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Periodic distributed approximating functions (PDAFSs) are proposed and used to obtain a coordi-
nate representation for the Adiabatically Adjusting Principal Axis Hyperphysical (APH) coordinates
kinetic energy operator. The approach is tested and accurate results for adiabatic surface functions
of reaction F+Hy — HF+H are calculated and compared to those of some existing methods.

1 Introduction

In hyperspheical coordinate formulations of reactive scattering, the total wave function is expanded
in Wigner rotaion functions of three Euler angles describing the spatial orientation of the plane
formed by the three particles and basis functions of two internal hyperspherical angles, and then
the dependece of the hyperradius, p , is determined by propagating the set of coupled channel(CC)
differential equations from small p, where the solutions must be regular, to large p where they can be
projected onto the arrangement channels to determine the scattering matrix. In the methods using
those hyperspherical coordinates which treat all of the particles symmetrically[1, 2, 3, 4, 5, 6, 7, 8],
one obtains “surface functions,” the basis functions of the two hyperangles which cover the surface
of the internal coordinate sphere or “hypershphere,” by solving a two dimensional (2D) Schrédinger
equation. This equation, which is discussed in more detail later in this paper, depends parametrically
on p and must be solved at many values of p. In adddition, a large number of these surface functions
must be obtained at each p, so that it is important to have an efficient method for finding them.
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The first accurate 3D reactive scattering calculations using hyperspherical coordinates used finite
element methods (FEMs)[3, 4, 5, 9, 8, 10, 11] to solve the surface function equation. Although these
FEMs give fairly accurate results, they work inefficient and are not robust. Another typical method
in calculations on several reactions is the discrete variable representation (DVR)[5, 6, 14, 15, 16].
DVR is most efficient at small p where the surface functions are delocalized, however at large p,
where the surface function are highly localized, the DVR points still cover the whole space, thus
it becomes much less efficient. In a few cases the DVR is even more expensive than the FEM
because of the need for many grid points in a small, localized region. Other methods such as the
finite basis representation (FBR)[1, 2, 7] of Launay and LeDourneuf, and the method of Wolniewicz
and Hinze[29] are also efficient only at large p. Analytic basis method (ABM) uses primitive basis
functions centered in the arrangement channels, it gives very compact representation and thus very
efficient at large p, but it is inefficient and tends to diverge at small p.

In this paper, we will present a Peridoical Distributed Approximating Function (PDAF) method,
which work very efficiently at both small p and large p. The PDAF method is similar to the
method of Iyengar and Parker’s method[12], but in their method, they solve the 3D wavefunctions by
diagonilzing a large real non-symmetric matrices, which is practical only for identical-atom system.
Our new method solves only the surface functions, and we transform the Hamiltonian matrix into real
symmetric matrices. Similarly but in a simpler way, we make the Hamitonian symmetry-adaptive,
thus increses the efficiency of the computation. We employ the Distributed Approximating Function
(DAF) concept, but we do not use any existed DAF formula, on the other hand, we proposed the
PDAF directly, which turns out to be more accurate and efficient. The sequential diagonalization-
truncation technique[13] is employed to project the large-size Hamiltonian matrix into a smaller
matrix using a projection matrix which is obtained by solving an one-dimensional eigensystem, thus
significantly reduce the memory requirement and the computation time.

This paper is organized as follows. In Sec. 2 we introduce the PDAF's and derive their formulae.
In Sec. 3 the ro-vibrational triatomic Hamiltonian in the APH coordinates system is presented and
the symmetrization and reductions of the Hamiltonian are illustrated. The PDAF approach is then
tested in Sec. 4 . The surface functions of FH, scattering are computed, and the eigen-energies and
the matrix elements are calculated and compared to those of the existed methods( FEM, ABM and
DVR ) in Sec. 5. Sec. 6 makes a conclusion of this paper.

2 Periodic Distributed Approximating Function (PDAF)

From the definition of the Dirac Delta function we know that
f@) = [ s =o' )
— 00

for any continuous function f(z).

Now we condsider periodic functions, f,(z), with period 2. The present method can be trivally
extended to periodic functions with an arbitrary period. With this assumption the equations are
slightly simpler and easier to interpret. Expressing the integration range as an infinite sum of
segments of length 27 we can write

0 27
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Interchanging the integral and sum then using the periodicity of f,(z), we have
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where
dp(x — ') Z §(x — 2’ — 2mm) (5)

is the periodic delta function. Since d(z) is an even function, it’s easy to see that d,(x) is even and
is also periodic with a period of 27r. Taking the k'" derivative of f,(z), we have,

2m
@)= [ o - afy s ©)
0
Now expand both f,(z) and §,(z — 2’) in a fourier series
n Ao S ’
5p(x—a:)—7+nzz:lancosn(;z:—x) (7)
b |«
fplz) = 5} + Z by, cosnx + ¢, sin nz. (8)
n=1

Substituting f,(x) and J,(x — ') into (4) and using the following identities

" cos[m(z — )] cos(nz’)dx’ = Omnm cosnz n 70 (9)
0 o 5mn277 n=~0
2
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we obtain expressions for the expansion coefficients
1
a=a,=—, n=12... (11)
T

Thus we get the formula for the periodic delta function,

bp(z —a') = % (% + Z cosn(x — :1:’)) . (12)

The partial sum of the periodic delta function is the continuous Periodic Distributed Approxi-
mating Function (PDAF)

1
) = —
p.M (T — =

—i—Zcosna:—m ] (13)

which is the final formula used in this work. We also note that as M increases the PDAF approaches
the periodic delta function, i.e.

dp(x —2') = lim &, p(z—2'). (14)

M —o0

One may obtain the fully discretized PDAF by approximating the integral over z’ in (6) using a
trapezoidal quadrature

£ Za“” ;) fo(z;) Az (15)
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where N is the number of grid points, Az = %” and z; = (j — %)Aaz Note the coordinate = was
also discretized using the same grid points as used in the numerical quadrature. This choice of
quadrature points is particularly useful if we are solving differential equations with singular points
at the two ends (z = 0 and z = 27). As the grid points are fixed, 61()k])\/[(x) acts like the k" derivative

operator. If we treat f, as(x) as a column vector [fj = f(z;)], we have

where
k k
Dl(j) = 51(7’])\4(301- —xzj)Ax (17)

is the k*" derivative operator in matrix form. The differential operators, D*) are periodic Toeplitz
matrices independent of the periodic function f,(z), and depend on only one parameter M. The

column vector f ‘ur is the PDAF approximate to the k" derivitive of f,(z), i.e.

i kfp( z)| . (18)
T=T;

For large M the PDAF is a more accurate representation of the Dirac delta function. However, for
small M the integrand of (6) is smoother and the trapezoidal rule is more accurate. Hence, there
is an optimal value of M which is chosen to make the agreement as close as possible. Through
numerical experimentation (see Sec. 4 ) we found that M = N/2, gives the most accurate results,
where N is the number of grid points in the 27 range. In this paper, we will use D), DM and
D®) | consequently we need 51(70])\4, 5[(5])\/[ and 51(3])\4. They can be obtained by simply differentiating
(13). The general results for any k are,

(—1)%%224:1 nk sin nx k odd
5(k1)\4('77) = (19)

1 kq M k
500k +(=1)22 > n"cosnz k even

We see that S;k])v[(a:) are even(odd) periodic functions when k is even(odd). The functions, 61(7?])\4 (z),

51()2\/1(:1:), and (5;21)\4(:13) are shown in Fig. 1. In both panels of Fig. 1 N = 20, in the left panel
M =5 and in the right panel M = N/2 = 10. One can readily see the symmetry of each PDAF.
Comparing the left and right panels in Fig. 1 we see that increasing M makes the PDAFs in the
right panel sharply peaked and a better representation of the respective Dirac Delta function and
its derivatives.

3 Symmetrization and Reductions of the Triatomic Hamil-
tonian in APH Coordinates

3.1 APH Hamiltonian

The detailed reactive scattering theory formulated in adiabatically adjusting principle axes hyper-
spherical (APH) coordinates has been presented previously[3], and we repeat only the essentials
here. In this approach, one needs sector adiabatic basis functions ®”, of the APH hyperangles, and
in this work we choose ®”, to satisfy the equation

HY (0, p¢) = E7x(pe) 2% 5 (0, X; pe) (20)
where
H= i 4 2s‘1n20 0 + La—Q + 15 + CR2A% + V(pe, 0, %) (21)
N 2;¢pE sin 20 00 90 sin%0 Ox? 8,up£ pe,Us X

| eq:Schrodinger

eq:H
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Figure 1: 51()]3)\4 (z) for different M, where the number of grid points (N = 20) is used in both panels.
In the left panel M = 5 and in the left panel and M = N/2 = 10. Note 5;?])\4 and 51(3])\4 are symmetric

about z = 0, while 51()1])\4 is anti-symmetric. Increasing M makes the PDAFs sharply peaked and a
better representation of the respective delta function and its derivatives.

The first term in the Hamiltonian H is the “hyperspherical” part of the kinetic energy operator, and
1

¢= ppz (1 — sin ) (22)

is part of the centrifugal potential. The potential energy V used here is the whole potential energy
surface (PES) of Brown et al.[18], and the £7 , are the eigenenergies. The variable 6 is the APH
bending angle; its range is 0 < 6 < /2, with 7/2 describing linear configurations and 0 describing
triangular symmetric top configurations. x is the APH kinematic angle measured from the “in-
cident” arrangement channel; it measures motion between arrangement channels, and its range is
—m < x < m. The angles 0 and x cover the upper half of the surface of an internal coordinate sphere
which we loosely call the “hypersphere”. (More precisley, the surface of the hypersphere is the 5D
space covered by 6, x, and the three Euler angles which describe the orientation of the principal
axes in space.) As one can see from (20), the surface functions A and eigenenergies Ep depend
parametrically on the hyperradius p¢. They are needed at a set of p values {p¢},& = 1 2,...,n,,
which are used as adiabatic basis functions for expanding the full wavefunction in each sector Where
p € [(pe +pe—1)/2, (pe+1 + pe)/2] for sector €. As shown elsewhere[3] this adiabatic-by-sector (or
sector Adiabatic) wavefunction gives rise to a set of coupled second order differential equations.
These Coupled-Channel (CC) equations must be numerically integrated from a small value of the
hyperradius p where the full wavefunction is zero to a large value of the hyperradius where asymp-
totic boundary conditions are applied. The 154%/8up? term in (21) comes from removal of first
derivative terms from the coupled channel (CC) equations; it is a constant in this equation and can
be folded into the £ a if desired. In the numerical calculations we used atomic units throughout and
therefor Planck’s constant divided by 2w, h = 1. p is the three-body reduced mass of the system
arising from mass-scaled coordinates. The three quantum numbers (A, p, 7) labeling Ep and <I>T A
are: A the component of the total angular momentum along the APH body-frame (BF) z-axis (the
axis of least inertia of the three-body system), p the parity quantum number with p = 0 or 1, the
parity of @ﬁ,A under the parity transformation x — x £ 7 is (—=1)?, and 7 = 1,2,...,ne, which
indexes the solutions in order of increasing energy.



sub:symAPH

We note that (21) differs from equation (164) of Reference|[3] slightly because it omits a rotational
term of the form (A + B)R*[J(J + 1) — A%]. As pointed out by Launay and LeDourneuf [1], this
omission gives surface functions &% 7.a Which are independent of the total angular momentum J, so
many fewer surface functions must be calculated. The omitted term is easily included in the CC
equations along with the remaining Coriolis and asymmetric top terms. This surface function basis
is expected to produce rapid convergence of the CC expansion to the exact solution provided trian-
gular symmetric top (6 = 0) configurations are unimportant, which is the case for many reactions.

The full wavefunction must be continuous and regular everywhere. This requires that ®” 7.4 must
be a continuous function of xy at —m and 7 and regular everywhere. For systems with two or three
identical atoms, the surface functions have other symmetries in addition to the parity p already
defined and these symmetries will be incorporated. The surface functions are real and normalized
according to

/ dx/ 0, x; pe)®Y \ (0, X; pe) sin 20d0 = 50,60y, (23)

We will use the PDAFs to solve the time-independent Schrodinger (20). To make it easier to
discuss, we define the following terms:

4 0 0
Hy = " sin26 00 Sm205‘0 (24)
82
He = —32 (25)
15h2
Hy = 8002 A +V(pe, 0, x). (26)

With these definitions the surface function Hamiltonian, (21), is

n? 1
H=— |Hy+ H,| +Hy. 27
2,up§ [ o7 Gin%e X} v 27)
Since a discretized Hamiltonian is a matrix operator, we can simply treat it as a matrix. In the rest
of this paper, A Hamiltonian and a matrix will be used interchangeably. For example, when we say
that H, is symmetric, that means the the matrix of discretized H, is a symmetric matrix.

3.2 Symmetrization of APH Hamiltonian

The Hamiltonian H in (27) is real but it is not symmetric, because Hy is not symmetric. So if we
just use this form, we have to solve a complex matrix eigensystem. A large amount of memory and
increased CPU time is required to solve large nonsymmetric eigensystems. Since both memory and
CPU time are critical in the computation of APH surface functions, we need symmetrize H. Hy is
the essentially non-symmetric part of H, and it is not periodic. So we first extend Hy to a periodic
form and symmetrize it. Then the result is extended to symmetrize H.

One might have noted that Hy is not periodic because 0 < 6 < 7, but it can be easily extended
to a periodic form. Suppose Hy satisfies the following elgensystem

Hyp(0) = Ay () (28)

The solution %(#) must be regular everywhere, which leads to the the boundary condition,

=0 (29)

0=3

W, " W

| eq-eigen-theta




so we can extend the domain of 1(#) to the full real space by defining,

'(ﬁ(e) = ¢(7r—9),
PO +kr) = ¥(0), 0<

Now t(6) is a periodic function with a periodicity of 7. Note that

Hy(6) = H(r—0) (32)
Ho(0+kr) = H(0), k=0,+1,42, . (33)

One can see that the extended () satisfies (28) for any 0, i.e. the domain of Hy is also extended
to the full real space although it keeps its original form.

To get the symmetric Hy, we transform it in two steps. First we introduce a continuous mapping
function,

0(v) = %(1 — cos(y + 2kn)) — km, k=0,%1,%2, ... (34)

We note that the first derivative of this mapping is also continuous, but its second derivative is dis-
continuous at 8 = k7 /2. This problem is handled by the mapping function itself: we use a uniform
grid scheme for v, it is equivalent that we use a non-uniform grid scheme for § which is dense near
the singularities (6 = kn/2) and sparse otherwise, as shown in Fig. 2 . Since more grid points are
used in the § = kx/2 region, high accuracy can be obtained despite the discontinuity.

Substituting 6 with ~ in (24), we obtain,

Ho(v) = - % sin 20(2) sin 7y 827 Slr;iie'(yw % (35)
Hy() is very similar to Hy(6) except that it has a periodicity of 2.
In the second step, we define transformation function
T = /sin 20 sin~y (36)
We also need
" = T (37)
T o= (38)

v/sin 260 sin y

and it is important to note that the singularities in this inversion are avoided by our choice of
quadrature (see Sec. 2 ). Applying Tt to the (28) and insert identity T'T between Hy and 1(6),
we obtain

H,Ty(0) = XT¢(0) (39) |eq:SymThetaEigenEqua

where

H, = T'Hy(y)T!
64 1 0 sin26(y) 0

1
_P\/SiHQQ(’y)Sin’y% sin ~y 3_’7\/Sin29('y)sin7

is a symmetric Hamiltonian.




Figure 2: Grid mapping function (y). The uniform grid scheme in 8 corresponds to the non-uniform
grid scheme for 6§ which is dense near the singularities( § = k7/2) and sparse otherwise. fig:theta-gamma

The eigenfunction of H, is

$(7) =T(1)$(0(v)) (41)

which is always zero at 7 = 0,7, or 27. It is not hard to see that extending () from 0 <6 < % to
0 < 0 < 7 introduces undesired degenerate eigenvalues. If we reduce matrix H, from 0 <6 < 27 to
range 0 < 6 < 7 using the symmetry of ¥, we can eliminate those undesired degenerate eigenvalues.
We use a grid scheme similar to the one for PDAF, say,

.1 .
= -5)A j=12N, (42
where 2N, is the number of gird points, and Ay = ;T’T = - is the distance between two consecutive
Y ad

grid points. For simplicity, we use a subscript j to denote a term evaluated at ;, and we also define
the following terms,

1
tj = . ; (43)
sin 26(~y;) sin-y;
in 20(~;
s; = sin 260(v;) (44)

sin 7y,

Applying the derivative operator D) in (17) (substitute = with ), the eigen-equation (39) can be



written as,

My = ——5t:D 5D}t

2N 2N

J
N
1 -
= Z _FtiDz(k) (D( ) + Dl(c %N—jﬂ)tﬂpj

where

T 1 1 -
HVU - Z 7_t D (D( ) + Dl(c %N—j-{-l)tj (46)

In the above derivation, 12)]- = 1/32N,j+1, t; = tan—j+1, 8 = San—j+1 and the periodicity of DWW are
applied. One should note that in (45) 1 S t <N, and 1 <4 < N,, which means 0 <y < 7, so HT
is reduced to the original domain. H7 is the desired form for Hy and it is easy to show that HY is
a symmetric matrix.

Similarly we can transform and discretize H to get the symmetric form of H. Using (27) the
Schrédinger (20) reads,

h? 1

¢ Sin

Left multiply T to both sides of the above equation and insert identity 7T, we obtain

H®. (0, %; pe) = EP, (0e)BoA (6, X; pe) (48)  |eq:sym-Schrodinger
where
Hszh—z[HwLH}jLHv (49)
2,up§ T sin?g X
and

B\ (v, X pe) = TO2, (0, pe) (50)

The independency of y(or 6) and x is used in the derivation. After discretization, H® is symmetric,
because HY is symmetric, Hy is diagonal, and H, is obviously symmetric. Thus we obtain the
symmetric form of APH Hamiltonian, H*.

3.3 Reduction of the H, using symmetry

If the Hamiltonian H?® of a system commutes with a point group G, i.e. the potential Hy is
symmetric under the operations of GG, we can reduce the size of the Hamiltonian matrix by transform
the Hamiltonian into the irreducible representations of the G.

Let G = {R}, where {R} is a set of symmetry operations such as rotations and reflections.
The order of G is h, i.e, G contains h symmetry operations, R. Suppose H, satisfies the following
eigen-equation,

H 071 () = 2071 () (51)



where ¢/*# transform according the k-th column of the z-th irreducible representation of G, i.e.
@4 is the k-th basis function for the 7-th ireducible representation, and X is the eigenvalue. We
will discretize (51) using a uniform grid scheme, say,

X; = (J—1/2)Ax, j=1,hN, (52)
where hN, is the number of grid points, Ay = hQT’T is the distance between two consecutive grid

points, and clearly N, is the number of grid points in interval [0, 27”] . Now (51) can be written as,

ANy
D Hy (i x) ¢ () = M (6), k=1,1 (53)

j=1

where [, is the dimension of the z-th irreducible representation. The the full range of x can be
generated by applying each symmetry operation R on range [1, Nx]|, thus we can write (53) as

NX
SO Hylxi Rxi)¢"™ (Bxg) = M (), w=1,1. (54)

j=1 R

From the well-known relations [23],

o (R1y) = Y ol (00 (R) (55)

0

(2]

where I' ¢ (R) is the (x', 5)-th element of the z-th irreducible representation matrix of R, we have,

0 z _
¢[z,n] (Rx) Z (b[zw ](X)FLO]’,{(R 1)
120
> o I0r L (R)
HO

3 ol 0TE N (R) (56)

The following obvious properties of FE:O] .(R) are used in the above derivation,

-1

TR = T (R) = T (R) (57)
Plug (56) into (54), we obtain,
NX
0 j ] * Z.K
SN H Rx) D 0BT (R) = Mgl (), =1L (58)
ji=1 R K0

(58) is a set of coupled equations. It would be concise if we write it in a matrix form. For triatomic
reactions, the relevant irreducible representations are either one-dimensional or two-dimensional.
For the one-dimensional case, kK = k' = 1, so we simply omit them. Hence we have,

Nx
D H (i x5) ¢ () = Al (xi) (59)
=1
where
Hy(xi,x) = 3 Hy(xi, Ry )T (R) (60)
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is the reduced H,, in an one-dimensional irreducible representation.

For the two-dimensional case, we have,

NX
” ¢[Z»1](Xj) ¢[z’1](Xi) - _
Z HX (Xi7 X]) ¢[Z»2](Xj) = A ¢[z,2}(Xi) (61) | eq:red-2D-Hchi |
j=1
where

Hyy(xixs) = Y Hy(xi Rx; )T (R) (62)

R

is the reduced H, in a two-dimensional irreducible representation. It has the same form as in the one-
dimensional case, but it is a 2 x 2 matrix. H, can be proved symmetric if the associated irreducible
representation matrices are real (see Appendix A). There are three types triatomic interactions:

ABC All atoms are distinct. The point group corresponding to this type is Cs

AAB Two atoms are identical, but the other is different. The point group corresponding to this
type is Ca,

AAA All atoms are identical. The point group corresponding to this type is Cg,

For all the above groups in each type, the irreducible representation matrices are all real, so H} is
symmetric. We provide the representation matrices in Appendix B for reference.

One should note that if we confine y in [0, QT”], H} is a N, X N, matrix in an one-dimensional
irreducible representation and a 2V, x 2N, matrix in a two-dimensional irreducible representation.
When the eigensystem of (59) or (61) is solved, eigenfunctions of range [0, 2] is obtained. One can
employ (55) to compute the eigenfunctions of the full range of x.

One can see that using H, instead of H, doesn’t affect the symmetrization of H in Sec. 3.2 .
Hence we can use the following definition of H® in the rest of this paper without confusion,

S h2 s 1 s -
H® = m [H7 + —QHHX} + Hy (63) |eq.sym—H—group

Sin

3.4 Reduction of the Hamiltonian using projection

sub:red-prj| Suppose we discretize H* using Ny grid points in x coordinate and N, in v, the size of the Hamil-
tonian matrix (N,N, x N,N,) to be diagonalized is very large for systems of physical interest

when highly accurate eigenvalues and eigenfunctions are needed. On the other hand, we need to
reduce the CPU time and memory as much as possible. Since we are interested in only a few of
the lowest eigenstates, we may waste a lot of time and memory to compute the full eigensystem.
To reduce the CPU time and memory allocation the reduction of the Hamiltonian matrix needs to
be considered. First we find a nearly complete basis for the desired lowest eigenvectors, and then
we project the Hamiltonian matrix to this basis: H cut — PHSP, where P is the projection matrix
and P is the transpose of P. The size of H" is small. We solve the eigensystem of H** and map
it back to the original basis to obtain the approximate eigensystem of the H. Details are given below.

Noting HY depends on only v and % is a constant, and introducing the identity matrix I,

and I, in the v and x spaces respectively, we can rewrite the Hamiltonian H® in (63) in the cross
product form,

2 2
1
H® = h—H’"@I + ( h —I

/= QH +Hyl,®1I 64
QMPE Y X Qupgsin26 ¥ X Viy x) (64)
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Now H? is divided into two terms

h2
H] = WH,YQQIX (65)
. 1
H; = —— I, H,+ HvI,®I, (66)
2#,05 sin?0"”

The first term, H7, is independent of x, while the second term is dependent of both v and . Since
we are interested in only the lowest eigenvalues and eigenfunctions of H?®, and Hj is independent
of x, we can expect to get accurate results using only a subeigenspace of H5 instead. We solve the
eigensystem of H5 for each fixed ;,

H3 ('YJ)O% = AW a  J=1,N, (67)

where N, is the number of the grid points used in v and ()\}?,}”) is the k-th eigenpair for the
given ;. Then we drop the eigenvectors with large eigenvalues. The rest of the eigenvectors consist
of a nearly complete basis for the lowest eigenvectors of H®. In our implementation, we sort all
the eigenvectors obtained above in ascending order of eigenvalues, and choose only a number of
the eigenvectors corresponding to the smallest eigenvalues. After normalization they compose the
projection matrix,

Py
P

where
P, = (af,al,... o ) (69)

Because P is an orthonormal, nearly complete basis for the lowest eigenvectors, 6}; AV X5 pe),s
we have

PPE\(7,X: p¢) = T70 (7, pe) (70)
Substituting 61; A7, x5 pe) in (48) and left multiplying P at its both sides, we get,
H, (7, 3 0¢) = E75(pe) UEA (7, X pe) (71)
where
H® = PHP (72)
and
W2 (16 pe) = PBIA (1,6 p¢) (73)

We can see that P is a NyN, x N)C(ut matrix, where

Nevt = Zm% (74)

so HeU is a N x N9 matrix. Its size is much smaller than the size of H® if N°** is much smaller
than N, N, , which is the case if we want only a few eigenvalues. N should be as small as possible
and it should be decided in the convergence test.

Knowing that H® is symmetric, we have
H® = PH*P = PH°P = H°" (75)

Thus H" is symmetric.

12
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Figure 3: The number of good eigenvalues reaches maximum when M = N, /2 (N, = 32), where M

is the parameter in PDAF 5;’?1)\/[(:1:), and N, is the number of gird points in range (0, 2m).

4 Numerical Tests

Numerical tests are carried out in three aspects. First, we test the and decide the parameter M in
PDAF 51()1’“])\4. Then we test the H with different irreducible representations of varies groups. The
accuracy of HY is tested at last.

4.1 Test of PDAFs

We tested PDAF's using different periodic functions, all of them show the similar results. Here we
present only the test with the eigenvalues of H, . Using the PDAF matrix defined in (17), we obtain
the discrete presentation of H,,

HXij = Z D(Q)
= 25@’ Xi)Ax (76)

where N, is the number of grid points used in (0,27), Ax = 27/N, and x; = (j — 3)Ax. We
know that the correct eigenvalues of H, should be 0,1,1,4,4,--- ,k% k% ---, so it’s easy to check
the difference between the computed eigenvalues and the exact ones. We set the criteria of 1076 as
the maximum tolerable error, then we can count how many good eigenvalues can be obtained. One
typical result is shown in Fig. 3 , in which we set N, = 32 and varies M from 1 to 35. One can see
that when M = N, /2, almost all eigenvalues are good. This suggests the nearly optimal choice of
M.

4.2 Test of H;

Test of H, are done in all aforementioned irreducible representations of all point groups. All of them

give ideal results. Here we present only one typical result computed using Cs, group, because only

13



(5, is used in F'H5 reaction calculation.

Similar to H,, we can obtain the PDAF presentation of H}. Note that Cy, has only one-
dimensional irreducible representations, so we should use (60) for H}. We obtain the discrete
presentation of Hy as,

NX
HXij == Z Z 5;(31)\/1(% - RXJ‘)F[Z] Ax

k=1 R
Note that the grid scheme is defined in (52). We set N, = 8, and the eigenvalues \;, for each
irreducible representations are computed, and 1/\; are shown in table 1 for easy comparison. One
can see that if we combine the results from all the irreducible representations, we will obtain the
(approximate) eigenvalues 0,1,1,4,4,---,k? k?,---, which is obtained from H,. And we also note
that the degenerate eigenvalues in H, are no longer degenerate in H,.

(77)

k Al Bl A2 BQ

1] 0.00000052456066 2.00000000000009  0.99999999999989  1.00000000000007
2 | 2.00000000000007  3.99999999999997  3.00000000000004  3.00000000000002
3 [ 3.99999999999999  5.99999999999999  5.00000000000000  5.00000000000000
4 1 5.99999999999999  7.99999999999999  7.00000000000000  7.00000000000000
5 [ 7.99999999999999  10.0000000000000  9.00000000000001  9.00000000000001
6 | 10.0000000000000 12.0000000000000 11.0000000000000 11.0000000000000
7 | 12.0000000000000 14.0000000000000 13.0000000000000  13.0000000000000
8 | 14.0000000000000 22.6274169979695 15.0000000000000 15.0000000000000

Table 1: v/ Ak, square roots of eigenvalues of H, in irreducible representations of group Cy,| tbl

zeigenHchiC2v

4.3 Test of H]
H in (46) has the same eigenvalues as Hy in (24). If we rewrite Hy as

8 0 99 0
= ————sin20—
sin 26 020 0260
we can see that the eigen-equation of Hy, (28), is a Legendre differential equation if we let the

eigenvalue,

(78)

A =8I(1+1) 1=0,1,.. (79)

Thus H7 has eigenvalues of 8l(l+1). To evaluate the accuracy of the computed eigenvalue, we define
Si(A;) as follows,

1=0,

>0 (80)

—lg ||
Si(N) = {_1 A —8I(14+1)
SESY)

where A; is the [-th computed eigenvalues, and S;(\;) gives approximate number of significant dig-
its. Fig. 4 shows the results when we set N, = 16,32,48 and 64. One can see that for each N,
there are about N, /3 of the eigenvalues are of high accuracy. This is accurate enough for the F H,
calculation, because typically the order of the Hamiltonian matrix is about 1000 but we wants less
than 300 eigenvalues.

It is worth to mention that we also tested the non-symmetric form, Hy, using PDAF presenta-
tion. Although we can get as very high accurate results as we get from H, or HY, we still choose
the symmetric form, because the non-symmetric matrix will cost too much time and memory to
diagonalize. Moreover, if when we add potential, the accuracy the of the non-symmetric form will

drop to the accuracy of the HJ.
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Figure 4: Accuracy (number of significant digits) in eigenvalues of H7. For all N,, the smallest
N.,/3 eigenvalues are of high accuracy.

5 Calculation of FH; System

In this section we report the results of PDAF calculation s of surface functions and the matrix
elements, and compare them with the results of the DVR and ABM methods. The system chosen
as a nontrivial example is the F+Hy — HF+H reaction; its treatment requires generation of a large
basis of surface functions. The potential energy surface (PES) used is the one of Brown et al.[18]
commonly called the T5A surface, and we choose the zero of energy to be at the bottom of the
asymptotic HF potential wells. This PES has been used in many calculations[1, 19, 5, 14, 20, 21, 22]
on this reaction, and plots of the PES and surface functions showing their appearance in APH co-
ordinates have also been published. Arrangement 1 or i(initial) is that of the F+H, reactants.

The calculations are for A = 0 and even parity (p = 0) and include all functions connecting to
the even j rotational states of the F+Hs arrangement. Because of the symmetry due to the identical
H atoms, this only requires including in the PDAF calculations the A; irreducible representation,
in which the surface functions are even under reflection about x = 0.

5.1 Gird Size and Mapping

The grid sizes(the number of grid points),N,, N,, and N°** are decided in the convergence test. We
present only the results here. To reach five significant digits in the lowest 100 eigenvalues for any

%3

N, = [25.852+5.85119p¢ — 0.130102p — 0.0042517 % p | (81)
NeUt = [ 1428.06 + 29.2007p¢ — 6.37755p7 — 0.119048 * p | (82)
N, = |4rmax(N,)]/h (83)

where h is the order of the associated symmetry group. To get the N,, we use the maximum of N,
because it can make IV, identical for all p¢, thus make it easy to compute the overlap matrices. And
using the maximum N, doesn’t significantly increase the computation time, because we reduce the
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matrix size according to N as we discussed in Sec. 3.4 .

Although NV, ’s are identical to varies pg, N,’s are not. So before we compute the overlap matrix,
we have to map the wave functions to a uniformed grid set to reduce the computation time on the
overlap matrix.

Let N be the uniformed number of grid points in v, N, is the original number of grid points.
Applying (15) to the wave function

2N,
0\ (vixipe) = > Spar(y — V) PE A (ks X5 pe) Ay
k=1

{0p,00 (Vi — ) ®E A (ks X3 Pe) + Op s (5 — 270 + 1) B (2 — iy X3 pe) } Ay

Il
#1147

= [0p,01 (75 — &) + Opar (V5 — 27 + Y1) @2 (e, X5 pe) Ay (84)

~
Il
-

where Ay = w/N,,, and ~;,7, represent the coordinates in the above two grid schemes respectively,
say,

1 u
no= =57y (85)
1
o= (k=35)Ay (86)
where Ay* = 7/NY
5.2 Eigenvalues
The atomic masses used are:
mass of F = 18.9984032 a.u. (87)
mass of H = 1.00782503 a.u. (88)

The calculations were performed at five representative p values ranging from the smallest to the
largest values needed in our reactive scattering calculations[5, 14]. The precise values of p chosen
have no particular meaning, and some were chosen simply because the convergence of the DVR
method had already been studied there.

The results are given in Table 2 through Table 6 for the five values of p chosen. In each the
energy eigenvalues of the highest ten important or open surface function states are given in eV.
The omitted lower eigenvalues always agree even better than those shown. Also shown is £(n), the
average of the first n eigenvalues. This gives a convenient measure of the overall agreement of the
methods.

5.3 Matrix Elements

The APH surface functions ®, (v, x; pe) are “sector adiabatic”; that it, they change from sector to
sector, but are independent of p on a sector. Thus, when the APH wave function is substituted into
the Schrédinger equation, the resulting exact coupled channel or close coupling equations are of the
form|3]

0%  2uE 2p ~ >
5+ |0 = B S @RI D6 (89)
70 A0
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PDAF ABM DVR FEM
6.9176 6.9177 6.9177 6.9177
7.0341 7.0341 7.0341 7.0342
7.1299 7.1298 7.1296 7.1299
7.3044 7.3042 7.3038 7.3043
7.4934 7.4932 7.4927 7.4933
7.7007 7.7007 7.7008 7.7009
7.9227 7.9219 7.9202 7.9222
8.0786 8.0789 8.0786 8.0791
8.1548 8.1524 8.1475 8.1529
8.2495 8.2502 8.2494 8.2503
) 7.5986 7.5983 7.5974 7.5985

C 50000 otk w NN

|
o

Table 2: PDAF, ABM, DVR, and FEM surface

function energies £, and average energies in eV

thl-E2.2] at p=2.2ay.

T PDAF ABM DVR FEM
11 1.9845 1.9845 1.9845 1.9849
12 1.9975 1.9975 1.9975 1.9979
13 2.0514 2.0515 2.0515 2.0519
14 2.1090 2.1090 2.1090 2.1093
15 2.1275  2.1275 2.1275 2.1281
16 2.1352  2.1352 2.1353 2.1357
17 2.1993 2.1994 2.1994 2.1998
18 2.2578 2.2578 2.2578  2.2584
19 2.2730 2.2730 2.2730 2.2737
20 2.3197  2.3197 2.3197 2.3204

£(20) 1.8551 1.8551 1.8551 1.8554

Table 3: PDAF, ABM, DVR, and FEM surface
function energies £, and average energies in eV

at p = 3.0375828 ao.

T PDAF ABM DVR FEM
91 2.0699 2.0701 2.0701 2.0720
92 2.0721 2.0734 2.0727 2.0760
93 2.0864 2.0896 2.0869 2.0916
94 2.0941 2.0941 2.0943 2.0961
95 2.1087 2.1107 2.1093 2.1132
96 2.1215 2.1232 2.1220 2.1267
97 2.1487 2.1509 2.1495 2.1549
98 2.1643 2.1650 2.1645 2.1672
99 2.1793 2.1806 2.1799 2.1833
100 2.1892 2.1892 2.1893 2.1918

£(100) 1.3974 1.3977 1.3975 1.3985

Table 4: PDAF, ABM, DVR, and FEM surface
function energies £, and average energies in eV

at p = 4.9747966 ay.



T PDAF ABM DVR FEM
91 2.0559 2.0564 2.0569 2.0679
92 2.0749 2.0754 2.0760 2.0928
93 2.0980 2.0981 2.0981 2.1023
94 2.0985 2.0990 2.0994 2.1141
95 2.1098 2.1098 2.1099 2.1148
96 2.1194 2.1196 2.1198 2.1278
97 2.1268 2.1273 2.1278 2.1443
98 2.1538 2.1542 2.1543 2.1537
99 2.1551 2.1551 2.1551 2.1608
100 2.1597 2.1602 2.1608 2.1621

£(100) 1.3788 1.3788 1.3790 1.3811

Table 5: PDAF, ABM, DVR, and FEM surface
function energies £, and average energies in eV

at p = 7.2989993 a.

T PDAF ABM DVR FEM
91  2.0747 2.0747 2.0748 2.0805
92 2.0774 2.0779 2.0782 2.0863
93 2.0957 2.0964 2.0974 2.1051
94 21010 2.1010 2.1009 2.1065
95 21153 2.1153 2.1154 2.1233
96 21189 2.1194 2.1197 2.1284
97 21250 2.1252 2.1253 2.1315
98 21461 2.1470 2.1482 2.1541
99 21542 2.1545 2.1546 2.1562
100 2.1558 2.1559 2.1560 2.1564

£(100) 1.3791 1.3791 1.3792 1.3812

Table 6: PDAF, ABM, DVR, and FEM surface
function energies £, and average energies in eV

tbl:E9.0| at p=9.0ay.



The matrix elements are obtained in Reference [3] as,

Jp I J AJ
(DI D i [Hi @850 Ddy)
2

P
= p_ggTA (P§)5TT° 5AA°
J I J
+0a00(@2% |V (0,0, x) — p—gV(pgﬁ,x) )
o’/P pIP A_—Bﬂ I +T.| /2, D7P 90
(P A DA 5 (Jz — J) + Te| @00 Do) (90)

where pedenoted the £ hyper radius we sampled from interval [pmin, Pmax]- pe is given by

pe = [pmin + (€ = 1)Ap1](1+ Apg)* ! (91)

This basis code spaces sector centers logarithmically. Given a sector with sector center pg, we
evaluate matrix elements at three rho values on at

1+

- /43 12 pe (92)
+

p3 = Pe 2p§+1 (94)

All the matrix elements in (90) are independent of E, so that they can be calculated once, stored,
and used at many scattering energies.

Normalization of the wave functions <I>}T” A7, x; pe) should be conducted before computation of
the matrix elements. The normalization factor N can be calculated in the irreducible representation
easily according to (23) as shown below,

2w /2
1 = N/ dx/ dﬁsin29<1>1;A2(9,X;p§)
0 0

2w ™
= N/ dx/ d’y% siny sin 2092, % (v, x; pe)
0 0
AN, N,
™ . . 2
= NY D AxAysiny sin20(y) 87, (v, x5 pe)

i=1 j=1

Ny N,
™ . . _ _
= NDD D AxAygsing;sin20(y;) 87, (v, B xis pe) 074 (15, B xas e)
i=1j=1 R

N, N,
m™ . . 2 2
= NZZZAXAVZ sin y; 51n29('yj)r[z] (R)@I;A (i, Xi3 Pe)
i=1j=1 R
Ny N,

T . .
= RN AxAysiny; sin26(y,) 82, (v, xis pe)

i=1j=1

Thus

|
NI=

Ny N
1 e . 2
N = ZhﬂAxA'y Z Z siny; sin 20(y; ), (5, x5 pe) (95)

i=1j=1
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Figure 5: Comparison of the Sum of potential matrix elements using PDAF, ABM and DVR

Assuming ®?, (v, x; pe) is normalized, we can start computing the matrix elements. The first
term on the right-hand side of (90) is just a local internal energy which together with the E term
on the left-hand side of (89) makes a local wave number.

The second term of (89) is often called potential matrix elements. It is small on the sector and
can be evaluated with the same quadratures used in getting the surface functions. Similar to the
way to obtain the normalization factor, we can get the formula of the potential matrix elements,

2
P
(@R (pe) | V(p) — pgwpg) | ®75 (pe))
1 N, N,
= ZhﬂAxA'yz; Z; sin~y; sin 260(y;) x
1=1 3=
2
P
V() = 5V (pe)

%, (vj, X5 pe) %, (75, X33 pe) (96)

The Coriolis term can be simplified as
(@78 Dy T @800 Dby
—n? cosf 0
— (I)P . (bp
2402 < ™ |sin? 6 Ox TOA0>
*[(1 4 6a0) (1 + 8p00)] /2
X [)\+(J, A)6A07A+1 - )\7 (J, A)6A07A,1
FA(LA)(=1)THATPEy 1] (97)

where

Ar(JA) =[(J £A+1)(J F A)]? (98)
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and

cosf O

®P ®P

< TA sm29ax T0A°>
I K “cos® 0(;)

_ 2 'YJ

= ShmACA 33 Y sin 0]
=1 j=1k=1

7 (V55 X33 p§)5,(,,1)\4(xi — X&) 000 (V5> Xk Pe) (99)

It should be noted that the last term in the bracket can only be nonzero for A = 0 or 1 and also
that because the p dependence of the operator factors out, the matrix elements over the ®, (v, x; pe)
only need be evaluated once on each sector. They are readily evaluated using the PDAF &% (v, x; p¢)
and their quadrature points as the PDAF code generates the derivatives of ®”, (v, x; p¢) directly.

The asymmetric top terms of (90) can be explicitly written as
(TA]= (A B)(J2 J2)|T’A>

1
= JPP(@051A = Bl9% ) [(1+6a0) (1 + 5A'0)] 72

XA (L A)AL (S, A+ 1)0n0, a2
+A_ (J, A))\_(J,A — 1)51\071\_2

+(=1)TFATPA_ (T, M)A (J, A — 1)6p0,9 4] (100)
where
A= ___r (101)
B ppg (1 + sin® 0)
1
S 102
2up§ sin” # (102)

(P7AIA — B|®700)

Ny N,
= —hﬂ'AxA'y Z Z siny; sin 260(y;) x
=1 j=1
%5 (75, X5 pe ) (A — B) @00 (75, Xi5 ) (103)

The third term in the bracket is always zero if |A — A’| > 2, and the p dependence of A — B again
factors out, giving the same simplifications and allowing the evaluation of the integrals by the same
methods as for the Coriolis terms.

At the boundaries between sectors, the R matrix is transformed by an orthogonal transformation,
which requires calculation of the overlap matrix elements. The formula of the overlap matrix elements
is given by ,

J
(@R (pe) | @8 (peo))
Ny N,
= —hTI'AXA’}/ Z Z — siny; sin 20(y;) x
=1 j=1
7R (v X33 ) 2y (37, xaper) (104)

To compare the efficency, we the PDAF, DVR, ABM, and FEM programs on the same computer
(PIII 866MHz), computing eigenvalues, potential matrix elements, and overlap matrices at 100 p¢’s.
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Figure 6: Comparison of the Sum of the overlap matrix elements using PDAF, ABM and DVR.

pe starts from 2.0 ap and ends at 9.0 ag and evenly spaced in between. The computation times
(CPU time) are shown in Fig. 7. FEM method takes much more time than the others, thus we
do not include it in Fig. 7. We can see PDAF method is much faster than DVR at most range of
pe. If pe is very small (less than 2.2 ap), DVR is the most efficient method. Although ABM works
slightly faster than PDAF method, but it turns out that ABM diverges when p¢ is small.

We compare only the potential matrix elements and the overlap matrix elements here. Those
matrix elements are computed by ABM, DVR and PDAF. The comparison of the potential matrix
elements is shown in Fig. 5 , one can see that all the three methods agree with each other very well
when p > 3.3ag. However, when p < 3.3, the result of ABM digresses from PDAF and DVR very
much. The comparison of the overlap matrix elements is shown in Fig. 6 . One can see clearly from
the figure that PDAF gives very close results to DVR at small p (rho < 3.4agp), and it also agrees
with ABM very well at large p (rho > 4.4ap). ABM gives very different results from PDAF and
DVR at small p, and DVR gives very different results from PDAF and ABM at large p. We know
that ABM works very accurate at large p region and DVR at small p region, thus the comparisons
tell that PDAF works accurate at both small p and large p.

6 Conclusion

In this paper we have presented a peridoic distributed approximating function (PDAF) method
for calculating the surface function basis needed in hyperspherical formulations of reactive scatter-
ing theory. PDAF functions are intoduced and shown capable of providing an accurate, efficient
representation of the derivative operators.

Test calculations on the F + Hy system with the T5A PES comparing the PDAF, ABM, DVR
and FEM methods showed that the FEM is always the least efficient of the four, ABM is the most
efficient method for large p but is not accurate at small p. On the other hand, DVR is the most
efficient method for small p but is not accurate for large p. PDAF is compariablely efficient in both
large p as ABM and small p as DVR and it is accurate for all both small p and large p. As a result,
PDAF is the best method for surface function calcultaions in hyperspherical reactive scattering
calculations.
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A H is symmetric

HY(xi,x;) = Hy(xi, Bx;)I(R) (105)
R

To prove that Hj is symmetric, it is sufficient to show

Hy, o0 x5) = Hy o (X35 X3) (106)
where
H;H’Ho(Xi,Xj) = ZHX(Xiv RXj)FE{Z,]:o(R) (107)
R
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We know that H, is symmetric, so

> Hy(xs, Rx)TE L (R)
R

= Y H (Ryi, ;)T (R)
R

= Y H(R ) Ta (R
R

= ZHx(R_IXi,Xj)F,[fo];_I(R)
R

_ H (R—l . )F[z]*T(R)

X Xis Xj K,k

R

= > H (R X, x)Ta(R)
R

H;KO’H(Xj7 Xi)

(108)

Because H, (i, X;) (DAF®)(y; — X;)) is decided by |x; — x;|, and R is a length-conservative oper-
ation, we have

HX(R_IXj7 Xz)
= HX(RRil){j, sz)
H, (x;, Rx:)

HX(R_IXj7 XZ)
(109)
Combination of (108) and (109) gives

H;,%KO (X’H Xj) = Z HX (XZ’ RX])FLZ,]KO (R)
R

(110)
So if Tl is real, (106) is true, say, if I'?] is real, H7, is symmetric.

B Irreducible representations of group C,, Cy, and Cg,

The irreducible representation matrices for some point groups frequently used in APH Surface func-
tion computation are given in Table 7 , Table 8 and Table 9 . The first column in each table is the
names of the irreducible representations. The second row gives the transformation when a symmetry
operation R acts on y. Parity p is also given in each table.

C2 FE CQ p
Rx | x m+x

A |1 1 0
B |1 -1 1

Table 7: Irreducible representations of group Cs
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