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Periodic distributed approximating functions (PDAFs) are proposed and used to obtain a coordi-
nate representation for the Adiabatically Adjusting Principal Axis Hyperphysical (APH) coordinates
kinetic energy operator. The approach is tested and accurate results for adiabatic surface functions
of reaction F+H2 → HF+H are calculated and compared to those of some existing methods.

1 Introduction

In hyperspheical coordinate formulations of reactive scattering, the total wave function is expanded
in Wigner rotaion functions of three Euler angles describing the spatial orientation of the plane
formed by the three particles and basis functions of two internal hyperspherical angles, and then
the dependece of the hyperradius, ρ , is determined by propagating the set of coupled channel(CC)
differential equations from small ρ, where the solutions must be regular, to large ρ where they can be
projected onto the arrangement channels to determine the scattering matrix. In the methods using
those hyperspherical coordinates which treat all of the particles symmetrically[1, 2, 3, 4, 5, 6, 7, 8],
one obtains �surface functions,� the basis functions of the two hyperangles which cover the surface
of the internal coordinate sphere or �hypershphere,� by solving a two dimensional (2D) Schrödinger
equation. This equation, which is discussed in more detail later in this paper, depends parametrically
on ρ and must be solved at many values of ρ. In adddition, a large number of these surface functions
must be obtained at each ρ, so that it is important to have an efficient method for Þnding them.
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The Þrst accurate 3D reactive scattering calculations using hyperspherical coordinates used Þnite
element methods (FEMs)[3, 4, 5, 9, 8, 10, 11] to solve the surface function equation. Although these
FEMs give fairly accurate results, they work inefficient and are not robust. Another typical method
in calculations on several reactions is the discrete variable representation (DVR)[5, 6, 14, 15, 16].
DVR is most efficient at small ρ where the surface functions are delocalized, however at large ρ,
where the surface function are highly localized, the DVR points still cover the whole space, thus
it becomes much less efficient. In a few cases the DVR is even more expensive than the FEM
because of the need for many grid points in a small, localized region. Other methods such as the
Þnite basis representation (FBR)[1, 2, 7] of Launay and LeDourneuf, and the method of Wolniewicz
and Hinze[29] are also efficient only at large ρ. Analytic basis method (ABM) uses primitive basis
functions centered in the arrangement channels, it gives very compact representation and thus very
efficient at large ρ, but it is inefficient and tends to diverge at small ρ.

In this paper, we will present a Peridoical Distributed Approximating Function (PDAF) method,
which work very efficiently at both small ρ and large ρ. The PDAF method is similar to the
method of Iyengar and Parker�s method[12], but in their method, they solve the 3D wavefunctions by
diagonilzing a large real non-symmetric matrices, which is practical only for identical-atom system.
Our new method solves only the surface functions, and we transform the Hamiltonian matrix into real
symmetric matrices. Similarly but in a simpler way, we make the Hamitonian symmetry-adaptive,
thus increses the efficiency of the computation. We employ the Distributed Approximating Function
(DAF) concept, but we do not use any existed DAF formula, on the other hand, we proposed the
PDAF directly, which turns out to be more accurate and efficient. The sequential diagonalization-
truncation technique[13] is employed to project the large-size Hamiltonian matrix into a smaller
matrix using a projection matrix which is obtained by solving an one-dimensional eigensystem, thus
signiÞcantly reduce the memory requirement and the computation time.

This paper is organized as follows. In Sec. 2 we introduce the PDAFs and derive their formulae.
In Sec. 3 the ro-vibrational triatomic Hamiltonian in the APH coordinates system is presented and
the symmetrization and reductions of the Hamiltonian are illustrated. The PDAF approach is then
tested in Sec. 4 . The surface functions of FH2 scattering are computed, and the eigen-energies and
the matrix elements are calculated and compared to those of the existed methods( FEM, ABM and
DVR ) in Sec. 5 . Sec. 6 makes a conclusion of this paper.

2 Periodic Distributed Approximating Function (PDAF)

From the deÞnition of the Dirac Delta function we know thatsec:PDAF

f(x) =

Z ∞

−∞
δ(x− x0)f(x0)dx0 (1)

for any continuous function f(x).
Now we condsider periodic functions, fp(x), with period 2π. The present method can be trivally

extended to periodic functions with an arbitrary period. With this assumption the equations are
slightly simpler and easier to interpret. Expressing the integration range as an inÞnite sum of
segments of length 2π we can write

fp(x) =

∞X
m=−∞

Z 2π

0

δ(x− x0 − 2mπ)fp(x0 + 2mπ)dx0. (2)

Interchanging the integral and sum then using the periodicity of fp(x), we have

fp(x) =

Z 2π

0

∞X
m=−∞

δ(x− x0 − 2mπ)fp(x0)dx0 (3)

or

fp(x) =

Z 2π

0

δp(x− x0)fp(x0)dx0 (4) eq:PDAFint0
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where

δp(x− x0) =
∞X

m=−∞
δ(x− x0 − 2mπ) (5)

is the periodic delta function. Since δ(x) is an even function, it�s easy to see that δp(x) is even and
is also periodic with a period of 2π. Taking the kth derivative of fp(x), we have,

f (k)p (x) =

Z 2π

0

δ(k)p (x− x0)fp(x0)dx0. (6) eq:PDAFint

Now expand both fp(x) and δp(x− x0) in a fourier series

δp(x− x0) = a0
2
+

∞X
n=1

an cosn(x− x0) (7)

fp(x) =
b0
2
+

∞X
n=1

bn cosnx+ cn sinnx. (8)

Substituting fp(x) and δp(x− x0) into (4) and using the following identitiesZ 2π

0

cos[m(x− x0)] cos(nx0)dx0 =

½
δmnπ cosnx n 6= 0
δmn2π n = 0

(9)Z 2π

0

cos[m(x− x0)] sinnx0dx0 = δmnπ sinnx (10)

we obtain expressions for the expansion coefficients

a0 = an =
1

π
, n = 1, 2, . . . (11)

Thus we get the formula for the periodic delta function,

δp(x− x0) = 1

π

Ã
1

2
+

∞X
n=1

cosn(x− x0)
!
. (12) eq:PDAFexact

The partial sum of the periodic delta function is the continuous Periodic Distributed Approxi-
mating Function (PDAF)

δp,M (x− x0) = 1

π

"
1

2
+

MX
n=1

cosn(x− x0)
#

(13) eq:PDAF

which is the Þnal formula used in this work. We also note that asM increases the PDAF approaches
the periodic delta function, i.e.

δp(x− x0) = lim
M→∞

δp,M (x− x0). (14)

One may obtain the fully discretized PDAF by approximating the integral over x0 in (6) using a
trapezoidal quadrature

f
(k)
p,M (xi) =

NX
j=1

δ
(k)
p,M (xi − xj)fp(xj)∆x (15) eq:PDAFintd
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where N is the number of grid points, ∆x = 2π
N
and xj = (j − 1

2 )∆x. Note the coordinate x was
also discretized using the same grid points as used in the numerical quadrature. This choice of
quadrature points is particularly useful if we are solving differential equations with singular points

at the two ends (x = 0 and x = 2π). As the grid points are Þxed, δ
(k)
p,M (x) acts like the k

th derivative
operator. If we treat fp,M (x) as a column vector [fj = f(xj)], we have

f
(k)
i,M =

NX
i=1

D
(k)
ij fj (16)

where

D
(k)
ij = δ

(k)
p,M (xi − xj)∆x (17) eq:D

is the kth derivative operator in matrix form. The differential operators, D(k) are periodic Toeplitz
matrices independent of the periodic function fp(x), and depend on only one parameter M . The

column vector f
(k)
i,M is the PDAF approximate to the kth derivitive of fp(x), i.e.

f
(k)
i,M ≈ dk

dxk
fp(x)

¯̄̄
x=xi

. (18)

For large M the PDAF is a more accurate representation of the Dirac delta function. However, for
small M the integrand of (6) is smoother and the trapezoidal rule is more accurate. Hence, there
is an optimal value of M which is chosen to make the agreement as close as possible. Through
numerical experimentation (see Sec. 4 ) we found that M = N/2, gives the most accurate results,
where N is the number of grid points in the 2π range. In this paper, we will use D(0), D(1) and

D(2), consequently we need δ
(0)
p,M , δ

(1)
p,M and δ

(2)
p,M . They can be obtained by simply differentiating

(13). The general results for any k are,

δ
(k)
p,M (x) =


(−1) k+1

2
1
π

PM
n=1 n

k sinnx k odd

1
2π δ0,k + (−1)

k
2
1
π

PM
n=1 n

k cosnx k even

(19)

We see that δ
(k)
p,M (x) are even(odd) periodic functions when k is even(odd). The functions, δ

(0)
p,M (x),

δ
(1)
p,M (x), and δ

(2)
p,M (x) are shown in Fig. 1 . In both panels of Fig. 1 N = 20, in the left panel

M = 5 and in the right panel M = N/2 = 10. One can readily see the symmetry of each PDAF.
Comparing the left and right panels in Fig. 1 we see that increasing M makes the PDAFs in the
right panel sharply peaked and a better representation of the respective Dirac Delta function and
its derivatives.

3 Symmetrization and Reductions of the Triatomic Hamil-
tonian in APH Coordinates

3.1 APH Hamiltonian

The detailed reactive scattering theory formulated in adiabatically adjusting principle axes hyper-
spherical (APH) coordinates has been presented previously[3], and we repeat only the essentials
here. In this approach, one needs sector adiabatic basis functions ΦpτΛ of the APH hyperangles, and
in this work we choose ΦpτΛ to satisfy the equation

HΦpτΛ(θ,χ; ρξ) = EpτΛ(ρξ)ΦpτΛ(θ,χ; ρξ) (20) eq:Schrodinger

where

H = − h̄2

2µρ2ξ

∙
4

sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
+

1

sin2 θ

∂2

∂χ2

¸
+
15h̄2

8µρ2ξ
+ Ch̄2Λ2 + V (ρξ, θ,χ) (21) eq:H
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Figure 1: δ
(k)
p,M (x) for different M , where the number of grid points (N = 20) is used in both panels.

In the left panelM = 5 and in the left panel andM = N/2 = 10. Note δ
(0)
p,M and δ

(2)
p,M are symmetric

about x = 0, while δ
(1)
p,M is anti-symmetric. Increasing M makes the PDAFs sharply peaked and a

better representation of the respective delta function and its derivatives. fig:PDAFs

The Þrst term in the Hamiltonian H is the �hyperspherical� part of the kinetic energy operator, and

C =
1

µρ2ξ(1− sin θ)
(22)

is part of the centrifugal potential. The potential energy V used here is the whole potential energy
surface (PES) of Brown et al.[18], and the Epτ,Λ are the eigenenergies. The variable θ is the APH
bending angle; its range is 0 ≤ θ ≤ π/2, with π/2 describing linear conÞgurations and 0 describing
triangular symmetric top conÞgurations. χ is the APH kinematic angle measured from the �in-
cident� arrangement channel; it measures motion between arrangement channels, and its range is
−π ≤ χ ≤ π. The angles θ and χ cover the upper half of the surface of an internal coordinate sphere
which we loosely call the �hypersphere�. (More precisley, the surface of the hypersphere is the 5D
space covered by θ, χ, and the three Euler angles which describe the orientation of the principal
axes in space.) As one can see from (20), the surface functions Φpτ,Λ and eigenenergies Epτ,Λ depend
parametrically on the hyperradius ρξ. They are needed at a set of ρ values {ρξ}, ξ = 1, 2, ..., nρ,
which are used as adiabatic basis functions for expanding the full wavefunction in each sector where
ρ ∈ [(ρξ + ρξ−1)/2, (ρξ+1 + ρξ)/2] for sector ξ. As shown elsewhere[3] this adiabatic-by-sector (or
sector Adiabatic) wavefunction gives rise to a set of coupled second order differential equations.
These Coupled-Channel (CC) equations must be numerically integrated from a small value of the
hyperradius ρ where the full wavefunction is zero to a large value of the hyperradius where asymp-
totic boundary conditions are applied. The 15h̄2/8µρ2 term in (21) comes from removal of Þrst
derivative terms from the coupled channel (CC) equations; it is a constant in this equation and can
be folded into the Epτ,Λ if desired. In the numerical calculations we used atomic units throughout and
therefor Planck�s constant divided by 2π, h̄ = 1. µ is the three-body reduced mass of the system
arising from mass-scaled coordinates. The three quantum numbers (Λ, p, τ ) labeling Epτ,Λ and Φpτ,Λ
are: Λ the component of the total angular momentum along the APH body-frame (BF) z-axis (the
axis of least inertia of the three-body system), p the parity quantum number with p = 0 or 1, the
parity of Φpτ,Λ under the parity transformation χ → χ ± π is (−1)p, and τ = 1, 2, ..., nΦ, which
indexes the solutions in order of increasing energy.
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We note that (21) differs from equation (164) of Reference[3] slightly because it omits a rotational
term of the form 1

2 (A + B)h̄
2[J(J + 1) − Λ2]. As pointed out by Launay and LeDourneuf [1], this

omission gives surface functions Φpτ,Λ which are independent of the total angular momentum J , so
many fewer surface functions must be calculated. The omitted term is easily included in the CC
equations along with the remaining Coriolis and asymmetric top terms. This surface function basis
is expected to produce rapid convergence of the CC expansion to the exact solution provided trian-
gular symmetric top (θ = 0) conÞgurations are unimportant, which is the case for many reactions.

The full wavefunction must be continuous and regular everywhere. This requires that Φpτ,Λ must
be a continuous function of χ at −π and π and regular everywhere. For systems with two or three
identical atoms, the surface functions have other symmetries in addition to the parity p already
deÞned and these symmetries will be incorporated. The surface functions are real and normalized
according to Z π

−π
dχ

Z π/2

0

Φp
0
τ 0Λ(θ,χ; ρξ)Φ

p
τΛ(θ,χ; ρξ) sin 2θdθ = δτ 0τ δp0p. (23) eq:norm

We will use the PDAFs to solve the time-independent Schrödinger (20). To make it easier to
discuss, we deÞne the following terms:

Hθ = − 4

sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
(24)

Hχ = − ∂2

∂χ2
(25)

HV =
15h̄2

8µρ2ξ
+ Ch̄2Λ2 + V (ρξ , θ,χ). (26)

With these deÞnitions the surface function Hamiltonian, (21), is

H =
h̄2

2µρ2ξ

∙
Hθ +

1

sin2 θ
Hχ

¸
+HV . (27) eq:Hsimp

Since a discretized Hamiltonian is a matrix operator, we can simply treat it as a matrix. In the rest
of this paper, A Hamiltonian and a matrix will be used interchangeably. For example, when we say
that Hχ is symmetric, that means the the matrix of discretized Hχ is a symmetric matrix.

3.2 Symmetrization of APH Hamiltonian

The Hamiltonian H in (27) is real but it is not symmetric, because Hθ is not symmetric. So if wesub:symAPH
just use this form, we have to solve a complex matrix eigensystem. A large amount of memory and
increased CPU time is required to solve large nonsymmetric eigensystems. Since both memory and
CPU time are critical in the computation of APH surface functions, we need symmetrize H . Hθ is
the essentially non-symmetric part of H, and it is not periodic. So we Þrst extend Hθ to a periodic
form and symmetrize it. Then the result is extended to symmetrize H .

One might have noted that Hθ is not periodic because 0 ≤ θ ≤ π
2 , but it can be easily extended

to a periodic form. Suppose Hθ satisÞes the following eigensystem,

Hθψ(θ) = λψ(θ) (28) eq:eigen-theta

The solution ψ(θ) must be regular everywhere, which leads to the the boundary condition,

dψ

dθ

¯̄̄̄
θ=0

=
dψ

dθ

¯̄̄̄
θ=π

2

= 0 (29)
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so we can extend the domain of ψ(θ) to the full real space by deÞning,

ψ(θ) = ψ(π − θ), π

2
≤ θ ≤ π (30)

ψ(θ + kπ) = ψ(θ), 0 ≤ θ ≤ π and k = 0,±1,±2, ... (31)

Now ψ(θ) is a periodic function with a periodicity of π. Note that

Hθ(θ) = H(π − θ) (32)

Hθ(θ + kπ) = H(θ), k = 0,±1,±2, ... (33)

One can see that the extended ψ(θ) satisÞes (28) for any θ, i.e. the domain of Hθ is also extended
to the full real space although it keeps its original form.

To get the symmetric Hθ, we transform it in two steps. First we introduce a continuous mapping
function,

θ(γ) =
π

4
(1− cos(γ + 2kπ))− kπ, k = 0,±1,±2, ... (34)

We note that the Þrst derivative of this mapping is also continuous, but its second derivative is dis-
continuous at θ = kπ/2. This problem is handled by the mapping function itself: we use a uniform
grid scheme for γ, it is equivalent that we use a non-uniform grid scheme for θ which is dense near
the singularities (θ = kπ/2) and sparse otherwise, as shown in Fig. 2 . Since more grid points are
used in the θ = kπ/2 region, high accuracy can be obtained despite the discontinuity.

Substituting θ with γ in (24), we obtain,

Hθ(γ) = − 64
π2

1

sin 2θ(γ) sin γ

∂

∂γ

sin 2θ(γ)

sin γ

∂

∂γ
(35)

Hθ(γ) is very similar to Hθ(θ) except that it has a periodicity of 2π.

In the second step, we deÞne transformation function

T =
p
sin 2θ sin γ (36)

We also need

T � = T (37)

T−1 =
1√

sin 2θ sin γ
(38)

and it is important to note that the singularities in this inversion are avoided by our choice of
quadrature (see Sec. 2 ). Applying T � to the (28) and insert identity T−1T between Hθ and ψ(θ),
we obtain

HγTψ(θ) = λTψ(θ) (39) eq:SymThetaEigenEqua

where

Hγ = T �Hθ(γ)T−1

= −64
π2

1p
sin 2θ(γ) sin γ

∂

∂γ

sin 2θ(γ)

sin γ

∂

∂γ

1p
sin 2θ(γ) sin γ

(40)

is a symmetric Hamiltonian.
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Figure 2: Grid mapping function θ(γ). The uniform grid scheme in θ corresponds to the non-uniform
grid scheme for θ which is dense near the singularities( θ = kπ/2) and sparse otherwise. fig:theta-gamma

The eigenfunction of Hγ is

�ψ(γ) = T (γ)ψ(θ(γ)) (41) eq:psitilde

which is always zero at γ = 0,π, or 2π. It is not hard to see that extending ψ(θ) from 0 ≤ θ ≤ π
2 to

0 ≤ θ ≤ π introduces undesired degenerate eigenvalues. If we reduce matrix Hγ from 0 ≤ θ ≤ 2π to
range 0 ≤ θ ≤ π using the symmetry of ψ, we can eliminate those undesired degenerate eigenvalues.
We use a grid scheme similar to the one for PDAF, say,

γj = (j − 1
2
)∆γ, j = 1, 2Nγ (42)

where 2Nγ is the number of gird points, and∆γ =
2π
2Nγ

= π
Nγ
is the distance between two consecutive

grid points. For simplicity, we use a subscript j to denote a term evaluated at γj , and we also deÞne
the following terms,

tj =
1p

sin 2θ(γj) sin γj
(43)

sj =
sin 2θ(γj)

sin γj
(44)

Applying the derivative operator D(1) in (17) (substitute x with γ), the eigen-equation (39) can be
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written as,

λ �ψi =

2NX
j=1

2NX
k=1

− 64
π2
tiD

(1)
ik skD

(1)
kj tj

�ψj

= (

NX
j=1

+

2NX
j=N+1

)

2NX
k=1

−64
π2
tiD

(1)
ik skD

(1)
kj tj

�ψj

=

NX
j=1

2NX
k=1

− 64
π2
tiD

(1)
ik sk(D

(1)
kj +D

(1)
k 2N−j+1)tj �ψj

=

NX
j=1

Hr
γ ij
�ψj (45)

where

Hr
γ ij

=

2NX
k=1

− 64
π2
tiD

(1)
ik sk(D

(1)
kj +D

(1)
k 2N−j+1)tj (46) eq:Hrgamma

In the above derivation, �ψj = �ψ2N−j+1, tj = t2N−j+1, sj = s2N−j+1 and the periodicity of D(1) are
applied. One should note that in (45) 1 ≤ i ≤ Nγ and 1 ≤ i ≤ Nγ , which means 0 ≤ γ ≤ π, so Hr

γ

is reduced to the original domain. Hr
γ is the desired form for Hθ and it is easy to show that H

r
γ is

a symmetric matrix.
Similarly we can transform and discretize H to get the symmetric form of H . Using (27) the

Schrödinger (20) reads,(
h̄2

2µρ2ξ

∙
Hθ +

1

sin2 θ
Hχ

¸
+HV

)
ΦpτΛ(θ,χ; ρξ) = EpτΛ(ρξ)ΦpτΛ(θ,χ; ρξ) (47)

Left multiply T � to both sides of the above equation and insert identity T−1T , we obtain

HsΦ
p

τΛ(θ,χ; ρξ) = EpτΛ(ρξ)Φ
p

τΛ(θ,χ; ρξ) (48) eq:sym-Schrodinger

where

Hs =
h̄2

2µρ2ξ

∙
Hr
γ +

1

sin2 θ
Hχ

¸
+HV (49) eq:sym-H

and

Φ
p

τΛ(γ,χ; ρξ) = TΦ
p
τΛ(θ,χ; ρξ) (50)

The independency of γ(or θ) and χ is used in the derivation. After discretization, Hs is symmetric,
because Hr

γ is symmetric, HV is diagonal, and Hχ is obviously symmetric. Thus we obtain the
symmetric form of APH Hamiltonian, Hs.

3.3 Reduction of the Hχ using symmetry

If the Hamiltonian Hs of a system commutes with a point group G, i.e. the potential HV is
symmetric under the operations of G, we can reduce the size of the Hamiltonian matrix by transform
the Hamiltonian into the irreducible representations of the G.

Let G = {R}, where {R} is a set of symmetry operations such as rotations and reßections.
The order of G is h, i.e, G contains h symmetry operations, R. Suppose Hχ satisÞes the following
eigen-equation,

Hχφ
[z,κ](χ) = λφ[z,κ](χ) (51) eq:eigen-Hchi
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where φ[z,κ] transform according the κ-th column of the z-th irreducible representation of G, i.e.
φ[z,κ] is the κ-th basis function for the τ -th ireducible representation, and λ is the eigenvalue. We
will discretize (51) using a uniform grid scheme, say,

χj = (j − 1/2)∆χ, j = 1, hNχ (52) eq:chischeme

where hNχ is the number of grid points, ∆χ =
2π
hNχ

is the distance between two consecutive grid

points, and clearly Nχ is the number of grid points in interval [0,
2π
h ] . Now (51) can be written as,

hNχX
j=1

Hχ(χi,χj)φ
[z,κ](χj) = λφ

[z,κ](χi), κ = 1, lz (53) eq:discHchi

where lz is the dimension of the z-th irreducible representation. The the full range of χ can be
generated by applying each symmetry operation R on range [1, Nχ], thus we can write (53) as

NχX
j=1

X
R

Hχ(χi, Rχj)φ
[z,κ](Rχj) = λφ

[z,κ](χi), κ = 1, lz (54) eq:RdiscHchi

From the well-known relations [23],

φ[z,κ](R−1χ) =
X
κ0
φ[z,κ

0](χ)Γ
[j]
κ0,κ(R) (55) eq:PR-1

where Γ
[z]
κ0,κ(R) is the (κ

0,κ)-th element of the z-th irreducible representation matrix of R, we have,

φ[z,κ](Rχ) =
X
κ0
φ[z,κ

0](χ)Γ
[z]
κ0,κ(R

−1)

=
X
κ0
φ[z,κ

0](χ)Γ
[z]�
κ0,κ(R)

=
X
κ0
φ[z,κ

0](χ)Γ
[z]∗
κ,κ0(R) (56)

The following obvious properties of Γ
[z]
κ0,κ(R) are used in the above derivation,

Γ[z](R−1) = Γ[z]
�
(R) = Γ[z]

−1
(R) (57) eq:GammaProperty

Plug (56) into (54), we obtain,

NχX
j=1

X
R

Hχ(χi, Rχj)
X
κ0
φ[z,κ

0](χj)Γ
[j]∗
κ,κ0(R) = λφ

[z,κ](χi), κ = 1, lz (58) eq:red-Hchi

(58) is a set of coupled equations. It would be concise if we write it in a matrix form. For triatomic
reactions, the relevant irreducible representations are either one-dimensional or two-dimensional.
For the one-dimensional case, κ = κ0 = 1, so we simply omit them. Hence we have,

NχX
j=1

Hr
χ(χi,χj)φ

[z](χj) = λφ
[z](χi) (59) eq:red-1D-Hchi

where

Hr
χ(χi,χj) =

X
R

Hχ(χi, Rχj)Γ
[z]∗(R) (60) eq:redHchi-1D

10



is the reduced Hχ in an one-dimensional irreducible representation.

For the two-dimensional case, we have,

NχX
j=1

Hr
χ(χi,χj)

µ
φ[z,1](χj)

φ[z,2](χj)

¶
= λ

µ
φ[z,1](χi)

φ[z,2](χi)

¶
(61) eq:red-2D-Hchi

where

Hr
χ(χi,χj) =

X
R

Hχ(χi, Rχj)Γ
[z]∗(R) (62) eq:redHchi-2D

is the reducedHχ in a two-dimensional irreducible representation. It has the same form as in the one-
dimensional case, but it is a 2× 2 matrix. Hr

χ can be proved symmetric if the associated irreducible
representation matrices are real (see Appendix A). There are three types triatomic interactions:

ABC All atoms are distinct. The point group corresponding to this type is C2

AAB Two atoms are identical, but the other is different. The point group corresponding to this
type is C2v

AAA All atoms are identical. The point group corresponding to this type is C6v

For all the above groups in each type, the irreducible representation matrices are all real, so Hr
χ is

symmetric. We provide the representation matrices in Appendix B for reference.

One should note that if we conÞne χ in [0, 2πh ], H
r
χ is a Nχ × Nχ matrix in an one-dimensional

irreducible representation and a 2Nχ × 2Nχ matrix in a two-dimensional irreducible representation.
When the eigensystem of (59) or (61) is solved, eigenfunctions of range [0, 2πh ] is obtained. One can
employ (55) to compute the eigenfunctions of the full range of χ.

One can see that using Hr
χ instead of Hχ doesn�t affect the symmetrization of H in Sec. 3.2 .

Hence we can use the following deÞnition of Hs in the rest of this paper without confusion,

Hs =
h̄2

2µρ2ξ

∙
Hr
γ +

1

sin2 θ
Hr
χ

¸
+HV (63) eq:sym-H-group

3.4 Reduction of the Hamiltonian using projection

Suppose we discretize Hs using Nχ grid points in χ coordinate and Nγ in γ, the size of the Hamil-sub:red-prj
tonian matrix (NγNχ × NγNχ) to be diagonalized is very large for systems of physical interest
when highly accurate eigenvalues and eigenfunctions are needed. On the other hand, we need to
reduce the CPU time and memory as much as possible. Since we are interested in only a few of
the lowest eigenstates, we may waste a lot of time and memory to compute the full eigensystem.
To reduce the CPU time and memory allocation the reduction of the Hamiltonian matrix needs to
be considered. First we Þnd a nearly complete basis for the desired lowest eigenvectors, and then
we project the Hamiltonian matrix to this basis: Hcut = ePHsP , where P is the projection matrix
and eP is the transpose of P . The size of Hcut is small. We solve the eigensystem of Hcut and map
it back to the original basis to obtain the approximate eigensystem of the H. Details are given below.

Noting Hr
γ depends on only γ and

h̄2

2µρ2
ξ
is a constant, and introducing the identity matrix Iγ

and Iχ in the γ and χ spaces respectively, we can rewrite the Hamiltonian H
s in (63) in the cross

product form,

Hs =
h̄2

2µρ2ξ
Hr
γ ⊗ Iχ + (

h̄2

2µρ2ξ

1

sin2 θ
Iγ ⊗Hr

χ +HV Iγ ⊗ Iχ) (64)

11



Now Hs is divided into two terms

Hs
1 =

h̄2

2µρ2ξ
Hγ ⊗ Iχ (65)

Hs
2 =

h̄2

2µρ2ξ

1

sin2 θ
Iγ ⊗Hχ +HV Iγ ⊗ Iχ (66)

The Þrst term, Hs
1 , is independent of χ, while the second term is dependent of both γ and χ. Since

we are interested in only the lowest eigenvalues and eigenfunctions of Hs, and Hs
1 is independent

of χ, we can expect to get accurate results using only a subeigenspace of Hs
2 instead. We solve the

eigensystem of Hs
2 for each Þxed γj ,

Hs
2 (γj)α

γj
k = λ

γj
k α

γj
k j = 1,Nγ (67)

where Nγ is the number of the grid points used in γ and (λ
γj
k ,α

γj
k ) is the k-th eigenpair for the

given γj . Then we drop the eigenvectors with large eigenvalues. The rest of the eigenvectors consist
of a nearly complete basis for the lowest eigenvectors of Hs. In our implementation, we sort all
the eigenvectors obtained above in ascending order of eigenvalues, and choose only a number of
the eigenvectors corresponding to the smallest eigenvalues. After normalization they compose the
projection matrix,

P =


P1

P2
. . .

PNγ

 (68)

where

Pi = (α
γi
1 ,α

γi
2 , . . . ,α

γi
mγi

) (69)

Because P is an orthonormal, nearly complete basis for the lowest eigenvectors, Φ
p

τΛ(γ,χ; ρξ),
we have

P ePΦpτΛ(γ,χ; ρξ) ≈ ΦpτΛ(γ,χ; ρξ) (70)

Substituting Φ
p

τΛ(γ,χ; ρξ) in (48) and left multiplying eP at its both sides, we get,
HcutΨpτΛ(γ,χ; ρξ) ≈ EpτΛ(ρξ)ΨpτΛ(γ,χ; ρξ) (71)

where

Hcut = ePHP (72)

and

ΨpτΛ(γ,χ; ρξ) =
ePΦpτΛ(γ,χ; ρξ) (73)

We can see that P is a NγNχ ×Ncut
χ matrix, where

Ncut =

NγX
i=1

mγi (74)

so Hcut is a Ncut×N cut matrix. Its size is much smaller than the size of Hs if N cut is much smaller
than NγNχ, which is the case if we want only a few eigenvalues. N

cut should be as small as possible
and it should be decided in the convergence test.

Knowing that Hs is symmetric, we haveeHcut = eP eHsP = ePHsP = Hcut (75)

Thus Hcut is symmetric.
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Figure 3: The number of good eigenvalues reaches maximum when M = Nχ/2 (Nχ = 32), where M

is the parameter in PDAF δ
(k)
p,M (x), and Nχ is the number of gird points in range (0, 2π). fig:TestM

4 Numerical Tests

Numerical tests are carried out in three aspects. First, we test the and decide the parameter M insec:Test

PDAF δ
(k)
p,M . Then we test the H

r
χ with different irreducible representations of varies groups. The

accuracy of Hr
γ is tested at last.

4.1 Test of PDAFs

We tested PDAFs using different periodic functions, all of them show the similar results. Here we
present only the test with the eigenvalues of Hχ. Using the PDAF matrix deÞned in (17), we obtain
the discrete presentation of Hχ,

Hχij = −
NχX
k=1

D
(2)
ij

= −
NχX
k=1

δ
(2)
p,M (χi − χj)∆χ (76)

where Nχ is the number of grid points used in (0, 2π), ∆χ = 2π/Nχ and χj = (j − 1
2 )∆χ. We

know that the correct eigenvalues of Hχ should be 0, 1, 1, 4, 4, · · · , k2, k2, · · · , so it�s easy to check
the difference between the computed eigenvalues and the exact ones. We set the criteria of 10−6 as
the maximum tolerable error, then we can count how many good eigenvalues can be obtained. One
typical result is shown in Fig. 3 , in which we set Nχ = 32 and varies M from 1 to 35. One can see
that when M = Nχ/2, almost all eigenvalues are good. This suggests the nearly optimal choice of
M .

4.2 Test of Hr
χ

Test of Hr
χ are done in all aforementioned irreducible representations of all point groups. All of them

give ideal results. Here we present only one typical result computed using C2v group, because only
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C2v is used in FH2 reaction calculation.

Similar to Hχ, we can obtain the PDAF presentation of H
r
χ. Note that C2v has only one-

dimensional irreducible representations, so we should use (60) for Hr
χ. We obtain the discrete

presentation of Hr
χ as,

Hχij = −
NχX
k=1

X
R

δ
(2)
p,M (χi −Rχj)Γ[z]∆χ (77)

Note that the grid scheme is deÞned in (52). We set Nχ = 8, and the eigenvalues λk for each
irreducible representations are computed, and

√
λk are shown in table 1 for easy comparison. One

can see that if we combine the results from all the irreducible representations, we will obtain the
(approximate) eigenvalues 0, 1, 1, 4, 4, · · · , k2, k2, · · · , which is obtained from Hχ. And we also note
that the degenerate eigenvalues in Hχ are no longer degenerate in H

r
χ.

k A1 B1 A2 B2
1 0.00000052456066 2.00000000000009 0.99999999999989 1.00000000000007
2 2.00000000000007 3.99999999999997 3.00000000000004 3.00000000000002
3 3.99999999999999 5.99999999999999 5.00000000000000 5.00000000000000
4 5.99999999999999 7.99999999999999 7.00000000000000 7.00000000000000
5 7.99999999999999 10.0000000000000 9.00000000000001 9.00000000000001
6 10.0000000000000 12.0000000000000 11.0000000000000 11.0000000000000
7 12.0000000000000 14.0000000000000 13.0000000000000 13.0000000000000
8 14.0000000000000 22.6274169979695 15.0000000000000 15.0000000000000

Table 1:
√
λk, square roots of eigenvalues of H

r
χ in irreducible representations of group C2v tbl:eigenHchiC2v

4.3 Test of Hr
γ

Hr
γ in (46) has the same eigenvalues as Hθ in (24). If we rewrite Hθ as

Hθ = − 8

sin 2θ

∂

∂2θ
sin 2θ

∂

∂2θ
(78)

we can see that the eigen-equation of Hθ, (28), is a Legendre differential equation if we let the
eigenvalue,

λl = 8l(l + 1) l = 0, 1, ... (79)

Thus Hr
γ has eigenvalues of 8l(l+1). To evaluate the accuracy of the computed eigenvalue, we deÞne

Sl(λl) as follows,

Sl(λl) =

(
− lg |λl| l=0,

− lg λl−8l(l+1)8l(l+1) l > 0.
(80)

where λl is the l-th computed eigenvalues, and Sl(λl) gives approximate number of signiÞcant dig-
its. Fig. 4 shows the results when we set Nγ = 16, 32, 48 and 64. One can see that for each Nγ
there are about Nγ/3 of the eigenvalues are of high accuracy. This is accurate enough for the FH2
calculation, because typically the order of the Hamiltonian matrix is about 1000 but we wants less
than 300 eigenvalues.

It is worth to mention that we also tested the non-symmetric form, Hθ, using PDAF presenta-
tion. Although we can get as very high accurate results as we get from Hχ or H

r
χ, we still choose

the symmetric form, because the non-symmetric matrix will cost too much time and memory to
diagonalize. Moreover, if when we add potential, the accuracy the of the non-symmetric form will
drop to the accuracy of the Hr

γ .
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γ . For all Nγ , the smallest

Nγ/3 eigenvalues are of high accuracy. fig:AccurHgamma

5 Calculation of F H2 System

In this section we report the results of PDAF calculation s of surface functions and the matrixsec:CalcFH2
elements, and compare them with the results of the DVR and ABM methods. The system chosen
as a nontrivial example is the F+H2 → HF+H reaction; its treatment requires generation of a large
basis of surface functions. The potential energy surface (PES) used is the one of Brown et al.[18]
commonly called the T5A surface, and we choose the zero of energy to be at the bottom of the
asymptotic HF potential wells. This PES has been used in many calculations[1, 19, 5, 14, 20, 21, 22]
on this reaction, and plots of the PES and surface functions showing their appearance in APH co-
ordinates have also been published. Arrangement 1 or i(initial) is that of the F+H2 reactants.

The calculations are for Λ = 0 and even parity (p = 0) and include all functions connecting to
the even j rotational states of the F+H2 arrangement. Because of the symmetry due to the identical
H atoms, this only requires including in the PDAF calculations the A1 irreducible representation,
in which the surface functions are even under reßection about χ = 0.

5.1 Gird Size and Mapping

The grid sizes(the number of grid points),Nχ, Nγ , and N
cut are decided in the convergence test. We

present only the results here. To reach Þve signiÞcant digits in the lowest 100 eigenvalues for any
ρξ,

Nγ = b25.852 + 5.85119ρξ − 0.130102ρ2ξ − 0.0042517 ∗ ρ3ξc (81)

N cut = b1428.06 + 29.2007ρξ − 6.37755ρ2ξ − 0.119048 ∗ ρ3ξc (82)

Nχ = b4πmax(Nγ)c/h (83)

where h is the order of the associated symmetry group. To get the Nχ, we use the maximum of Nγ
because it can make Nχ identical for all ρξ, thus make it easy to compute the overlap matrices. And
using the maximum Nγ doesn�t signiÞcantly increase the computation time, because we reduce the
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matrix size according to Ncut, as we discussed in Sec. 3.4 .

Although Nχ�s are identical to varies ρξ, Nγ �s are not. So before we compute the overlap matrix,
we have to map the wave functions to a uniformed grid set to reduce the computation time on the
overlap matrix.

Let Nu
γ be the uniformed number of grid points in γ, Nγ is the original number of grid points.

Applying (15) to the wave function

ΦpτΛ(γj ,χ; ρξ) =

2NγX
k=1

δp,M (γj − γk)ΦpτΛ(γk,χ; ρξ)∆γ

=

NγX
k=1

{δp,M (γj − γk)ΦpτΛ(γk,χ; ρξ) + δp,M (γj − 2π + γk)ΦpτΛ(2π − γk,χ; ρξ)}∆γ

=

NγX
k=1

[δp,M (γj − γk) + δp,M (γj − 2π + γk)]ΦpτΛ(γk,χ; ρξ)∆γ (84)

where ∆γ = π/Nγ , and γj ,γk represent the coordinates in the above two grid schemes respectively,
say,

γj = (j − 1
2
)∆γu (85)

γk = (k − 1
2
)∆γ (86)

where ∆γu = π/Nu
γ

5.2 Eigenvalues

The atomic masses used are:

mass of F = 18.9984032 a.u. (87)

mass of H = 1.00782503 a.u. (88)

The calculations were performed at Þve representative ρ values ranging from the smallest to the
largest values needed in our reactive scattering calculations[5, 14]. The precise values of ρ chosen
have no particular meaning, and some were chosen simply because the convergence of the DVR
method had already been studied there.

The results are given in Table 2 through Table 6 for the Þve values of ρ chosen. In each the
energy eigenvalues of the highest ten important or open surface function states are given in eV.
The omitted lower eigenvalues always agree even better than those shown. Also shown is E(n), the
average of the Þrst n eigenvalues. This gives a convenient measure of the overall agreement of the
methods.

5.3 Matrix Elements

The APH surface functions ΦpτΛ(γ,χ; ρξ) are �sector adiabatic�; that it, they change from sector to
sector, but are independent of ρ on a sector. Thus, when the APH wave function is substituted into
the Schrödinger equation, the resulting exact coupled channel or close coupling equations are of the
form[3] ∙

∂2

∂ρ2
+
2µE

h̄2

¸
ψJpnτΛ (ρ) =

2µ

h̄2

X
τ 0A0

hΦJpτΛ �DJp
ΛM |Hi|ΦJpτ 0Λ0 �D

Jp
Λ0M iψJpnτ 0Λ0ρ (89)
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τ PDAF ABM DVR FEM
1 6.9176 6.9177 6.9177 6.9177
2 7.0341 7.0341 7.0341 7.0342
3 7.1299 7.1298 7.1296 7.1299
4 7.3044 7.3042 7.3038 7.3043
5 7.4934 7.4932 7.4927 7.4933
6 7.7007 7.7007 7.7008 7.7009
7 7.9227 7.9219 7.9202 7.9222
8 8.0786 8.0789 8.0786 8.0791
9 8.1548 8.1524 8.1475 8.1529
10 8.2495 8.2502 8.2494 8.2503
E(10) 7.5986 7.5983 7.5974 7.5985

Table 2: PDAF, ABM, DVR, and FEM surface
function energies Eτ and average energies in eV
at ρ = 2.2 a0.tbl:E2.2

τ PDAF ABM DVR FEM
11 1.9845 1.9845 1.9845 1.9849
12 1.9975 1.9975 1.9975 1.9979
13 2.0514 2.0515 2.0515 2.0519
14 2.1090 2.1090 2.1090 2.1093
15 2.1275 2.1275 2.1275 2.1281
16 2.1352 2.1352 2.1353 2.1357
17 2.1993 2.1994 2.1994 2.1998
18 2.2578 2.2578 2.2578 2.2584
19 2.2730 2.2730 2.2730 2.2737
20 2.3197 2.3197 2.3197 2.3204
E(20) 1.8551 1.8551 1.8551 1.8554

Table 3: PDAF, ABM, DVR, and FEM surface
function energies Eτ and average energies in eV
at ρ = 3.0375828 a0.tbl:E3.0

τ PDAF ABM DVR FEM
91 2.0699 2.0701 2.0701 2.0720
92 2.0721 2.0734 2.0727 2.0760
93 2.0864 2.0896 2.0869 2.0916
94 2.0941 2.0941 2.0943 2.0961
95 2.1087 2.1107 2.1093 2.1132
96 2.1215 2.1232 2.1220 2.1267
97 2.1487 2.1509 2.1495 2.1549
98 2.1643 2.1650 2.1645 2.1672
99 2.1793 2.1806 2.1799 2.1833
100 2.1892 2.1892 2.1893 2.1918
E(100) 1.3974 1.3977 1.3975 1.3985

Table 4: PDAF, ABM, DVR, and FEM surface
function energies Eτ and average energies in eV
at ρ = 4.9747966 a0.tbl:E4.9
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τ PDAF ABM DVR FEM
91 2.0559 2.0564 2.0569 2.0679
92 2.0749 2.0754 2.0760 2.0928
93 2.0980 2.0981 2.0981 2.1023
94 2.0985 2.0990 2.0994 2.1141
95 2.1098 2.1098 2.1099 2.1148
96 2.1194 2.1196 2.1198 2.1278
97 2.1268 2.1273 2.1278 2.1443
98 2.1538 2.1542 2.1543 2.1537
99 2.1551 2.1551 2.1551 2.1608
100 2.1597 2.1602 2.1608 2.1621

E(100) 1.3788 1.3788 1.3790 1.3811

Table 5: PDAF, ABM, DVR, and FEM surface
function energies Eτ and average energies in eV
at ρ = 7.2989993 a0.tbl:E7.2

τ PDAF ABM DVR FEM
91 2.0747 2.0747 2.0748 2.0805
92 2.0774 2.0779 2.0782 2.0863
93 2.0957 2.0964 2.0974 2.1051
94 2.1010 2.1010 2.1009 2.1065
95 2.1153 2.1153 2.1154 2.1233
96 2.1189 2.1194 2.1197 2.1284
97 2.1250 2.1252 2.1253 2.1315
98 2.1461 2.1470 2.1482 2.1541
99 2.1542 2.1545 2.1546 2.1562
100 2.1558 2.1559 2.1560 2.1564
E(100) 1.3791 1.3791 1.3792 1.3812

Table 6: PDAF, ABM, DVR, and FEM surface
function energies Eτ and average energies in eV
at ρ = 9.0a0.tbl:E9.0
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The matrix elements are obtained in Reference [3] as,

hΦJpτΛ �DJp
ΛM |Hi|ΦJpτ 0Λ0 �D

Jp
Λ0M i

=
ρ2ξ
ρ2
EτΛ(ρξ)δττ 0δΛΛ0

+δΛΛ0hΦJpτΛ
¯̄̄̄
¯V (ρ, θ,χ)− ρ2ξρ2V (ρξ, θ,χ)

¯̄̄̄
¯ΦJpτ 0Λi

+hΦJpτΛ �DJp
ΛM

¯̄̄̄
A−B
2

(J2x − J2y ) + Tc
¯̄̄̄
ΦJpτ 0Λ0 �D

Jp
Λ0M i (90)

where ρξdenoted the ξ
th hyper radius we sampled from interval [ρmin, ρmax]. ρξ is given by

ρξ = [ρmin + (ξ − 1)∆ρ1](1+∆ρ2)ξ−1 (91)

This basis code spaces sector centers logarithmically. Given a sector with sector center ρξ , we
evaluate matrix elements at three rho values on at

ρ1 =
ρξ−1 + ρξ

2
(92)

ρ2 = ρξ (93)

ρ3 =
ρξ + ρξ+1

2
(94)

All the matrix elements in (90) are independent of E, so that they can be calculated once, stored,
and used at many scattering energies.

Normalization of the wave functions Φpτ,Λ(γ,χ; ρξ) should be conducted before computation of
the matrix elements. The normalization factor N can be calculated in the irreducible representation
easily according to (23) as shown below,

1 = N

Z 2π

0

dχ

Z π/2

0

dθ sin 2θΦpτΛ
2
(θ,χ; ρξ)

= N

Z 2π

0

dχ

Z π

0

dγ
π

4
sin γ sin 2θΦpτΛ

2
(γ,χ; ρξ)

= N

hNχX
i=1

NγX
j=1

∆χ∆γ
π

4
sin γj sin 2θ(γj)Φ

p
τΛ

2
(γj ,χi; ρξ)

= N

NχX
i=1

NγX
j=1

X
R

∆χ∆γ
π

4
sin γj sin 2θ(γj)Φ

p
τΛ(γj , R

−1χi; ρξ)Φ
p
τΛ(γj , R

−1χi; ρξ)

= N

NχX
i=1

NγX
j=1

X
R

∆χ∆γ
π

4
sin γj sin 2θ(γj)Γ

[z]2(R)ΦpτΛ
2
(γj ,χi; ρξ)

= hN

NχX
i=1

NγX
j=1

∆χ∆γ
π

4
sin γj sin 2θ(γj)Φ

p
τΛ

2
(γj ,χi; ρξ)

Thus

N =

14hπ∆χ∆γ
NχX
i=1

NγX
j=1

sin γj sin 2θ(γj)Φ
p
τΛ

2
(γj ,χi; ρξ)


− 1

2

(95)
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Figure 5: Comparison of the Sum of potential matrix elements using PDAF, ABM and DVR fig:SPotmat

Assuming ΦpτΛ(γ,χ; ρξ) is normalized, we can start computing the matrix elements. The Þrst
term on the right-hand side of (90) is just a local internal energy which together with the E term
on the left-hand side of (89) makes a local wave number.

The second term of (89) is often called potential matrix elements. It is small on the sector and
can be evaluated with the same quadratures used in getting the surface functions. Similar to the
way to obtain the normalization factor, we can get the formula of the potential matrix elements,

hΦJpτΛ(ρξ) | V (ρ)−
ρ2ξ
ρ2
V (ρξ) | ΦJpτ 0Λ(ρξ)i

=
1

4
hπ∆χ∆γ

NχX
i=1

NγX
j=1

sin γj sin 2θ(γj)×

ΦpτΛ(γj ,χi; ρξ)

"
V (ρ)− ρ

2
ξ

ρ2
V (ρξ)

#
Φpτ 0Λ(γj ,χi; ρξ) (96)

The Coriolis term can be simpliÞed as

hΦJpτΛ �DJp
ΛM |Tc|ΦJpτ 0Λ0 �D

Jp
Λ0M i

=
−h̄2
2µρ2

¿
ΦpτΛ

¯̄̄̄
cos θ

sin2 θ

∂

∂χ

¯̄̄̄
Φpτ 0Λ0

À
×[(1+ δΛ0)(1+ δΛ00)]

−1/2

×[λ+(J,Λ)δΛ0,Λ+1 − λ−(J,Λ)δΛ0,Λ−1
+λ−(J,Λ)(−1)J+Λ+pδΛ,1−Λ] (97)

where

λ±(J,Λ) = [(J ± Λ+ 1)(J ∓ Λ)] 1
2 (98)
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and ¿
ΦpτΛ

¯̄̄̄
cos θ

sin2 θ

∂

∂χ

¯̄̄̄
Φpτ 0Λ0

À

=
1

2
hπ∆χ2∆γ

NχX
i=1

NγX
j=1

NχX
k=1

sin γj
cos2 θ(γj)

sin θ(γj)
×

ΦpτΛ(γj ,χi; ρξ)δ
(1)
p,M (χi − χk)Φpτ 0Λ0(γj ,χk; ρξ) (99)

It should be noted that the last term in the bracket can only be nonzero for Λ = 0 or 1 and also
that because the ρ dependence of the operator factors out, the matrix elements over the ΦpτΛ(γ,χ; ρξ)
only need be evaluated once on each sector. They are readily evaluated using the PDAF ΦpτΛ(γ,χ; ρξ)
and their quadrature points as the PDAF code generates the derivatives of ΦpτΛ(γ,χ; ρξ) directly.

The asymmetric top terms of (90) can be explicitly written as

hτΛ|1
2
(A−B)(J2x − J2y )|τ 0Λ0i

=
1

4
h̄2hΦpτΛ|A−B|Φpτ 0Λ0i[(1+ δΛ0)(1+ δΛ00)]−1/2

×[λ+(J,Λ)λ+(J,Λ+ 1)δΛ0,Λ+2

+λ−(J,Λ)λ−(J,Λ− 1)δΛ0,Λ−2
+(−1)J+Λ+pλ−(J,Λ)λ−(J,Λ− 1)δΛ0,2−Λ] (100)

where

A =
1

µρ2ξ(1+ sin
2 θ)

(101)

B =
1

2µρ2ξ sin
2 θ

(102)

hΦpτΛ|A−B|Φpτ 0Λ0i

=
1

4
hπ∆χ∆γ

NχX
i=1

NγX
j=1

sin γj sin 2θ(γj)×

ΦpτΛ(γj ,χi; ρξ)(A−B)Φpτ 0Λ0(γj ,χi; ρξ) (103)

The third term in the bracket is always zero if |Λ−Λ0| > 2, and the ρ dependence of A−B again
factors out, giving the same simpliÞcations and allowing the evaluation of the integrals by the same
methods as for the Coriolis terms.

At the boundaries between sectors, the R matrix is transformed by an orthogonal transformation,
which requires calculation of the overlap matrix elements. The formula of the overlap matrix elements
is given by ,

hΦJpτΛ(ρξ) | ΦJpτ 0Λ(ρξ0)i

=
1

4
hπ∆χ∆γu

NχX
i=1

NγX
j=1

π

4
sin γj sin 2θ(γj)×

ΦJpτΛ(γj ,χi; ρξ)Φ
Jp
τ 0Λ(γj ,χiρξ0) (104)

To compare the efficency, we the PDAF, DVR, ABM, and FEM programs on the same computer
(PIII 866MHz), computing eigenvalues, potential matrix elements, and overlap matrices at 100 ρξ�s.
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Figure 6: Comparison of the Sum of the overlap matrix elements using PDAF, ABM and DVR. fig:SOverlap

ρξ starts from 2.0 a0 and ends at 9.0 a0 and evenly spaced in between. The computation times
(CPU time) are shown in Fig. 7 . FEM method takes much more time than the others, thus we
do not include it in Fig. 7 . We can see PDAF method is much faster than DVR at most range of
ρξ. If ρξ is very small (less than 2.2 a0), DVR is the most efficient method. Although ABM works
slightly faster than PDAF method, but it turns out that ABM diverges when ρξ is small.

We compare only the potential matrix elements and the overlap matrix elements here. Those
matrix elements are computed by ABM, DVR and PDAF. The comparison of the potential matrix
elements is shown in Fig. 5 , one can see that all the three methods agree with each other very well
when ρ > 3.3a0. However, when ρ < 3.3, the result of ABM digresses from PDAF and DVR very
much. The comparison of the overlap matrix elements is shown in Fig. 6 . One can see clearly from
the Þgure that PDAF gives very close results to DVR at small ρ (rho < 3.4a0), and it also agrees
with ABM very well at large ρ (rho > 4.4a0). ABM gives very different results from PDAF and
DVR at small ρ, and DVR gives very different results from PDAF and ABM at large ρ. We know
that ABM works very accurate at large ρ region and DVR at small ρ region, thus the comparisons
tell that PDAF works accurate at both small ρ and large ρ.

6 Conclusion

In this paper we have presented a peridoic distributed approximating function (PDAF) methodc:Conclusion
for calculating the surface function basis needed in hyperspherical formulations of reactive scatter-
ing theory. PDAF functions are intoduced and shown capable of providing an accurate, efficient
representation of the derivative operators.

Test calculations on the F + H2 system with the T5A PES comparing the PDAF, ABM, DVR
and FEM methods showed that the FEM is always the least efficient of the four, ABM is the most
efficient method for large ρ but is not accurate at small ρ. On the other hand, DVR is the most
efficient method for small ρ but is not accurate for large ρ. PDAF is compariablely efficient in both
large ρ as ABM and small ρ as DVR and it is accurate for all both small ρ and large ρ. As a result,
PDAF is the best method for surface function calcultaions in hyperspherical reactive scattering
calculations.
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A Hr
χ is symmetric

app:symproof

Hr
χ(χi,χj) =

X
R

Hχ(χi, Rχj)Γ
[τ ]∗(R) (105)

To prove that Hr
χ is symmetric, it is sufficient to show

Hr
χκ,κ0(χi,χj) = H

r
χκ0,κ(χj ,χi) (106) eq:sym

where

Hr
χκ,κ0(χi,χj) =

X
R

Hχ(χi, Rχj)Γ
[z]∗
κ,κ0(R) (107) eq:Hele
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We know that Hχ is symmetric, so

Hr
χκ0,κ(χj ,χi) =

X
R

Hχ(χj , Rχi)Γ
[z]∗
κ0,κ(R)

=
X
R

Hχ(Rχi,χj)Γ
[z]∗
κ0,κ(R)

=
X
R

Hχ(R
−1χi,χj)Γ

[z]∗
κ0,κ(R

−1)

=
X
R

Hχ(R
−1χi,χj)Γ

[z]∗−1
κ0,κ (R)

=
X
R

Hχ(R
−1χi,χj)Γ

[z]∗�
κ0,κ (R)

=
X
R

Hχ(R
−1χi,χj)Γ

[z]
κ,κ0(R) (108)

Because Hχ(χi,χj) (DAF
(2)(χi − χj)) is decided by |χi − χj |, and R is a length-conservative oper-

ation, we have

Hχ(R
−1χj ,χi) = Hχ(R

−1χj ,χi)
= Hχ(RR

−1χj , Rχi)
= Hχ(χj, Rχi) (109)

Combination of (108) and (109) gives

Hr
χκ,κ0(χi,χj) =

X
R

Hχ(χi, Rχj)Γ
[z]
κ,κ0(R) (110)

So if Γ[z] is real, (106) is true, say, if Γ[z] is real, Hr
χ is symmetric.

B Irreducible representations of group C2, C2v and C6v

The irreducible representation matrices for some point groups frequently used in APH Surface func-app:group
tion computation are given in Table 7 , Table 8 and Table 9 . The Þrst column in each table is the
names of the irreducible representations. The second row gives the transformation when a symmetry
operation R acts on χ. Parity p is also given in each table.

C2 E C2 p
Rχ χ π + χ
A 1 1 0
B 1 -1 1

Table 7: Irreducible representations of group C2tbl:C2
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