [1.91, 2.115] eV. The energy resolution is provided by Table I1I (unaugmented). (a) j, = 0.

(b)jr=1. (¢) j;=2. (d) j, =3.

1. 1.645-1.67 eV

A bit past the reaction threshold a small peak is ob-
served in P§, (2) at 1.6625 eV in Fig. 2(a). This small peak
in the probability is due to a closed channel resonance as the
HF (v = 3) states do not begin to open until 1.6642 eV. The
distribution of final rotational states within this peak is illus-
trated in the plot of P&, (2, j,) in Fig. 3(a), where at 1.6625
¢V a sharp feature in energy space is seen with a most prob-
able j, value, max(j,), equal to 6. This resonance is also
evident in the time delays presented in Fig. 15. Contrast the
curves in Fig. 15 with those in Fig. 14(a) in the threshold
energy region 1.65to 1.75 eV. The curves in Fig. 14(a) in the
threshold region are typical for nonresonant transitions we
have examined: the time delay is monotonically increasing
from an initially very negative value. The curves in Fig. 15 in
the threshold region appear to have a sharp spike centered

about 1.6625 eV superimposed onto a nonresonant mono-
tonically increasing background. This spike is a signature
that these transitions, /= H, (v; =0, j, =0) to f= HF
(v, =2, j, = 2-9), are participating in the resonance.

This resonance in the threshold region also appears in
the Argand diagrams shown in Fig. 10. The typical energy
trajectory for an S-matrix element of a nonresonant back-
ground is that of a smoothly swirling path rotating in a
clockwise direction (d¢/dE is negative). As a trajectory is
followed in Fig. 10, it begins to swirl smoothly until it en-
counters a kink at 1.6625 eV. After this kink, the trajectory
then begins to swirl smoothly again. This kink results from
d¢/dE becoming less negative at 1.6625 eV. Although d¢/
dE is not positive in an absolute sense, it is more positive with
respect to the “background” d¢/dE. For an isolated single
channel resonance ¢ increases by 27 as it passes through the
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FIG. 13. Argand diagrams for the nonreactive transitions /i=H,
(v, =0,j, =0) tof= H, (v, =0, j,) along the trajectory E = {1.95,2.13]
eV. Each dot represents a calcualted value, where the energy resolution is
provided in Table II1. (a) j, = 0, elastic. (b) j, = 2, inelastic.

resonance; d@¢/dE is positive. Therefore, the kink in the Ar-
gand diagram indicates that these transitions are participat-
ing in a multichannel resonance as each d¢/dE becomes
much less negative at 1.6625 eV.

The final piece of information about the resonance at
threshold comes from the analysis of the eigenlifetimes of the
collision lifetime matrix in Table IV. These data indicate the
existence of a resonance near 1.66 eV with a lifetime 7=230
femtoseconds (fs) which involves the HF states (v =2,
Jj = 2-9). The accuracy of the lifetime estimate is probably
good to + 10% due to the uncertainty in the numerical fit-
ting procedure, discussed earlier, used to determine d S/dE.

2. 1.67-1.90 eV

The next energy region of interest is between 1.67 and
1.90 eV. In Fig. 2(a), P&, (3) peaks near 1.73 eV, dips near
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FIG. 14. (a) Time delays for the reactive transitions i = H, (v; = 0, j, = 0)
tof= HF (v, = 3, j;) for j, = 0-3. For clarity in presentation, each succes-
sive curve is offset by — 50 fs. (b) Same as (a), except v, = 2 and j, = 13,
12, 11, and 10, and each successive curve is offset by — 60 fs.
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TABLE IV. The eigenvalue (eigenlifetime) 7 in femtoseconds (fs) of the
collision lifetime matrix whose eigenvector is predominantly a nearly equal
mixture of HF states (v =2, j) for j=2-9.

E (eV)
1.655 1.6575 1.66 1.6625 1.665
7 (fs) 80 160 230 220 97

1.80 eV and peaks again at 1.86 eV. Meanwhile, P (2)
shows a broad local maximum around 1.72 eV, a broad dip
about 1.77 eV and a definite peak at 1.83 eV. This behavior
suggests that the HF v = 2 and 3 states are participating in
some sort of broad resonance and/or quantum effect. Per-
haps the most dramatic feature in the analysis of the reaction
probabilities over this energy range is the shift of the most
probable j, value, max(j;), in Figs. 3(a) and 3(b) for
P& (2,],) as afunction of energy. This shift in max (j;) with
respect to energy suggests a highly quantized rotational mo-
tion for this system. Other evidence for a broad resonance in
this energy region is apparent in the time delays plotted in
Figs. 14(a), 14(b), and 15. In Fig. 14(a), there is a subtle
inflection point in the curves about 1.81 eV. In Fig. 14(b),
the curves quit increasing monotonically at about 1.81-1.82
eV and exhibit a slight hint of a broad maximum before con-
tinuing at a plateau value on up to 1.90 eV. The curves in Fig.
15 also show an inflection point around 1.80 eV.

A very interesting phenomenon is observed in the plot of
PXX(0, j,) in Fig. 5. The inelastic transition P 5 (0,2) peaks
quite strongly centered at about 1.76 eV. It seems that the
transfer of reaction flux from HF (v = 3) states [see Fig.
2(a)] back into the H, (v =0, j = 2) state is very efficient
over the energies of 1.70 to 1.83 eV. Also, after the elastic
transition P3X(0,0) falls to nearly zero at 1.74 €V, it then
shows a small peak centered at about 1.79 eV. Thus, the H,
(v = 0, j = 0) state is also involved in this process to a lesser
extent. Notice also that the H, (v = 0,7 = 4) threshold is at
1.791 eV. The opening of this channel may also play a role in
causing some of the features seen in P§ (2) in Fig. 2(a).

In summary, the quantum effect/broad resonance that
causes the dip in the reaction probability near 1.80 eV is
probably due to a nonreactive resonance involving the H,
(v =0, j = 2) state, and the decrease in reactivity is simply
due to conservation of flux. This conclusion is further ampli-
fied in later discussions of the 1D and reduced 3D results.

3. 1.90-2.00 eV

Between 1.90 and 2.00 eV nothing significant occurs in
terms of the features observed in Fig. 2(a). P&, (¢otal) and

TABLE V. The eigenvalue (eigenlifetime) 7 in femtoseconds (fs) of the
collision lifetime matrix whose eigenvector is predominantly a nearly equal
mixture of H, states (v = 2, j) forj = 0,2, and 4, and of HF states (v = 3, j)
forj= 1,2, and 3.

E (eV)
203 2035 204 2045 205 2055 206 2065

7 (fs) 4 18 28 36 35 22 18 2

TABLE VI. The eigenvalue (eigenlifetime) 7 in femtoseconds (fs) of the
collision lifetime matrix whose eigenvector is predominantly a nearly equal
mixture of H, states (v = 2, j) forj = 0,2, and 4, and of HF states (v = 3, j)
for j = 1-6. HF (v =4, j = 0) is in the mixture at 2.096, 2.097, and 2.098
eV. HF (v=4,j=1) is in the mixture at 2.099 eV.

E (eV)

2.093 2.094 2095 209 2097 2098 2.099

7 (fs) 10 27 63 74 128 53 — 561

P& (3) are monotonically decreasing and P& (2) is mono-
tonically increasing as function of energy.

4. 2.00-2.09 eV

The next energy region of interest which shows much
structure in Figs. 2 and 5 is that between 2.00and 2.09eV. In
Fig. 2, P& (total) and P& (3) peak at about 2.06 eV, and
PZ (2) peaks a bit earlier at about 2.04 eV.

Argand diagrams plotted in this energy range are pre-
sented in Figs. 11, 12, and 13. In Fig. 11, for transitions into
HF (v, =2, j, = 9-12), all four diagrams are qualitatively
similar. The energy trajectories start at 1.83 eV and swirl
smoothly until reaching about 2.03 eV. The trajectories then
head nearly straight towards the origin (or parallel to this
path) which gives each diagram a ‘““lobe-like’” shape. These
lobes are indicative of these transitions participating weakly
with a broad resonance. We also note that the Argand dia-
grams for HF (v, = 2, j, = 8, 13-15) look qualitatively sim-
ilar on this energy range.

In Fig. 12, the diagrams for the transitions into HF
(v =3, j, = 0-3) are also all qualitatively similar. Each
diagram possesses a lobe around 2.03 eV, although these
lobes are not as prominent as those in the HF (v, = 2) tran-
sitions in Fig. 11. Also shown are Argand diagrams for two
nonreactive transitions in Fig. 13, These each exhijbit a lobe
around 2.03 eV which is somewhat similar to that observed
in Fig. 11. The behavior of the diagrams in Figs. 11, 12, and
13 suggest that all of these transitions are participating in a
broad resonance.

A more compelling piece of evidence for the existence of
aresonance on this energy range is the behavior exhibited by
the time delays in Figs. 14(a) and 14(b). In Fig. 14(a), the
curves plotted for the transitions into HF (v, = 3) states
show a first derivative-like behavior centered about 2.04 V.
That is, the time delay dips before 2.04 eV and then mono-
tonically and steeply increases through about 2.04 eV and
then reaches a maximum after 2.04 eV. The time delays in
Fig. 14(b) for the transitions into HF v, = 2 states also ex-
hibit this derivative behavior centered at about 2.05-2.06 V.
Another curious feature is that the curves in Fig. 14(b) peak
then dip in the derivative region in contrast to the dip then
peak in Fig. 14(a). An attempt has been made to place a
physical interpretation of this derivative behavior to possibly
extract an estimate of a lifetime from these curves. We have
come to the conclusion that the position in energy at which a
resonance occurs can be obtained from the behavior of the
time delay (oscillation or deviation with respect to the back-
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ground) but an absolute value of the lifetime can not be
extracted. A similar conclusion can be formed based on the
work of Hipes and Kuppermann*! for resonances in the
H + H, system.

To actually obtain an estimate of the lifetime, the eigen-
lifetimes of the collision lifetime matrix in this energy region
were examined. The data in Table V indicate the existence of
a resonance near 2.045 eV with a lifetime of ~ 35 fs which
involves states which correlate with H, (v =0,j=0,2 and
4) and HF (v = 3,j = 1,2, and 3) states. Again, the absolute
accuracy of such a short lifetime we estimate to be + 10%
due to the numerical fit of the d S/dE matrix.

As apparent in Fig. 5, the H, states (v =0, =0, 2 and
4) are also involved in this resonance. PYX(0,0) and
P§R(0,2) plunge to nearly zero at about 2.055 eV whereas
PR(0,4) is sharply peaked at about 2.04 eV.

In summary, the broad resonance at about 2.06 eV is
due to an efficient coupling between the product HF v = 2
and 3 states with the reactant H, (v = 0) states. A possible
physical mechanism for this coupling is discussed later in
conjunction with the reduced dimensionality results.

5.2.09-2.10eV

The sharp dip in P&, (fotal) and P& (3) and the sharp
peakin P§ (2), all at about 2.095 eV in Fig. 2(a) are all due
to a closed channel resonance as HF (v = 4, j = 0) opens at
2.0914 eV. [Note how steeply P& (4) increases from the
threshold at 2.0914 ¢V in Fig. 2(a) }.

This resonance shows up quite succinctly in the Argand
diagrams plotted in Fig. 11. After the energy trajectory tra-
vels through the origin near 2.05 eV it attempts to swirt
smoothly again when it suddenly makes a tight loop at about
2.095 eV. (There are ten calculated points between 2.09 and
2.10 eV). The loops circulate in a counterclockwise direc-
tion; i.e., d¢/dE is positive for each of these transitions. A
loop in the Argand diagram at about 2.095 eV is also ob-
served for the tramsitions f= HF (v=2, j=8-14), al-
though these are not presented. The implication of these
loops indicates that all of these final states are participating
quite strongly with this closed channel resonance.

The resonance does not appear as dramatically in the
Argand diagrams for transitions to the HF (v,=3,j;

= 0-3) states as shown in Fig. 12. In all four of these transi-
tions, the resonance is indicated by a depression (concave
outward) at around 2.095 eV on an energy trajectory which
is otherwise “normal” (concave inward towards the origin ).
Yet, the path which is concave outward suggests that the
trajectory on this portion is a circle centered at a point other
than the origin. The circulation of an Argand diagram about
a point other than the origin signifies the existence of a reso-
nance.

The Argand diagrams of the nonreactive transitions
into H, (v, =0, j, = 0 and 2) in Fig. 13 exhibit a cusp at
about 2.095 eV. This cusp indicates that d¢/dE for these
transitions is behaving in a resonant fashion.

This resonance can also be seen in the time delays pre-
sented in Figs. 14(a) and 14(b). In Fig. 14(a), the HF
v, = 3 transitions show a sharp dip centered at about 2.095

2358

eV, whereas in Fig. 14(b), the HF v, = 2 transitions show a
sharp peak centered at about 2.095 eV. Again the absolute
value of these peaks or dips are not significant with respect to
providing an absolute estimate of a lifetime. These curves do
indicate that these HF states are participating in this reso-
nance at an energy of about 2.095 eV.

The eigenlifetimes of the collision lifetime matrix were
examined for this energy range. At 2.092 and 2.093 eV, ei-
genlifetimes of 134 and 80 fs, respectively, were obtained
whose eigenvectors were mixtures of HF (v, j = 0) states in
the ratio (v = 4:3:2) of 350:25:1 and 33:30:1, respectively.
At a slightly higher energy, the data in Table VI indicate a
resonance of lifetime ~ 128 fs which correlates with the HF
(v=4, j=0) state, HF (v=3) states and H, (v=0)
states. Curiously, the eigenvalue of this particular mixture of
states becomes extremely negative ( — 561 fs) at 2.099 eV.
Having seen this type of behavior at other energies, we be-
lieve possibly that the lifetime is extremely negative due to a
threshold, such as that for HF (v =4, j = 1) at 2.096 eV.
However, this apparent “instability” in the lifetimes may be
correlated with the accuracy of the numerical S matrix de-
rivatives. Again, a direct calcualtion® of these derivatives
could clarify this situation.

The nonreactive probabilities presented in Fig. 5 also
indicate that the H, (v = 0) states are participating in the
resonance as P o (v, = 0, j) forj = 0, 2, 4, and 6 all exhibita
sharp peak in the energy region around 2.095 eV.

6.2.10-2.25eV

In Fig. 2(a), we tentatively attribute the broad dip in

& (total), P& (3), and P& (4) centered at about 2.16 eV

to a threshold resonance due to the opening of the H, (v =1,

j=0) state at 2.1589 eV. Argand diagrams for some transi-

tions that have been plotted in this energy region (which are
not shown) exhibit behavior indicative of a resonance.

B. Eigenphase sums

We also looked at the eigenphase sum at various total
energies. The set of eigenphases {5, (E)} are defined* by
the unitary transformation U which diagonalizes S(E)

U'S(E)U = exp[2id(E)], (50)

where 8(E) is the vector with components {8, (E)}. The
maximum value of g is dictated by the number of open chan-
nels in S(E) at the energy E. The eigenphase sum is then
constructed as

A(E) = 6,(E). (51)

q

For multichannel processes (inelastic electron—atom and
electron—molecule scattering) it has been observed empiri-
cally*? that A(E) increases by 7 as E passes through a reso-
nance, although this has not been proven rigorously. It is
well known that the phase shift for an isolated single channel
resonance increases by 7 as E passes through a resonance.

To obtain an estimate of how quickly A(E) varies as a
function E, S(E) was calculated at 0.0001 eV intervals start-
ing at 1.89 eV. This energy was chosen in a region where we
believe no resonances are occurring as we wanted an esti-
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TABLE VILI. Eigenphase sums A(E). Order of S(E) matrix = 153.

E (eV) A(E) (radian) dAd(EE) (radian/eV)
1.8900 3.31328
7142
1.8901 2.599 11
7148
1.8902 1.884 35
7147
1.8903 1.169 64
7147
1.8904 0.454 98

mate of only the smoothly varying background contribution
toA(E).InTable VII A(E) and dA(E)/dE are presented as
a function of E. dA(E)/dE was determined by a two-point
finite difference. Using the average of dA (E)}/dE from Table
VII, an estimate can be made of how much A (£) changes for
a given energy increment. If AE = 0.01 eV, which is typical
[see Table III], then the change in A(E) is

M AFE ~23m radian. (52)
dE

To find a possible resonance near this energy with this ap-
proach, a shift in A (E) by 7 would have to be detected with-
in a background A (E) which changes by 237 over an inter-
val of just 0.01 eV! This detection is probably not possible.

C. Comparison with reduced dimensionality resuits

In Figs. 16(a) and 16(b) reaction probabilities for the
F + H, reaction on the T5A PES are presented which were
calculated*’ with a collinear (1D) and the BCRLM (ap-
proximate 3D, reduced 3D) approach, respectively. The ac-
curate 3D results in Fig. 2(a) share many similar features
with those given in Figs. 16(a) and 16(b). The HF vy =2
resonance near the total reaction threshold appears both in
the 1D and BCRLM calculations. This resonance in 1D,
which occurs at 1.663 55 eV, is very narrow (of width
~1x107% eV). Both the 1D and BCRLM results show a
resonance at 1.99 and 2.055 eV, respectively, which is likely
caused by the same mechanism which yielded the resonance
in full 3D near 2.06 eV in Fig. 2(a). The difference between
the location of this resonance in 1D, reduced 3D, and full 3D
is probably due to the manner in which the zero point energy
for the bending motion of the three atom system is included.
In 1D, the bending motion in neglected; in reduced 3D, the
bending is included approximately; and in full 3D, the bend-
ing is treated exactly. Furthermore, the appearance of this
resonance in reduced dimensions suggests that it may be ex-
plained using a periodic orbit** argument. That is, in terms
of semiclassical dynamics, a trajectory may become snarled
and trapped on the effective PES for a given value of total
angular momentum due to the existence of vibrationally
adiabatic barriers.

All three types of calculations share similar features
near the occurence of the HF v, = 4 threshold. This thresh-
old is barely discernible in 1D near 2.09 €V in Fig. 16(a) and
shows distinctly in the BCRLM calculations in Fig. 16(b) at
about 2.105 eV. Alsoin the BCRLM calculations, the vr=3
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FIG. 16. (a) Collinear (1D) F + H, reaction probabilities P, _o(v) plot-

ted vs total energy. Legend: (dots) v, = 2; (solid line) v, = 3; (dashed line)
v, = 4. (b) BCRLM F + H, reaction probabilities P, _,(v,) plotted vs to-

tal energy for zero (L = 0) angular momentum. Same Legend as (a).

reaction probability shows a slight depression at 2.10 eV,
whereas in full 3D P§ (3) in Fig. 2(a) shows a sharp dip
near the v, = 4 threshold.

The largest contrast between the resultsin Fig. 2(a) and
those in Figs. 16(a) and 16(b) is the behavior of the v =3
reaction probability over the range 1.68-1.95 eV. Both the
1D and BCRLM probabilities rise quickly, achieve a maxi-
mum, and then smoothly decrease to zero. The 3D vy =3
probability looks like the 1D and BCRLM counterparts ex-
cept that some probability has been removed or scooped out
centered at about 1.80 eV. Most of this removed reaction
probability appears in the reactant channel as an enhance-
ment of the inelastic probability to form H, (v =0, j = 2).
(See Fig. 5.) The absence of this feature in 1D and in the
BCRLM calculations and the strong involvement of the H,
(v=0, j = 2) state in the 3D calculations suggest that the
flow of flux into the inelastic channel is due to a coupling of
rotational diatomic fragment states, a coupling which is
omitted in the 1D and BCRLM approaches. Also, the open-
ing of the H, (v =0, j = 4) state at 1.791 eV may also be
playing a crucial role in the dynamics.
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VI. CONCLUSIONS

We presented accurate 3D, full CC, J = 0 calculations
for the F 4 H, reaction using the realistic TSA PES. The
adiabatic surface function basis was generated using the
DVR method. We outlined the DVR method, derived the
necessary matrix elements and demonstrated the conver-
gence of the surface functions. From the analysis of the reac-
tion probabilities, both into final v, and final v, j, states, we
correlated much of the observed structure with plausible ex-
planations concerning dynamical resonances. To aid in the
evaluation of the resonance and quantum structure, we also
analyzed the phases of the .S matrices, Argand diagrams,
time delays and eigenlifetimes of the collision lifetime ma-
trix. From this analysis we were able to identify the follow-
ing: (1) a closed channel [HF (v = 3) ] resonance at 1.6625
eV; (2) a quantum feature around 1.80 eV which involves
the v = 2 and 3 states of HF and the v = 0, j = 2 state of Hy;
(3) a strong broad resonance at 2.06 eV which involves
v = 2 and 3 states of HF and v = O states of H,; (4) a narrow
closed channel [HF (v = 4)] resonance at 2.095 eV which
involves the HF v = 2, 3 and 4 channels as well as the v =0
channels of H,; and (5) a possible resonance at 2.16 ¢V due
to the opening of the H, v = 1 channel. Although we have
provided an extensive analysis of the J = 0 results, future
work is necessary to generate J 50 information to construct
DCSs and compare directly with experiment. It will be inter-
esting to see how the resonance features evolve as J is in-
creased to nonzero values.
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