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Abstract

We present the ability to coherently control triatomic chemical reactions with

pulsed-laser techniques. We show that one can control the final state probabil-

ity distribution of triatomic chemical reactions with nearly 100% selectivity. We

develop the population transfer by adiabatic passage theory to coherently control

the chemical reaction with the ability of choosing the translational energies of the

final reaction products. We also show a new way to achieve the creation of both

homonuclear and heteronuclear diatomic molecules at an ultracold temperature

using laser catalysis.

We also generalize the treatment of the geometric phase effect in a triatomic

system which includes a seam of conical intersections. We derive generally how

to include the geometric phase effect with nonlinear conical intersections in the

c2v geometries with the Numerov propagation method. We develop a Mixed-Odd-

Even-State method to simplify the conventional treatment of the generally complex

Hamiltonian. We are the first group to develop the theoretical derivation of how to

include geometric phase in a triatomic system where the seam of conical intersection

are located in the collinear geometries. We show that the vector potential, for the

collinear conical intersections, not only depends on the three internal coordinates

but also on one of the Euler angles. The resultant Hamiltonian in the internal

coordinates, after the integration of the three Euler angles, is a real Hamiltonian

when the nuclear total angular momentum J is assumed to be zero.

xii
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Chapter 1

Introduction

1.1 Reactive Scattering

Triatomic collision processes are essential in developing a thorough understanding

of chemical reaction dynamics. This reaction can be thought of as the key part of

chemistry and it can be expressed as

A +BC ⇋















B∗ + AC∗

C∗ + AB∗

A∗ +B∗ + C∗

. (1.1)

where A, B and C are atoms and the ∗ superscripts represent possible electronic,

vibrational and rotational excitations. Accurate computation of the reactive scat-

tering process enables us to truly understand the chemical activities. The branching

ratios and the selective transitions are two of the most studied subjects of the re-

active scattering processes. These studies help to accurately predict and explain

experimental observations and possible quantum control of chemical reactions.

The recent development of ultracold techniques, e.g. BEC (Bose-Einstein Con-

densation) of different atoms and formation of ultracold diatomic molecules, has

created a “coherent” system for researchers to study the chemical reaction on a

new level. At ultracold temperatures, even collisions of large molecules exhibit

significant quantum effects due to a large de Broglie wavelength. Also, the dom-

inant reaction pathway depends heavily on the details of the electronic potential

energy surfaces at ultracold temperatures. Quantum tunneling through barriers
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and scattering resonances should be greatly enhanced in the ultracold regime. Un-

derstanding these chemical reactions at a microscopic level will thus be one of the

most important tasks for both physicists and chemists.

In this thesis, we study two of the most interesting aspects of chemical reactive

collisions: quantum control of reactive scattering processes and the geometric phase

effect.

1.2 Coherent Control

Instead of passively observing the chemical-physical process, the maturation of

quantum mechanics has enabled physicists and chemists to actively control these

processes. Shapiro and Brumer pointed out in Ref.(1)

“...the development of new laser devices that afford extraordinary

facility in manipulating light, and the recognition that coherent laser

light can be used to imprint information on atoms and molecules in a

manner such that their subsequent dynamics leads to desirable goals”.

Controlling chemical reactions with tunable external fields has long been a sought-

after goal of AMO (Atomic, Molecular and Optical) physicists. Quantum control of

chemical reactions will not only allow us to selectively obtain favored products, but

also reveal fundamental mechanisms of various chemical reactions. Possible appli-

cations of quantum control over chemical reactions can be, but are not limited to,

quantum information devices, examination of reactive scattering theories, revela-

tion of molecular structures, and accurate description of inter-molecular potentials.

Different types of external fields may influence chemical reactions at different

temperatures. The translational energies of the target molecules should be no larger

than the perturbation due to system-field interactions, so the controllability is non-

trivial compared to the relatively wide range of scattering possibilities. Strong

field control can be applied to chemical reactions at cold (10−3K to 1K) or hot

(above 1K) temperatures, and quantization of the external electric-magnetic fields is

usually necessary. Moderate and weak field controls are usually applied to chemical

reactions at cold or ultracold (10−9K to 10−3K) temperatures and the perturbation

theory is still valid for the system-field interactions.
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With the creation of BECs of atoms and possibly molecules, the ultracold tem-

perature has opened a new world for us to be more actively involved in chemical

reactions. Ultracold molecules usually display a nuclear angular momentum of zero

in the asymptotic region, which greatly simplifies the theoretical calculation of these

processes. Also, the ultracold collision processes depend heavily on the interaction

potentials and translational energies of the initial reactants or final products. Any

slight change in the effective potential, due to an external field, may lead to a dras-

tic change in the final reaction. This external field can then be applied at ultracold

temperatures to greatly enhance the controllability and it is even possible to com-

pletely enhance or suppress reaction. Recently, there have been a large number of

successful experimental realizations of creating ultracold atoms or molecules. This

ability to achieve coherence in the prepared ensemble of ultracold reactants has also

enabled us to obtain more controllability over the chemical reactions.

On the other hand, the ability to use the quantum control techniques in the

chemical reactions at cold/ultracold temperatures may lead to one way of generating

ultracold molecules which may be hard to generate via other means. Recent devel-

opment of the formation methods of ultracold molecules are: Stark Deceleration(2),

sympathetic cooling(3), photoassociation(4) and Feshbach resonances (5; 6). The

precise control of chemical reactions to achieve the formation of ultracold molecules

is at least comparable to these methods. The quantum control method has its mer-

its because it is not constrained to specific systems or apparatus, and it should be

applicable to most of the triatomic systems.

Most quantum control scenarios involve the interaction between systems and

external fields, e.g. lasers. In the context of a coherent control process, quantum

interference effects are used to either constructively or destructively alter the final

results. With the help of the laser techniques, one can(1)

“coherently drive a state with phase coherence through multiple,

coherent, indistinguishable routes... to the same final state allows for

the possibility of control”.

The scenario has an analogy to Young’s double slit experiment. In this experiment

a beam of particles can pass through both of the double slits. Particles can pass

through either slit and form two indistinguishable routes and thus these two routes

4



produce interference patterns. The possible realization of a coherent control process

lies in the ability to remain coherent, which includes both the initial preparations

of the system and the external laser fields. If the initial preparation of the system is

not coherent the unwanted quantum processes or products occur and thus weaken

the controllability. Laser fields, in a coherent control process, are usually required

to have a narrow energy bandwidth compared to the translational energies of the

colliding systems. This usually leads to the use of pulsed laser fields with a ms−µs
temporal width. Both techniques, the coherent preparation of the system and

pulsed laser fields with moderate intensities, are now achievable in the labs and the

realization of these processes are optimistically expected.

In chapter 2 we develop different ways to coherently control chemical reactions.

We show that, by using one pulsed laser, the complete range of reaction yield at

cold and ultracold temperatures can be achieved. We develop a new technique,

the population transfer by adiabatic passage theory, to achieve quantum control of

exchange reactions. This technique uses two pulsed lasers with moderate intensities

and it is able to tune the final products’ final translational energies. We also show

the ability to create ultracold homonuclear and heteronuclear diatomic molecules

using the laser catalysis techniques.

1.3 Geometric Phase

To describe a multi-particle quantum mechanical system which involves both elec-

trons and nuclei, one can use a Born-Oppenheimer expansion to separate the nuclear

and electronic motions as

Ψtot =
∑

i

ψi
N (~R)φi

e(
~R,~r), (1.2)

where the nuclear wavefunction ψN depends on the nuclear coordinates ~R and

the electronic wavefunction φe depends on both the nuclear coordinates ~R and

the electronic coordinates ~r. This total wavefunction Ψtot is then taken to be the

sum of an infinite number of basis functions which are complete. Note, the Born-

Oppenheimer expansion is an exact method. To simplify the total wavefunction,

the Born-Oppenheimer approximation is often used, and has been assumed to be

a good approximation for over half a century(7). This approximation not only

5



separates the nuclear and electronic motions, but also assumes the electrons move

much faster than the slow nuclei. This approximation then treats these two motions,

with different “speeds”, separately and ignores the influence on each other. If so,

the influence of other electronic adiabatic potential energy surfaces (PESs) on a

single electronic PES is ignored and one can truncate the summation in Eq.(1.2)

to a simple product form

Ψtot = ψN(~R)φe(~R,~r). (1.3)

The Born-Oppenheimer approximation is not valid when multiple electronic

PESs heavily interfere with each other, e.g. those which cross to form conical in-

tersections. Two electronic adiabatic PESs can intersect, in a polyatomic system,

even if the corresponding electronic states have the same symmetry and spin. These

intersections usually take a double-cone shape and thus are named conical inter-

sections. Because the electronic wavefunction’s dependence on the nuclear motion

couples different electronic adiabatic states heavily especially near the conical in-

tersection regions, the Born-Oppenheimer approximation breaks down. There are,

in general, two kinds of conical intersections: symmetry allowed and accidental-

degenerate. The first kind, the symmetry allowed ones, usually refers to the PESs

which have the same irreducible representations in the general nuclear configura-

tion, e.g. the Cs symmetry group for a triatomic molecular system. They also

have different irreducible representations of a higher symmetry group for a spe-

cial nuclear configuration, e.g. the C∞v symmetry group for a triatomic molecular

system in the collinear geometry. The second kind of conical intersections, the

accidental-degenerate ones, are sometimes referred to as diabolic conical intersec-

tions. This results when such polyatomic systems have more than one independent

nuclear coordinate. Two independent relations between electronic Hamiltonian ma-

trix elements are sufficient for the existence of doubly degenerate electronic energy

eigenvalues. Therefore, these relations are easily satisfied for systems with three or

more internal nuclear degrees of freedom. As pointed by Kuppermann in Ref. (8):

“Conical intersections between electronically adiabatic potential en-

ergy surfaces are not only possible but actually quite frequent, if not

prevalent, in polyatomic system.”
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Many systems display conical intersections such as H3 and its isotopomers (isotopic

isomers, as DH2, HD2, HDT, etc.), triatomic alkali systems such as Na3(9), Li3(10)

and its isotopomers, HO2(11), NO2(12), NH2 and other kinds.

Note, a triatomic system has three internal degrees of freedom and two inde-

pendent relations need to be satisfied as we mentioned above. Therefore, there are

usually a seam (line) of conical intersections in the three-dimensional internal coor-

dinates. To be more general, the number of dimensions of the conical intersections

can be expressed as 3N − 8 where N is the number of atoms in this polyatomic

system.

Since Berry’s introduction of the geometric phase associated with the conical

intersections between PESs(13), a lot of research has been done on this subject.

Let us assume that in a triatomic system all spin terms (electronic and nuclear)

and relativist effects in the Hamiltonian can be neglected , that two adiabatic

electronic PESs display a seam of conical intersections, and that the electronic

adiabatic wavefunctions are real and continuous in the nuclear coordinates. When

the nuclear coordinates move on a closed loop and returns to its original position,

the electronic wavefunction is different from its initial wavefunction only by a phase

factor. This phase factor contains not only the conventional dynamic phase but

also a purely geometric phase which depends solely on the loop that the electronic

wavefunction took(14). This effect causes the electronic wavefunction to change sign

when this closed loop encircles the seam of conical intersections an odd number of

times(15). Equivalently, if an adiabatic electronic wavefunction changes sign as it

is transported along a closed loop there must exist at least one conical intersection

encircled by this loop. This purely quantum mechanical effect can be related to the

well-known Y. Aharonov and D. Bohm effect(16). In this effect, though a vector

potential produces a zero electric or magnetic field in the configuration space of

the free electrons, this vector potential can influence the phase of the electrons and

thus produces interference patterns.

Herzberg and Longuet-Higgins(17) and Longuet-Higgins and his coworkers(18)

were the first to notice that the electronic wavefunction, if taken to be real, can

behave as a double-valued function. This function changes sign when it transversed

via a closed loop which encircles a seam of conical intersections of electronic PESs.

This problem was referred to as the well-known Jahn-Teller problem. In 1978, Mead
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and Truhlar did the theoretical derivation of the geometric phase effect in the H3

scattering problem(14). The H3 system is a typical Jahn-Teller system(19) and

the conical intersections are located in the D3h geometries where three Hydrogen

nuclei form an equilateral triangular geometry. It is the first explicit derivation in a

real system to show that the electronic wavefunction changes sign as it transverses

completely around the conical intersection seams in the D3h geometries. The Jahn-

Teller theorem (19) states: if an electronic adiabatic state is degenerate because of

symmetry of a non-linear molecule, then the degenerate high-symmetry configura-

tion is unstable with respect to spontaneous distortions that lift the degeneracy to

a low-symmetry configuration. Such degeneracy causes symmetry related conical

intersections, whose effects will be studied in this thesis.

We need to specify whether the electronic wavefunction is real or complex be-

cause a complex electronic wavefunction can be obtained as a single-valued func-

tion (14). Note, if we multiply this real double-valued electronic wavefunction by a

complex double-valued phase factor, we can form a complex single-valued electronic

wavefunction. This double-valued phase factor depends on the nuclear coordinates

and it leads to vector potential terms in the Hamiltonian. Thus this procedure is

often referred as the vector potential method (14). The two major difference in

using a real double-valued electronic wavefunction and complex single-valued elec-

tronic wavefunction will be shown in Chapter 3. The generally complex corrections

to the Hamiltonian in the vector potential terms needs to be treated carefully be-

cause it usually complicates the computational process. Since most of the scattering

computer codes are written to treat real Hamiltonians, we wish to minimize the

computational effort caused by the complex terms. For example, we will show in

chapter 4 that we can obtain real overlap matrices so that the propagation in the

hyperradius remains real and thus effectively minimize the computational effort.

This is particularly true when one wishes to perform a large number of scattering

calculations with different kinetic energies, where the calculation time can be long

(hours to days).

The sign change of the real adiabatic electronic wavefunctions has nontrivial

consequences for molecular structures and dynamics on these crossing electronic

PESs. This sign change leads to a double-valued real electronic wavefunction and,

in order to maintain the entire wavefunction of the system to be single-valued,
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the nuclear wavefunction needs to be double-valued as well. The double-valued

nuclear wavefunction needs to undergo a sign-change around a conical intersection

in order to cancel the sign-change of the electronic wavefunction at the same time.

This change of sign greatly affects the nature of the solutions of the corresponding

nuclear motion Schrodinger equation.

Even though the geometric phase was discovered over three decades ago, it was

not generally included in molecular scattering calculations. With current comput-

ing technologies and numerical techniques, it is now possible to compare theoreti-

cal results to experimental results to examine the effect of geometric phase. More

and more agreements between theoretical calculations and accurate experiments

show that the geometric phase effect can be significant in molecular scattering

processes(20; 21; 22). Accurate quantum mechanical reactive scattering calcula-

tions for the H+H2 system and its isotopic variants (D+H2 and H+D2) have been

performed by Kuppermann and his coworkers(23; 24; 25; 26; 27). They calculated

accurate differential and integral cross sections of reactive scattering processes with

and without the geometric phase effect. They showed that the cross sections with

the inclusion of the geometric phase were in much better agreement with the ex-

perimental results(28; 29; 30) than those obtained without the geometric phase

effect.

The simplest cases of conical intersections between different electronic PES’s

are in a triatomic system where the three internal coordinates have enough free-

dom to satisfy two conditions on the electronic Hamiltonian matrix elements: equal

diagonal elements and zero off-diagonal couplings. The triatomic lithium system

is of particular interest because it displays a seam of conical intersections between

the spin-aligned 14A′ and 24A′′ electronic PESs in the collinear geometry. We

choose the zero of energy to be the triatomic dissociation limit of 2S + 2S + 2S.

Though the energy of the lowest conical intersection point is slightly above zero,

the minimum energy for the nuclear wavefunction to circumvent this seam of con-

ical intersections is lower than the ground vibrational energy level of the diatomic

molecule(10). This means that, even at an ultracold temperature for the Li + Li2

collision process, the nuclear wavefunction is able to completely traverse the conical

intersections and thus the geometric phase effect may be non-trivial. Therefore, the

nuclear wavefunctions need to be double-valued when real double-valued electronic
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wavefunctions are used. One alternative way to include the geometric phase effect

is to follow Mead and Truhlar’s work(14) in which the sign change can be accounted

for by introducing a vector potential into the nuclear Schrodinger equation. In this

approach, the real double-valued electronic adiabatic wavefunction is multiplied by

a complex phase factor which also changes sign when the enclosed loop encircles the

seam of conical intersections. This results in a complex single-valued electronic adi-

abatic wavefunction. Either procedure listed above is equivalent to the other. No

geometric phase effects were considered in the recent reactive scattering calculations

on the ground spin-aligned electronic PES of the triatomic lithium system(31; 32).

It is then necessary to investigate the effect of geometric phase on the dynamics of

this particular system.

In chapter 3 we briefly discuss the conventional treatment of the geometric phase

in a triatomic system. In chapter 4 we use the vector potential procedure to treat

the geometric phase with conical intersections in the C2v geometries. We derive the

Hamiltonian and nuclear wavefunctions with the inclusion of vector potentials. We

then develop a new method to expand the nuclear wavefunctions so that the general

complex problem can be treated in a simple fashion. With this new method, all

the overlap matrices between different propagation sectors are real and thus need

no further special treatment. In chapter 5 we derive the treatment of the geometric

phase effect with conical intersections in the C∞v geometries. We fully develop the

geometric phase angle and the associated vector potential terms. We find that the

resulting Hamiltonian in the internal coordinates, with certain approximations, is

real. The complex components of the Hamiltonian are zero when the total nuclear

angular momentum is assumed to be zero, and the resulting real vector potential

terms are easy to compute. The Hamiltonian with the inclusion of the geometric

phase effect thus requires no special treatment and can be easily applied to the

reactive scattering calculations.
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Part II

Coherent Control
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Chapter 2

Coherent Control

In this chapter we focus on various ways to achieve quantum control of triatomic

reactive scattering dynamics. In chemical reactions, the triatomic reaction has

become one of the most important systems because it is fundamental and non-

trivial. In triatomic reactions, an atom and diatom collide to produce new products.

With the help of external laser fields, one can control the direction of the chemical

reactions and produce desired species

A+BC −→















B + AC Reactive

C + AB Reactive

A +BC Non-reactive

. (2.1)

One way of controlling this triatomic reaction is to pump the reactants A+BC on

the ground electronic PES to form an electronically excited complex (ABC)∗ and

then dump the complex to another chemical arrangement channel on the ground

PES. The experimental parameters such as laser pulses’ temporal durations, car-

rier frequencies, intensities, and effective operating times, as well as the different

intermediate states give us enough freedom to interfere different quantum routes in

this process. We can then achieve either constructive or destructive interferences to

control the direction of the chemical reactions. We will discuss four major aspects

of the coherent control project in this chapter: laser catalysis of chemical reaction

at cold temperatures, population transfer by adiabatic passage theory, controlled

formation of ultracold homonuclear molecules, and controlled formation of ultracold

heteronuclear molecules.
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2.1 Laser Catalysis at Cold Temperatures

The possibility of enhancing or suppressing atomic and molecular reactions by

external lasers fields has attracted the attention of many researchers(33; 34; 35; 36;

37; 38; 39; 40; 41; 42; 43; 44; 45; 46; 47; 48; 49; 50; 51; 52; 53; 54; 55; 56; 57; 58; 59).

Some of the most studied scenarios use light to modify the PESs of the colliding

systems, which leads to “light induced potentials” (LIP) (46). The laser parameters

are tuned so that LIPs possess lower reaction barriers along the reaction pathways

leading to the desired final products. The main difficulty in realizing these scenarios

is the requirement for high laser intensities (in the TW/cm2 range). These high laser

intensities are needed in these processes because of the relatively small continuum-

continuum transition dipole moments, which are at the heart of the mechanism

leading to the formation of LIP. In order to compensate for the weak transition

dipole moments and still have a moderate Rabi transition frequency, one needs to

tune up the laser intensity to a magnitude of TW/cm2.

The necessity of using intense laser fields can be reduced when (quasi) bound

states are used as the transition bridge. The Rabi transition frequency is propor-

tional to the product of the transition dipole moment and the electric field strength.

The presence of a much stronger bound-continuum transition dipole moments (than

the weak continuum-continuum transition dipole moments) is expected to lower the

laser intensity requirements to the order of MW/cm2 to GW/cm2 regime(46; 47;

60; 61; 62). We also show that a laser intensity of kW/cm2 is big enough to

achieve quantum control at ultracold temperature(63). This use of strong bound-

continuum transition dipole moments is the situation in the “laser catalysis” (LC)

scenario(46; 47; 60; 61; 62), so called because it involves no net absorption of pho-

tons. Rather, colliding partners, which cannot react due to the existence of a high

reaction barrier, are made to “hop” over this barrier. This system first absorbs a

photon to an excited bound state which straddles both sides of the reaction barrier.

The system is then de-excited, by stimulated emission of a photon identical to the

one just absorbed, to the products’ side of the original reaction barrier. The process

can occur on-resonance or off-resonance(64) with respect to the continuum-bound

transition frequencies. It has also been shown(60) that for a coherent process, as

the laser power increases, the population of the intermediate bound state decreases.
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Eventually, the intermediate state becomes unpopulated, in great similarity to the

simple three-state adiabatic passage process(65; 66). By not populating the in-

termediate states, one can significantly reduce the spontaneuous emission loss and

thus increase the final reaction yield.

The use of ultracold reactants, e.g., hydrogen (67), lithium (68), sodium (69),

rubidium (70) and cesium (71), is expected to greatly enhance the ability to quan-

tum mechanically control reactive scattering. The coherence in the well-prepared

initial state can drastically reduce the unwanted quantum routes and thus lead to a

broader control range. Of special interest are reactions between spin-aligned atoms

and molecules. Spin-aligned states have relatively large magnetic moments, making

them easier to capture in magnetic traps. Using this technique one may consider

reactions between cold/ultracold bosons and fermions, resulting in a large variety of

molecular interactions. For example, isotopic mixtures of fermionic 6Li and bosonic
7Li result in the formation of either heteronuclear (6Li7Li) or homonuclear (6Li2 or
7Li2) diatomic molecules(32; 72; 73; 74).

It is thus of great interest to examine the use of laser fields to coherently control

the reactive scattering process in cold and ultracold mixtures of spin aligned 6Li

+7Li2 or its isotopomers (7Li +7Li2,
7Li +6Li2 and 6Li +6Li2). In addition to

the light induced interaction between the two low-lying spin-aligned (4A′) states,

this system displays a variety of interesting features, including conical intersections

between the two PESs in the collinear (C∞v) geometries(10; 31; 32; 75).

We present a non-perturbative time-dependent quantum mechanical theory of

the laser catalysis. We apply this theory to control a bifurcating A + BC
~ω0←→

ABC∗(v)
~ω0←→ AB+C reaction, with ABC∗(v) denoting an intermediate, electronically-

excited, bound state of ABC in the v-th vibrational state(76). We apply this theory

to the low collision energy fermion-boson light-induced exchange reaction, 6Li(2S)+
7Li2(

3Σ+
u )

~ω0←→ (6Li7Li7Li)∗
~ω0←→ 6Li7Li(3Σ+) +7 Li(2S).

We first consider low collision energies and energetically narrow (∼ 0.01 cm−1)

initial reactant wave packets. We show that it is possible to tune the reaction

yield from 0 to near 100% (yield ≥ 99%). We control the laser-assisted reactive

probability in the 7Li+6Li7Li product channel by varying the following parameters:

the laser intensity (P ), the laser’s temporal width (δt), the laser’s carrier frequency

(ω0). We perform simulation with different energy bandwidths (δE) and center
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Figure 2.1: The integrated populations of the continuum and intermediate states.

The dashed line is the intensity profile of the Gaussian pulse whose maximum

intensity is 20 GW/cm−1, the laser’s temporal width is δt = 3 nsec. The laser’s

carrier frequency ω0 is chosen such that the laser is on resonance with the |E1〉
state. The initial wave packet has a center energy of Eo = −270.7 cm−1, and an

energy band width of δE = 0.01 cm−1.

(average) energies (Eo) of the initial wave packet. The range of control obtained is

truly impressive: Figure 2.1 shows that one can maximize the reaction probability

to near 100%. By varying the above parameters we are in fact able to change the

reaction probability from 0 to 99.9%. Thus we are able to suppress the naturally

occurring reaction, as well as enhance it.

The reaction yield results are sensitive to the the center energy Eo of the wave

packet. We find that the optimal reaction yield depends on the ratio of two bound-

continuum dipole moments, |µ−(Eo; i = 1, q = 1)| and |µ−(Eo; i = 1, q = 2)|, where

q = 1 is the reactant arrangement and q = 2 is the product arrangement. This

ratio of energy-dependent bound-continuum dipole moments is a function of Eo.

Figure 2.2 describes the behavior of the optimized reactive yield versus the ratio

of dipole moments for different chemical arrangements. It is clear that this ratio

|µ(Eo; i = 1, q = 1, n = 0)/µ(Eo; i = 1, q = 2, n = 0)| should be near unity in order

to maximize the reaction yield. This phenomenon is analogous to Young’s two slits

experiment for which the highest fringe contrast is obtained when the slits widths

are the same.
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Figure 2.2: Reactive yield versus the ratio of two dipole moments in different chan-

nels. All experimental parameters have been optimized and we are using the |E1 >

state to be the intermediate state.

Controllability is somewhat reduced at collisions involving energetically wider

(∼ 1 cm−1) initial reactant wave packets. At these energetic bandwidths the ra-

diative reactive control, though still impressive, is limited to the range of 0− 76%.

However, we find that using the interference between the two intermediate states as

an additional control mechanism can improve the controllability. This additional

interference compensates for the relatively weakened interference between the op-

tical route and the scattering route. With an equivalent range of experimental

parameters, the reactive yield with one intermediate state is found to vary over a

much smaller range than with two intermediate states.

More detailed information can be found in Appendix A or equivalently Ref.(76).

2.2 Population Transfer by Adiabatic Passage

The ability to completely transfer population from one chemical arrangement to

another is very attractive to many researchers. But the need to use high laser

intensities, up to TW/cm2, has been a major stumbling block. Two possible proce-

dures for population transfers that require lower intensities are laser catalysis and

adiabatic passage (AP).
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Laser catalysis involves no net absorption of photons and usually requires a laser

intensity of MW/cm2 (60; 61; 62). The schematic process of laser catalysis has been

described in the previous section. The conventional laser catalysis scenario uses a

single laser pulse with a narrow energy bandwidth. No net photon absorption

predicts different translational energies for the reactants and products when the

diatoms have distinct energy levels. When a system consists of different atoms

or isotopes, a single laser is not able to tune the product’s translational energy

for a fixed reactants translational energy. In a laser catalysis process conservation

of the total energy of the molecular system enforces a relationship between the

translational energies of the reactants and of the products when no net photon is

absorbed. The ability to tune the reactants and products’ translational energies

requires a new theory.

Conventional AP (77; 78), on the other hand, involves three bound states and

two slowly varying laser fields. The population is transferred from the initial bound

state to the final bound state without populating the intermediate bound state. It is

shown that the process follows the laser fields adiabatically to completely transfer

the population to the desired final state. Vardi et al. (79) extends conventional

AP theory to the photoassociation adiabatic passage (PAP). PAP involves one

initial continuum state, one intermediate bound state, and one final bound state.

In this process, the population of the intermediate state is suppressed to avoid

spontaneous emission losses, and the process is assumed to be adiabatic when the

lasers are varying slowly. Both conventional AP and PAP require a pump laser and

a Stokes laser in a ‘counter-intuitive’ sequence, i.e. the Stokes pulse comes before

the pump pulse (tp > ts). For conventional AP this mechanism can be understood

in terms of dark states (80), and the intermediate state is not populated and thus

the spontaneous decay lost can be minimized. But dark states do not formally exist

in the PAP mechanism, and total suppression of the population of the intermediate

state with a moderate laser intensity may be difficult (79).

Our goal is to derive a new control scenario which can be related to both laser

catalysis and AP theories. We use two slowly varying laser pulses in a reactive

scattering process so as to keep the process adiabatic. We want to be able to tune

the translational energies of continuum reactant and product states, and to mini-

mize the population in the intermediate bound state. Fig. 2.3 shows a schematic
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Figure 2.3: Schematic plot of population transfer by adiabatic passage with two

pulsed lasers; ωp and ωs denote carrier frequencies of the pump laser and the Stokes

laser, respectively, and ∆p and ∆s denote the detunings of the pump laser and the

Stokes (dump) laser, respectively.

of population transfer by adiabatic passage (PTAP) from the reactant channel to

the product channel using two pulsed lasers. This PTAP theory can be applied

to control the exchange process, in which one wishes to replace an atom attached

to a molecule with another atom. PTAP can also be applied to control tuning

of a vibrational mode, which uses two lasers to change the vibrational quantum

number of the diatoms in an ensemble of cold or ultracold atom-diatom mixtures.

In PTAP we can tune the carrier frequency of the Stokes (dump) laser to tune the

translational energies of the final product.

We have derived a non-perturbative theory of PTAP using two laser pulses,

for which more detailed information can be found in Section II of Ref.(81) or Ap-

pendix B. To apply this new theory, we thus envision a collinear collision between

counter-propagating 6Li and 6Li7Li beams, which can lead to either 6Li6Li+7Li or
6Li+6Li7Li. Note, PTAP can lead to the creation of four resultant wavepackets,

with two associated centers energies Eo and Eo + ωp − ωs for both of the chemical

arrangements. We use q to denote the chemical arrangements, where q = 1 is for

the reactants and q = 2 is for the products. Because we focus on collisions with

low translational energies, and ωp > ωs for this study, the wavepacket with a center

energy of Eo does not exist in the product arrangement, q = 2.
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Figure 2.4: Integrated population of the reactant wavepacket centered at |E =

Ej − ωp, q = 1, n = 0 >, product wavepacket centered at |E = Ej − ωs, q = 2, n =

0 >(solid lines), and reactant wavepacket centered at |E = Ej − ωs, q = q, n = 0 >

(dashed lines) vs time; laser profile (dotted line) vs time; Tp = Tr = 1 mK, δE = 0.1

mK, ∆ts = ∆tp = 431 ns, tp = ts = 0 and Ip = 2.45 GW/cm2 and Is = 1 MW/cm2.

The two lasers do not have to be applied at the same time, and the sequence of

these two lasers affect the dynamics of this process. We first study the coincident

sequence when tp = ts = 0, where tp and ts denote the time to apply the pump

laser and Stokes laser, respectively. Using two lasers with intensities Ip = 2.45

GW/cm2 and Is = 1 MW/cm2 in the coincident sequence, we obtain a population

transfer into the 6Li6Li+7Li chemical arrangement with a probability of 98.44%.

Here, Ip denotes the intensity of the pump laser, and Is denotes the intensity

of the Stokes laser. Fig. 2.4 shows the time dependence of the probabilities of

the reactant, product, and intermediate states. Wavepackets centered at |E =

Ej−ωp, q = 1, n = 0 > and |E = Ej−ωs, q = 1, n = 0 > contribute to the reactant

probabilities, which are both minimized. Here, Ej denotes the energy of the jth

bound intermediate state, ωp denotes the pump laser carrier frequency, ωs denotes

the Stoke laser carrier frequency, q denotes the chemical arrangement, and n denotes

quantum numbers associated with each arrangement. The total probability of the

reactant wavepacket centered at |E = Ej − ωs, q = 1, n = 0 > is 1.55%, and the

probability that the system will stay in the initial reactant wavepacket centered at

|E = Ej − ωp, q = 1, n = 0 > is 0.01%.
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Figure 2.5: Reaction Yield versus laser intensity Ip. Here, T = 1mK, δE = 0.1

mK, tp = ts = 0, ∆ts = ∆tp = 431 ns and Is/Ip satisfies the relation in Eq. (27) in

Ref.(81).

When tp = ts = 0, the two-pulse PTAP theory is very similar to the laser catal-

ysis theory, which uses only one pulsed laser. For population transfer, the triatomic

system absorbs a photon from the pump laser and, simultaneously, the Stoke laser

stimulates a photon emission while minimizing the population of the intermediate

state; in laser catalysis, the system absorbs a photon and simultaneously emits the

same photon into the field. The reaction yield of PTAP monotonically increases

with increasing laser intensities, as shown in Fig. 2.5. This behavior is very similar

to Fig. 9 of Vardi and Shapiro’s laser catalysis paper (61).

We also need to study the intuitive sequence of the two lasers. When tp < ts, the

pump pulse precedes the Stokes pulse, and the maximum reaction yield requires

the pulses to overlap appreciably. Because the optimized reaction yield with an

intuitive sequence is very close to the reaction yield obtained with a coincident

sequence, we do not show the time-dependent probabilities of all possible states.

But the relationship between laser intensities and the reaction yield in the intuitive

sequence with the ratio Is/Ip fixed, as shown in Fig. 2.6, differs from that in the

coincident sequence. The reaction yield has a clear maximum with respect to laser

intensities; merely increasing the pulse intensity does not improve the transfer yield.

This feature is similar to the radiative recombination studies by Vardi et al. (79),

where the system has two bound states and one continuum state. In PTAP, if one
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Figure 2.6: Reaction Yield versus laser intensity Ip. Here, T = 1mK, δE = 0.1 mK,

tp = −ts = 12 ns, ∆ts = ∆tp = 431 ns and Is/Ip satisfies the relation in Eq. (27) in

Ref.(81).

decreases |tp − ts|, thereby increasing the overlap of the pulses, then the maxima

occurs at a higher intensity. In the tp − ts = 0 limit, the location of the maximum

approaches positive infinity, where a PTAP with the intuitive sequence becomes

one with the coincident sequence and the reaction yield monotonically increases

with increasing laser intensity.

When tp > ts the Stokes pulse precedes the pump pulse, which leads to a

“counter-intuitive” sequence. However, the reaction yield obtained with an counter-

intuitive sequence is far smaller than that with an intuitive sequence or coincident

sequence. This result is surprising because the conventional AP process favors

the counter-intuitive sequence as promising greater reaction yield (77; 78). The

underlying mechanism of this surprising result is still unclear and is currently under

investigation.

To summarize, we develop a new theory, PTAP, which connects the laser catal-

ysis theory with the AP theory. This PTAP theory uses two pulsed lasers with

distinct carrier frequencies to control an exchange reaction. The merit of this the-

ory is in the ability to choose the final products’ translational energy. We apply

this theory to control the collisions of the time-dependent ultracold mixtures of the
6Li6Li7Li system. We show that to obtain the maximum reaction yield (≥ 98%)
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one should apply the pump laser and the Stokes laser either in an intuitive sequence

or a coincident sequence instead of the counter-intuitive sequence.

2.3 Formation of Ultracold Molecules

The existence of Bose-Einstein Condensates (BEC) of various atoms (82), and the

possibility of the production of their molecular analogues (83; 84; 85; 86; 87; 4)

has spurred great interest in reactions between ultracold, bosonic or fermionic

(spin-aligned) molecules. In recent years, several molecular schemes such as buffer-

gas cooling (3) and Stark deceleration (2) have produced electronic ground state

molecules at cold temperatures ( 1 mK), while Feshbach resonances(5; 6) have pro-

duced ground state molecules at ultracold temperatures (< 1 µK). However, more

general schemes of producing homonuclear or heteronuclear molecules are still being

pursued. In the following two studies, we advocate an alternative way of producing

diatomic molecules with a fast rate.

2.3.1 Homonuclear Molecules

In this study we show that the involvement of pulsed lasers of moderate intensities in

the reactions between cold reactants can lead to the production of ultracold diatomic

molecules. We propose achieving this goal via the “laser catalysis” scenario(60; 61;

62; 88; 76; 63). In this scenario the pulsed laser assists the A+BC→ AB+C reaction

by first forcing a (virtual) transition of the A+BC reactants to the (ABC)∗ excited

state complex (ESC). The ESC then undergoes a stimulated emission process to

the AB+C ground state products, emitting a photon identical to the photon just

absorbed. Therefore, no net photons are absorbed in this process, which justifies

the name “laser catalysis”. When the process is done coherently and the intensity

of the laser is high enough, the system would change smoothly from reactants to

products, with the ESC “stepping stone” remaining unpopulated even in a transient

way(60), thus minimize the spontaneous emission loss.

As an illustration of this concept we apply this technique to the A=6Li(2S),

B=6Li(2S) and C=7Li(2S) triatomic system. The diatomic molecules AB =6Li2(
3Σ+

u )

and BC =7Li6Li (3Σ+) are taken to be in their lowest spin-aligned electronic
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Figure 2.7: Schematic energy levels of 6Li6Li7Li system in the laser catalysis scheme

states. The triatomic states are the 14A′ states for the reactants and products,

and the 14A′′ states for the ESC (ABC)∗. The zero energy is chosen to be at

the three-body break up limit (2S + 2S + 2S). There is no natural barrier in

the reaction path between chemical arrangements of the quartet 6Li6Li7Li system.

We note, however, that the lowest vibrational energy of the triplet 6Li7Li state

is calculated to be E(q = 1, v = 0) = −300.51194 cm−1, while the lowest vi-

brational energy of the triplet 6Li6Li state is calculated to be slightly higher, at

E(q = 2, v = 0) = −299.29412 cm−1. Fig. 2.7 shows the schematic energy levels of

the current 6Li6Li7Li in a laser catalysis scenario.

We thus envision a collinear collision between counter propagating 6Li and 6Li7Li

beams, having zero center of mass velocity. Each beam is prepared with transla-

tional temperatures of Tr ≈ 1.75 K. By tuning the laser center-frequency to be on

exact resonance with a transition to one of the bound states of the ESC, we can

make use of the energetic difference between the reactant and product diatoms’

vibrational levels to produce the 6Li6Li at ultracold temperatures. These tempera-

tures range between 0.01 mK and 1 mK, depending on the band-width of the laser

used. The intervention of the laser is necessary because at translational tempera-

tures of 1.75 K the non-radiative reaction probability is negligible (< 1%).

In order to achieve the desired ultracold product temperature, we choose the

resonance condition in which the detuning parameter defined as ∆ ≡ ωo−Ej +Eo is

equal to zero. Here, ωo is defined as the laser’s carrier frequency, Ej is energy of the
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Figure 2.8: Schematic plot of the control process
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Figure 2.9: Population of the reactant (red solid lines), product (blue solid line),

and intermediate (dashed line of near zero value) states, and laser profile (dotted

line) vs. time; Tp = 1 mK

jth bound state of the ESC, and Eo is the center energy of the initial wavepacket.

In this way a energetically narrow (e.g. ∆t = 431 ns −43.1 µs) transform-limited

laser pulse carves out of the Tr = 1.75 K initial reactant distribution a narrow

energetic component whose band-width is ∼ 0.01 mK-1 mK and transforms it into

products of roughly ∼ 0.01 mK-1 mK. Therefore, the molecular reactants, 6Li7Li,

can be prepared with a Maxwell-Boltzmann distribution at Tr ≈ 1.75 K. The atomic

beam can be prepared with a narrow energy bandwidth (δE ≈ 0.01mK ∼ 1 mK)

to enhance the final reaction. With a typical experimental error (10% to 20%) in

preparing the translational energies of the initial atomic species, the narrow energy

bandwidth (δE) of the atomic species 6Li and a narrow laser pulse will filter out the

ultracold portion of the initial molecular beam of 6Li7Li reacting with 6Li to form

an ultracold cloud of 6Li6Li and 7Li. Depending on the experimental error in beam

preparation, the product cloud will then move uniformly in one direction with a

known center of mass (CM) velocity. This slow CM motion can be calculated and

is expected to be at least three to four times slower than the reactants and thus

can be removed by a molecular optical lattice. Fig. 2.8 shows the schematic plot of

this control process.

Figure 2.9 shows the time dependence of the probabilities in each state using

a laser with an intensity of I = 13.7 MW/cm2 and a temporal width of ∆t = 431
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Figure 2.10: Reaction yield vs laser intensity; Tp = 1 mK

ns. The reaction yield of the ultracold (Tp = 1 mK) product is shown to be

99.3% when the non-radiative reaction probability at this temperature is negligible

(< 1%). It then clearly shows that the laser enhances the naturally suppressed

chemical reactions. The probability of the intermediate state |Ej=27〉 (dashed line

in Fig. 2.9) remains very small compared to that of the reactant or product so that

spontaneous emission is negligible. Note, the decay rate of the intermediate state

is taken to have a typical value of 1/Γ(= 30ns) and the spontaneous emission loss

is clearly shown in Fig. 2.9 to be minimal.

To illustrate the effect of the laser intensity, Fig. 2.10 shows the reaction yield

as a function of the laser intensity with other parameters being fixed as they are

in Fig. 2.9. Before reaching saturation at I ∼ 2 MW/cm2, the reaction yield

increases monotonically with increasing laser intensity. However, it is necessary

to use a much higher intensity of I ≥ 10 MW/cm2 in order to avoid spontaneous

emission loss from the intermediate bound state. The intense laser pulse couples

the material state with the field state to form two dressed states, and more details

about these two dressed states can be found in Ref. (60). In this way the population

follows adiabatically from the reactants to the products on the ground dressed state

without populating the intermediate state significantly (60).

Total suppression of the reaction scattering process can also be achieved which

enables the selectivity of the procedure. For instance, if we use a detuning of

∆ = 3× 10−3 cm−1 with the other parameters take as in Fig. 2.9, total suppression
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Figure 2.11: Reaction yield vs laser detuning; Tp = 1 mK

results, which is shown in Fig. 2.11. This total suppression is due to destructive

interference between the optical and the non-radiative reactive process. This total

suppression leads to the precise filtering of the ultracold piece of the reaction.

The production rate of the ultracold 6Li6Li diatoms, for the Tp = 1 mK case,

is estimated to be 4 × 105 /s. This estimate is based on the temporal width of

the pulse, the percentage of the carved portion of the broadly distributed initial

molecular beam, and a typical molecular beam density of 1012 cm−3.

We conclude that by using laser catalysis we can employ translationally cold

(Tr ≈ 1.75 K) collisions to produce ultracold (0.01 mK < Tp < 1 mK) (homonu-

clear) molecules(63). We illustrate this approach by studying the laser catalysis

of the 6Li+6Li7Li
~ω−→ (6Li6Li7Li)

∗

(14A′′)
~ω−→

6

Li6Li+7Li reaction in the collinear

approximation. Ultracold 6Li6Li product molecules are shown to be produced at

an extraordinary yield of up to 99.97%, using moderate laser intensities of I = 100

kW/cm2 − 10 MW/cm2. The production rate of the ultracold 6Li6Li diatoms, for

the Tp = 1 mK case, is estimated to be 4× 105 /s.

More detailed information can be found in Appendix C or equivalently Ref.(63).

2.3.2 Heteronuclear Molecules

Heteronuclear molecules in low-lying vibrational states are particularly interest-

ing since they exhibit a permanent electric dipole moment. Large induced dipole
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Figure 2.12: Schematic energy levels of 6Li7Li7Li system in the laser catalysis sce-

nario

moments of the polar heteronuclear molecules can enable many fundamental stud-

ies of ultracold molecules such as quantum information devices (89), experimental

searches of the electron dipole moment (90), and creation of dipolar superfluids (91).

Different groups have shown theoretically and experimentally the possibility of cre-

ating different heteronuclear alkali molecules such as RbCs (92), KRb (93) and

NaCs (94).

We consider quantum control of the reactive scattering process where the atoms

are A=6Li(2S), B=7Li(2S) and C=7Li(2S) in the ultracold regime. The diatomic

molecules AB=6Li7Li(3Σ+) and BC=7Li2(
3Σ+

u ) are taken to be in their lowest spin-

aligned electronic states. The triatomic states are the 14A′ states for the reactants

and products, and the 14A′′ states for the ESC (A-B-C)∗. The zero of energy is cho-

sen to be at the three-body break up limit (2S+2S+2S). There is no natural barrier

in the reaction path between chemical arrangements of the quartet 6Li7Li7Li system.

However, the lowest vibrational energy of the triplet 7Li7Li state is calculated to be

E(q = 1, v = 0) = −1.37501101×10−3 Hartree, while the lowest vibrational energy

of the triplet 6Li7Li state is calculated to be E(q = 2, v = 0) = −1.36923315×10−3

Hartree. Note, Hartree is the atomic unit for energy and it is usually denoted as

Ha.. Therefore, the initial reactant 6Li+7Li7Li is prepared at a cold temperature of

Tr ≈ 1.8 K, then is subjected to a moderate laser field (I = 1 ∼ 100 MW/cm2) and

transferred to the product arrangement 6Li+7Li7Li with an ultracold temperature
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Figure 2.13: Integrated population of the reactant, product (solid lines) and inter-

mediate state (dashed lines) vs time; laser profile (dotted line) vs time; Tp = 0.01

mK

of 0.01 mK ≤ Tp ≤ 1 mK. Here, Tr and Tp denote the temperatures in the reac-

tant arrangement and the product arrangement respectively, and are thus defined

as Tr = [E − E(q = 1, v = 0)]/KB and Tr = [E − E(q = 2, v = 0)]/KB, where

KB is the Boltzmann constant. Fig. 2.12 shows schematic energy levels of the cur-

rent 6Li7Li7Li in a laser catalysis scenario. At the ultracold temperature, Tp, the

non-radiative tunneling probability is negligible (< 1%) and thus a laser catalysis

scenario is useful to achieve the optimum controllability.

We show that the cold (Tr ≈ 1.8 K) reactant 6Li+7Li7Li, when optically coupled

to the intermediate bound states on the 14A′′ electronic PES, can be transferred

to the ultracold (0.01 mK ≤ Tp ≤ 1 mK) product arrangement 7Li+7Li6Li with a

reactive yield of up to 99.8% with a laser intensity of I = 1 ∼ 100 MW/cm2. For

the Tp = 0.01 mK case, shown in Fig. 2.13, the reactive yield is optimized to be

99.8% with an intensity of I = 1.37 MW/cm2. The probability of the intermediate

state |Ej > (dashed line in Fig. D.2) is negligible compared to that of the reactant

or product so that spontaneous emission is essentially nonexistent. The production

rate of the ultracold 6Li6Li diatoms, for the Tp = 1 mK case, is estimated to be

4× 105 /s.

More detailed information can be found in Appendix D.
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Part III

Geometric Phase
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Chapter 3

Conventional Geometric Phase Theory

3.1 Introduction

We mentioned in Chapter 1 that the geometric phase effect may lead to nontrivial

consequences for molecular structures and dynamics on these crossing electronic

PESs. There are in general three ways to treat the geometric phase problem:

• Use a double-valued basis set in both the electronic and nuclear wavefunctions(101).

• Use an electronic diabatic representation (8; 102; 103; 104).

• Use the vector potential method(14).

The first procedure uses a real double-valued basis set in both the electronic

and nuclear wavefunctions. This procedure has been applied to the H3 system and

its isotopomers (isotopic isomers). The simplicity of using this procedure results

when the double-valuedness is easy to add explicitly in the nuclear wavefunctions.

However, this double-valuedness is difficult to add in “manually” for the general

case, in which the geometric phase angle can be a complicated function of all

nuclear coordinates. Take the triatomic spin-aligned lithium system. The seams

of conical intersections between the lowest two PESs are located in the collinear

geometries and there are three seams of these conical intersections. Also, the angle

η, which describes the rotation about the seam of conical intersections, can have a

complicated dependence on nuclear coordinates. Thus, the construction of a real

double-valued basis set of the nuclear wavefunctions is not trivial.
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The second procedure uses an electronic diabatic representation, which does

not explicitly depend on the nuclear coordinates and thus the nonadiabatic cou-

plings do not exist. This procedure has the merit of using a single-valued basis

set of nuclear wavefunctions. The double-valuedness is carried in the electroni-

cally adiabatic-to-diabatic transformation, and the resultant Hamiltonian in this

diabatic representations is free of the double-valuedness problem. The difficulty of

using the diabatic representation lies mainly in the adiabatic-to-diabatic transfor-

mation. One needs to be able to keep track of phases of the adiabatic-to-diabatic

transformation matrix so that it carries the double-valuedness so that the diabatic

representations is single-valued.

The third procedure, which uses a vector potential to treat the geometric phase,

is a more general way to include geometric phase effects. In this procedure, we mul-

tiply the real double-valued electronic adiabatic wavefunction by a complex double-

valued phase factor to cancel the double-valuedness. This phase factor results in

vector potential terms in the Hamiltonian (14), and more detailed information will

be provided in the next section. Kendrick and Pack has applied this vector potential

method to H+O2(105), Na3(106) and H+D2(107).

In this study we focus on the use of vector potential techniques to treat the

geometric phase effect in a triatomic system. We will briefly review the conventional

derivation of the vector potentials for a Jahn-Teller system in which the conical

intersections are nonlinear.

3.2 Vector Potential

The molecular Schrodinger equation is given by

ĤΨtot(~R,~r) = EΨtot(~R,~r), (3.1)

where Ψtot(~R,~r) is the total molecular wavefunction of the nuclear coordinate ~R

and the electronic coordinate ~r, Ĥ is the total molecular Hamiltonian, and E is the

total energy. In this thesis we focus on the triatomic system. Thus, we choose to

use the adiabatically adjusting, principal axes hyperspherical (APH) coordinates

(ρ, θ, χ, αQ, βq, γQ) formulated in Pack and Parker’s work (108), which is similar
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to Smith-Johnson’s coordinates(109; 110) except for 2χ = φ. More detailed infor-

mation on this APH coordinates can be found in Appendix E.3. We distinguish

two types of nuclear coordinates by expressing ~R = (R, R̂) in which R = (ρ, θ, χ)

for the three internal coordinates and R̂ = (αQ, βq, γQ) for the three Euler angles.

In this study, we concentrate on the geometric phase effect at ultracold temper-

atures, where the the angular momentum are negligible. Therefore, we ignore all

the spin-orbit couplings and consider only the Coulomb interactions. The inclusion

of spin-orbit couplings would not change the qualitative results of the geometric

effect. We also ignore the relativistic effects which is negligible for an ultracold

reactive scattering process.

We can express Ĥ in space-frame(SF) coordinates as

Ĥ = − ~
2

2µ
∇2 + Ĥe(R), (3.2)

where ∇2 is the six-dimensional Laplacian with respect to ~R, µ is the three-body

reduced mass, and Ĥe is the electronic Hamiltonian which depends on the three

internal coordinates, R, parametrically. We choose to use the adiabatic represen-

tation of the electronic wavefunction, ϕn. ϕn is an eigenvector of the electronic

Hamiltonian Ĥe

Ĥeϕn(~r;R) = Vn(R)ϕn(~r, R), (3.3)

where n = 0 denotes the ground state. The electronic Hamiltonian and the eigen-

values are real and we can choose the electronic wavefunctions to be real.

We use the Born-Oppenheimer expansion of the total molecular wavefunction

in Eq. (3.1)

Ψtot(~R,~r) =
∑

n=0

Ψn(~R)ϕn(~r, R), (3.4)

where the expansion coefficients Ψn(~R) are the nuclear wavefunctions. At a low

collision energy with non-degenerate ground electronic PES, we can ignore the

coupling to the excited electronic states ϕn 6=0 and use a one-state approximation

(8),

Ψtot(~R,~r) ≈ Ψ0(~R)ϕ0(~r, R). (3.5)

For simplicity, we drop the subscript 0 from now on.
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We substitute Eq. (3.5) into Eq. (3.1), multiply it on the left by ϕ(~r, R),

integrate over ~r and we obtain

{

− ~
2

2µ
∇2 + V (R)

}

Ψ(~R) = EΨ(~R), (3.6)

where the electronic wavefunction is real double-valued. Because the total wave-

function Ψtot needs to be single-valued, the associated nuclear wavefunction Ψ(~R)

is double-valued. Both of the electronic and nuclear wavefunctions change sign

when the nuclear motion encircles a conical intersection between the ground and

excited electronic PESs. It is, in general, complicated to put in a mechanism to

make the nuclear wavefunction double-valued and thus change sign as it completely

transverses the conical intersections. We multiply the real double-valued electronic

wavefunction by a complex phase(14)

ϕ̄(~r, R) = exp

(

i
l

2
η(R)

)

ϕ(~r, R), (3.7)

where l is an odd integer and η(R) is a “rotating” angle which is defined to change

by 2π for any nuclear motion which encircles a conical intersection an odd number

of times. With the inclusion of the phase factor, the ϕ̄(~r, R) electronic wavefunction

is complex single-valued. And, therefore, the nuclear wavefunction is single-valued.

The adiabatic electronic functions defined in Eq. (3.3) are body-frame (BF)

electronic wavefunctions, which are needed to rotate to the SF electronic wavefunc-

tions

ϕ̄(~r, ~R)(SF ) = U(αQ, βQ, γQ)ϕ̄(~r, R)(BF ) (3.8)

where U is the rotation operator. It is explicitly defined as(105; 111)

U(αQ, βQ, γQ) ≡ e−lexαQe−leyβQe−lezγQ (3.9)

where lei, i = x, y, z are the components of the total electronic angular momentum

in the BF.

Using Eq. (3.7) and Eq. (3.8), we derive the new Schrodinger equation for the

molecular system

{

~
2

2µ
(−i∇−A(~R))2 + ε(~R)

}

Ψ̄(~R) = EΨ̄(~R), (3.10)
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where A(~R) is the vector potential defined as

A(~R) ≡ i
〈

ϕ̄(~r, ~R)|∇|ϕ̄(~r, ~R)
〉

(3.11)

and ε(~R) is the effective scalar potential defined as(112)

ε(~R) ≡ V (R) − ~
2

2µ

∑

m=0

〈

ϕ̄0(~r, ~R)|∇|ϕ̄m(~r, ~R)
〉

×
〈

ϕ̄m(~r, ~R)|∇|ϕ̄0(~r, ~R)
〉

. (3.12)

We can separate the Laplacian operator as ∇ = ∇R + ∇R̂, and we express the

vector potential A(~R) as(105)

A(~R) = A(R) + A(R, R̂) (3.13)

where

A(R) = − l
2
∇R η(R), (3.14)

A(R, R̂) ≡ i
〈

ϕ̄0(~r, ~R)|U−1(R̂)
(

∇R̂U(R̂)
)

|ϕ̄0(~r, ~R)
〉

(3.15)

However, there are two things to be noticed for the special system we study:

• We are interested in chemical reactions with very low scattering energies and,

therefore, the effect of the excited electronic PESs can be neglected.

• For collisions at ultracold temperatures, the three chemical arrangements are

assumed to have low electronic orbital angular momentum. Thus, for low

energy collisions, the total electronic angular momentum le is small.

Based on these two arguments, we can neglect A(R, R̂) and the second term in Eq.

(3.12). Therefore, Eq. (3.10) can be rewritten as

{

~
2

2µ
(−i∇−A(R))2 + V (R)

}

Ψ̄(~R) = EΨ̄(~R). (3.16)
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Following the derivation in Ref. (105), we obtain the molecular kinetic energy

operator in Eq. (3.16) in terms of the one-form components A(R) = (Aρ, Aθ, Aχ)

~
2

2µ
(−i∇−A(R))2 = − ~

2

2µ

(

∂

∂ρ
ρ5 ∂

∂ρ
+

4

ρ2 sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
+

1

ρ2 sin2 θ

∂2

∂χ2

)

+
J2

x

µρ2(1 + sin θ)
+

J2
y

µρ2 sin2 θ
+

J2
z

µρ2(1− sin θ)

+ i
~

2

2µ

[

5

ρ
Aρ +

∂Aρ

∂ρ
+

8 cot 2θ

ρ2
Aθ +

4

ρ2

∂Aθ

∂θ

+
1

ρ2 sin2 θ

∂Aχ

∂χ
+ 2Aρ

∂

∂ρ
+

8

ρ2
Aθ

∂

∂θ
+

2

ρ2 sin2 θ
Aχ

∂

∂χ

]

+
~

2

2µ

[

A2
ρ +

4

ρ2
A2

θ +
1

ρ2 sin2 θ
A2

χ

]

− i~ cos θ

µρ2 sin2 θ
Jy

∂

∂χ
(3.17)

It should be noticed that this kinetic energy operator includes complex terms

and thus needs special treatment. We divide the problem into two categories:

conical intersections in the C2v geometries and conical intersections in the C∞v ge-

ometries. Here, C2v and C∞v are different symmetry groups the molecular system

belongs to. In a AB2 system, when RAB1
and RAB2

are equal to the other, this

system belongs to the C2v symmetry group; when the three atoms are collinear,

the system belongs to the C∞v group. We will show in chapter 4 that the conical

intersections in the C2v geometries would lead to a complex Hamiltonian in the

internal coordinates, (ρ, θ, χ). We will develop a Mixed-Odd-Even-States (MOES)

method to create real interaction matrices and overlap matrices to be used in the

propagation in the hyperradius ρ. We will show in chapter 5 that conical intersec-

tions in the C∞v geometries would lead to a real Hamiltonian (the J = 0 case) in

the internal coordinates, (ρ, θ, χ).
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Chapter 4

The C2v conical intersections

4.1 Introduction

The HD2 and HO2 systems have conical intersections in the C2v geometries for

the lowest doublet states. If one chooses the chemical arrangements B and C to

be identical in these cases, the potential energy surfaces are then symmetric with

respect to the φ→ −φ operation where φ is one of the symmetric spherical internal

coordinates(109; 110). The geometric phase angle η, which describes the rotation

around the seam of conical intersections, is then antisymmetric with respect to the

φ → −φ operation(101; 105). We will use this section to describe the solution to

problems of this category.

If we want to solve for cross-sections or reaction probabilities in the time inde-

pendent picture, we can use propagation methods, e.g. the Log-derivative method

(113) and the Numerov method (114). Both methods propagate the nuclear wave-

function from the inner region with a small hyperradius to the asymptotic region

with a large hyperradius, where the proper boundary conditions are applied to

match onto the asymptotic behaviors of the nuclear wavefunction. Both propa-

gation methods, the Log-derivative method and the Numerov method change the

differential equation to a difference equation so that we can propagate the nuclear

wavefunction from one hyperradius sector to the next hyperradius sector. The

effective potential terms and the overlap matrices, which are used in these propa-

gation methods, are obtained by first solving (diagonalizing) the two-dimensional

surface Hamiltonian which only parametrically depends on the hyperradius ρ. De-

tails of the effective potential terms and the overlap matrices will be provided in
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the next subsection. However, Eq. (3.17) shows that the kinetic energy operator

in the SF, in general, contains the first derivative terms ∂/∂ρ and complex terms.

These two aspects pose problems when one wishes to use the Log-derivative prop-

agator. On the contrary, using the Numerov propagator one can circumvent this

theoretical obstacle because it does not include the first derivative terms ∂/∂ρ in

the propagation.

We now derive some symmetry properties of the Aθ and Aχ vector components

and their first derivatives. We know that the geometric phase angle η is antisym-

metric under the symmetry operation η(−χ)→ −η(χ) (101; 105). Therefore, using

the definition of Aθ and Aχ in Eq. (3.14), we have

Aθ(ρ, θ,−χ) = −Aθ(ρ, θ, χ)
(

∂Aθ

∂θ

)

(ρ, θ,−χ) = −
(

∂Aθ

∂θ

)

(ρ, θ, χ) (4.1)

and

Aχ(ρ, θ,−χ) = +Aχ(ρ, θ, χ)
(

∂Aχ

∂χ

)

(ρ, θ,−χ) = −
(

∂Aχ

∂χ

)

(ρ, θ, χ). (4.2)

4.2 SVD treatment of Geometric phase

In this section, we use a combination of a smooth variable discretization (SVD) with

an enhanced renormalized Numerov propagator(115). The purpose of this method

is to eliminate the first derivative ∂/∂ρ and complex parts so that the propagation

is kept real. Note that, this does not change the total complex form the molecular

Hamiltonian, which then needs a special treatment to obtain real overlap matrices.

We start from the molecular Hamiltonian for the nuclear and electronic motions

H =
~

2

2µρ5

∂

∂ρ
ρ5 ∂

∂ρ
+ hint(ρ, Ω̂, ~r) (4.3)

where hint contains the Laplacian operator of the five angular coordinates Ω̂ ≡
(θ, χ, αQ, βQ, γQ) and the electronic Hamiltonian He(~r;R). We can express the

time-independent Schrodinger equation as

(H −E)ΨJMi = 0 (4.4)
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where i denotes initial.

If we write the total molecular wavefunction ΨJMi as

ΨJMi =
1

ρ5/2
ψJMi, (4.5)

we can rewrite Eq. (4.3) as

H =
~

2

2µ

∂2

∂ρ2
+Hint(ρ, Ω̂, ~r) ≡

~
2

2µ

∂2

∂ρ2
+

15~
2

2µρ2
+ hint(ρ, Ω̂, ~r). (4.6)

We then rewrite Eq. (4.4) as

∂2

∂ρ2
ψJM = WψJM (4.7)

where

W (Ω̂, ~r; ρ) =
2µ

~2
(Hint − E) (4.8)

is a differential operator in all coordinates but ρ, and it parametrically depends on

ρ.

Following the standard SVD-Numerov algorithm(115), we obtain the recursion

relation

(1− Tn+1)ψn+1 + (1− Tn−1)ψn−1 = (2 + 10Tn)ψn −O(h6) (4.9)

where T is defined as

T =
h2

12
Wn, (4.10)

n denotes the nth ρ point in the propagation, and h is the equal spacing between

ρn and ρn+1. Neglect the term of O(h6) and higher order terms in Eq. (4.9) gives

the ordinary Numerov propagator.

At this point we expand the total wavefunction ψ

ψn(ρ, Ω̂, ~r) = Φn(Ω̂, ~r; ρ)Gn(ρ) (4.11)

in the adiabatic basis Φ(Ω̂, ~r; ρ) defined as

Hint(Ω̂, ~r; ρ)Φq(Ω̂, ~r; ρ) = Eq(ρ)Φ(Ω̂, ~r; ρ). (4.12)

We now substitute Eq. (4.11) in Eq. (4.9) and project the basis function Φn on

the left. Assuming this basis set Φn is complete, we get terms such as

〈Φn |Tn+1|Φn+1〉 = 〈Φn | Φn+1〉 〈Φn+1 |Tn+1|Φn+1〉
= On,n+1Tn+1, (4.13)
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where the overlap matrices On,n+1 are defined as

[On,n+1]p,q ≡
∫

dΩ̂ d~r Φ∗
p(Ω̂, ~r; ρ)Φq(Ω̂, ~r; ρ). (4.14)

Note that, the basis set Φn is not orthogonal to Φn+1 because they are eigen-

vectors of different internal Hamiltonians Hint(ρn). Now let us assume the basis

functions Φn are truly adiabatic, which at each ρn point diagonalize Hint and thus

T . Therefore, we get a diagonal matrix Tn

Tn = τn =
h2

12

2µ

~2
(En − EI). (4.15)

Thus, we can rewrite Eq. (4.9) as

On,n+1(I− τn+1)Gn+1 − (2I + 10τn) + On,n−1(I− τn−1)Gn−1 = O(h6). (4.16)

4.3 Hint and the adiabatic basis Φq(Ω̂, ~r; ρ)

Let us investigate the properties of Eq. (4.12). For the J = 0 case, Hint can be

expressed as

Hint = − ~
2

2µ

(

4

ρ2 sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
+

1

ρ2 sin2 θ

∂2

∂χ2

)

+
15~

2

2µρ2
+He. (4.17)

We express Φq(Ω̂, ~r; ρ) as

Φq(Ω̂, ~r; ρ) = φq(Ω̂; ρ) exp

(

i
l

2
η(R)

)

ϕ(~r;R) (4.18)

where l is an odd number with the geometric phase and an even number without

the geometric phase, and ϕ(~r;R) is the adiabatic real-double valued electronic

wavefunction defined as

He(~r;R)ϕ(~r;R) = V (R)ϕ(~r;R). (4.19)
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We left-multiply ϕ(~r;R) onto Eq. (4.12) and integrate over all electronic co-

ordinates ~r. We then get a two-dimensional equation for surface wavefunctions

φq(θ, χ; ρn) at the ρn point

{

− ~
2

2µ

(

4

ρ2
n sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
+

1

ρ2
n sin2 θ

∂2

∂χ2

)

+
15

8µρ2
n

+ V (θ, χ; ρn) +
~

2

2µρ2
n

[

4A2
θ +

1

sin2 θ
A2

χ

+i

(

8Aθ cot 2θ +
4∂Aθ

∂θ
+ 8Aθ

∂

∂θ
+

1

sin2 θ

∂Aχ

∂χ

+
2

sin2 θ
Aχ

∂

∂χ

)]}

φq(θ, χ; ρn) = Eq(ρn)φq(θ, χ; ρn), (4.20)

where Aθ and Aχ are defined in Eq. (3.14). Note that, this Hamiltonian is complex

and Hermitian so the eigenvalues Eq(ρn) are real. Though the general solution

φq(θ, χ; ρn) is complex, one way to construct real interaction and overlap matrices

is to use the permutation symmetry, as in Ref.(105). An alternative and simpler

way will be fully developed later on, which is named the MOES methods and will

be used in the analytic basis method (ABM)(116) and DVR(117) method.

4.4 Numerov Propagator

4.4.1 The SVD-renormalized Numerov propagator

In order to avoid the unstable solutions of G in the classically forbidden region, we

use the renormalized Numerov procedure developed by Johnson(114).

To simplify Eq. (4.16), we follow Johnson(114) and introduce

Un = (I− τn)Gn (4.21)

to define the ratio R matrix as

Rn = On,n+1Un+1U
−1
n . (4.22)

We then can rewrite the propagation function Eq. (4.9) as

Rn = Qn −On,n−1R
−1
n−1On−1,n (4.23)
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where we define Qn as

Qn = (2I + 10τn)(I− τn)−1. (4.24)

Because τn is diagonal, the inverse of the matrix (I− τn)−1 is also diagonal and can

be easily calculated.

4.4.2 The SVD-enhanced renormalized Numerov propagator

Given an initial R1 at ρ1, we can propagate to large distance ρn. Here we follow

Pack and Parker’s work(115), and we use

[Q
′
n]i = cosh

(

√

12[τn]i

)

, if [τn]i > 0 (4.25)

and:

[Q
′
n]i = cos

(

√

12[τn]i

)

, if [τn]i < 0 (4.26)

to improve the divergence problem of Q. More details on this improvement are

explained in Ref.(115).

We start with G0 = 0 where ρ = 0, for it can be chosen arbitrarily and does not

affect the dynamics. And we assume that R−1
0 = 0 is also valid for this process,

which gives:

R1 = Q
′
1 (4.27)

And we take a further approximation of Q
′
1 as:

[R′
1]i = exp

(

√

12[τ1]i

)

(4.28)

to solve the numerical problems in the propagation. It has been shown in Ref.

(115) that this approximation made little difference in the scattering results.

4.5 Boundary conditions and matching

4.5.1 Numerov matching

When the propagation reaches the asymptotic region at ρ = ρM , we can rewrite

Eq. (4.22) to connect the RM matrix to the radial wavefunction G

RM(I− τM)GM = OM,M+1(I− τM+1)GM+1. (4.29)
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One can then relate GM and GM+1 to the asymptotic solutions to get the reactance

matrix K(108; 115). Note that, in the asymptotic region, the geometric phase terms

die off as 1/ρ2 and the conical intersections are located in the regions where the

PES is extremely repulsive. Therefore, we can ignore the geometric phase factors

in the asymptotic region.

Before we start to apply the boundary condition, we transform the Φ wave-

function from APH coordinates to Delves coordinate. More information on the

definition of Delves coordinates can be found in Appendix E.2. This is because we

need to use a primitive basis set of rovibrational functions so the reactance matrix

is labeled by the primitive indices. One can transform the adiabatic basis to a

primitive basis Υ, by:

Φn = ΥnDn. (4.30)

Here the Φn is obtained through diagonalizing hint, as well as Dn.

The wavefunction ψ can be expressed as

ψn = ΥnDnGn. (4.31)

We then right-multiply Eq. (4.31) by DT
n to get

ψprim
n ≡ ψnD

T
n

= ΥnΓn, (4.32)

where Γn is defined in the primitive basis as

Γn ≡ DnGnD
T
n . (4.33)

The inversion of Eq. (4.33) can give

Gn = DT
nΓnDn. (4.34)

We then substitute Eq. (4.34) to Eq. (4.29) to get the asymptotic form of the

propagation in the well-labeled primitive basis

RM(I− τM)DT
MΓMDM = OM,M+1(I− τM+1)D

T
M+1ΓM+1DM+1. (4.35)

We then can right-multiply Eq. (4.35) by DT
M+1 and assume DMDT

M+1 ∼ I, where

I is an identity matrix, in the asymptotic region. This leads to

RM(I− τM )DT
MΓM = OM,M+1(I− τM+1)D

T
M+1ΓM+1. (4.36)
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In order to relate the ratio R matrix to the reactance matrix K, we also need

to express the entire wavefunction in the mass-scaled Jacobi coordinates as

ρ5/2ΨJMi =
∑

m

2ρ1/2

sin(2θDm
)
F J

mi(Sm)Θm(s)Ym(Ŝ, ŝ), (4.37)

where θDm
≡ tan−1(sτ/Sτ ) is the Delves angle for a chemical arrangement τm. Here,

definitions of the Jacobi coordinates can be found in Appendix E.1. Note that, the

ratio R matrix in the Numerov propagator is different from the Wigner R matrix in

the Log-derivative propagator, and more information on how to relate these two R

matrices will be provided in the next section. The asymptotic wavefunction F(S)

can be written as

F(ρ) = a− bK (4.38)

where

[a]fi = δfi

√

kfSjlf (kfS), (4.39)

and

[b]fi = δfi

√

kfSylf (kfS). (4.40)

Here, k2
f = 2µ(E − ǫBS

νf ,jf ,αf
)/~2, jn is the spherical Bessel function of an integer

order n, and yn is the spherical irregular Bessel function of an integer order n. For

the closed channels we replace jn by in and yn by kn, which are modified spherical

Bessel functions of an integer order n.

The entire wavefunction can also be written in terms of Delves coordinates

ρ5/2ΨJMi =
∑

m

2

sin(2θDm
)
Γmi(ρ)Υm(θDm

)Ym(Ŝ, ŝ). (4.41)

Using Eq. (4.37) and Eq. (4.41)we then can write Γfi(ρ) as

Γfi(ρ) = ρ1/2
∑

m

δjf jm
δlf lm

∫

dθΥf(θ; ρ)Fmi(S)Θm(s). (4.42)

After substituting the boundary condition, Eq. (4.38), into Eq. (4.42), we obtain

Γ at large distance in terms of the reactance matrix as Γ = A−BK. These matrix

elements for the open channels are given as

[A]fi =
√

kf

∫

ρ cos θdθΥn(θ; ρ)Θi(ρ sin θ)jlf (kfρ cos θ), (4.43)
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and

[B]fi =
√

kf

∫

ρ cos θdθΥn(θ; ρ)Θi(ρ sin θ)ylf (kfρ cos θ). (4.44)

For the elements of A and B in the closed channels we use the modified Bessel

functions in and kn, instead of jn and yn. At point ρM , we define AM = A(ρM)

and

Zn = (I− τn)DT
n . (4.45)

We, therefore, can rewrite Eq. (4.36) as

RMZM(AM −BMK) = OM,M+1ZM+1(AM+1 −BM+1K). (4.46)

We can solve for the reactance K matrix

KM = [RMZMBM −B′
M ]−1[RMZMAM −A′

M ], (4.47)

where we define

A′
M = OM,M+1ZM+1AM+1 (4.48)

and

B′
M = OM,M+1ZM+1BM+1. (4.49)

We can get the scattering S matrix from the reactance K matrix by the Caley

transformation:

S = [I + iK][I− iK]−1, (4.50)

and observable properties are calculated from S.

4.5.2 Log-derivative matching

Two major approximations, DT
MDM+1 ≈ 1 and DT

MDM = 1, are used in the Nu-

merov matching. The first assumes the matching is done in the asymptotic region

and the change of the surface energy, E , is negligible compared with the transla-

tional energy. The second approximation assumes both the primitive basis set and

the adiabatic basis set are complete. However, this is not always true and it can be

sometimes very difficult to get converged results. As an alternative, we can relate

the Wigner matrix RW in the Log-derivative propagator with the ratio matrix RN

used in the Numerov method. In this way we can convert RN to the Wigner matrix

and apply the associated Log-derivative matching.
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The Wigner matrix RW is defined as RW = G(∂G/∂ρ)−1 in the APH coordi-

nates. The first derivative term can be defined as

∂G

∂ρ
= lim

h→0

G(ρ+ h)−G(ρ)

h
. (4.51)

And thus the inverse of the Wigner matrix RW can be expressed as

[RW ]−1
n = lim

h→0

G(ρ+ h)−G(ρ)

h
G−1(ρ)

= lim
h→0

1

h

[

G(ρ+ h)

G(ρ)
− I

]

. (4.52)

Note that, this expression has an O(h2) error where h is the step size. However,

in the asymptotic region, the step size h is much smaller than the local wavelength

and thus this O(h2) error is negligible here. We can then approximate this equation

as

[RW ]−1
n h =

[

Gn+1

Gn

− I

]

. (4.53)

Using Eq. (4.22) we obtain

[RW ]−1
n =

1

h

[

(I− τn+1)
−1On,n+1R

N(I− τn)− I
]

. (4.54)

Therefore, the Wigner matrix R can be calculated via the Numerov ratio R matrix

as

[RW ]n = h
[

(I− τn+1)
−1On,n+1R

N(I− τn)− I
]−1

. (4.55)

4.5.2.1 APH to Delve transformation

Before we apply the boundary conditions, we need to transform the Wigner matrix

RW (APH) to RW (Delves). We define the SF wavefunction in Delves coordinates

as:

ΨJMn = 2
∑

τf νf jf Λf

ΓJn
τf νf jf Λf

(ρ)

ρ5/2

Υνf jf
(θDf

; ρn)

sin(2θD)

× P̂jf Λf
(Θf )D̂

J
ΛfM(αf , βf , γf) (4.56)

and the SF wavefunction in the APH coordinates as

ΨJMpn = 4
∑

t,Λ

ρ−5/2ψJpn
tΛ (ρ)ΦJp

tΛ(θ, χi; ρn)D̂Jp
ΛM(αQ, βQ, γQ), (4.57)
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where J is the total angular momentum quantum number, M is the quantum num-

ber for the projection of J along the space frame z-axis, Λ is the quantum number

for the projection of J along the body frame z-axis, p is the parity, t indicates the

tth surface function, and n indicates the nth solution for ΨJMpn functions. Here ρ

is the APH hyperradius, θ and χ are the APH hyperangles, and ρn is the center

of the nth ρ sector in which the nonadiabatic surface basis ΦJp
tΛ is expanded. The

D̂Jp
ΛM(αQ, βQ, γQ) are normalized Wigner rotation matrix elements of good parity

p (108). The expansion coefficients, ψJpn
tΛ (ρ), are functions of ρ and labeled by the

good quantum numbers J (total nuclear angular momentum) and p (parity).

We then can obtain the transformation matrix UJ
τf νf jfΣf ,tΓ as

UJ
τf νf jfΛf ,tΛ = 2

∫ π/2

0

sin(2θDf
)dθDf

×
∫

ŝfdŜfΥf P̂fD̂
J∗
Λf M(αf , βf , γf)

× φJp
tΛD̂

Jp
Λf M(αQ, βQ, γQ). (4.58)

More details of the transformation matrix can be found in Ref. (108). The Delves

Wigner matrix is then obtained as

R(Delves) = UR(APH)UT . (4.59)

4.5.2.2 Boundary conditions of the Delves coordinates wave functions

Once the Wigner R matrix is obtained in the Delves coordinates, we can apply

boundary conditions. First, we define the wavefunction in the mass-scaled Jacobi

coordinates (Sf , sf , Ŝf , ŝf) as

ΨJMτiνijili =
∑

τiνijili

1

sfSf
GJτiνijili

τf νifilf

× Ξνf jf
(sf)Y(Ŝf , ŝf). (4.60)

The reactance matrix K is obtained by calculating

K = (RF − B)−1 (RE −A) (4.61)

where R = Γ(∂Γ/∂ρ)−1 is the Wigner R matrix we obtained from section 4.5.2.1.

The four matrices A, B, E and F are defined as

Afi = δτf τi
δjf ji

δlf liρ
1/2

∫ π/2

0

dθDf
Υ∗

f(θDf
, ρn)aii(Sf)Ξi(sf), (4.62)
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Afi = δτf τi
δjf ji

δlf liρ
1/2

∫ π/2

0

dθDf
Υ∗

f(θDf
, ρn)bii(Sf)Ξi(sf), (4.63)

E =
1

2ρ
A+ C, (4.64)

and

F =
1

2ρ
B +D. (4.65)

The C and D matrices are defined as

Cfi = δτf τi
δjf ji

δlf liρ
1/2

∫ π/2

0

dθDf
Υ∗

f(θDf
, ρn)

×
[

cos θDf
Ξi(sf)

∂aii

∂Sf

+ sin θDf
aii
∂Ξi

∂Sf

]

(4.66)

and

Dfi = δτf τi
δjf ji

δlf liρ
1/2

∫ π/2

0

dθDf
Υ∗

f(θDf
, ρn)

×
[

cos θDf
Ξi(sf)

∂bii
∂Sf

+ sin θDf
bii
∂Ξi

∂Sf

]

(4.67)

where aii and bii are proportional to the spherical Riccati-Bessel functions,

afi = δfik
1/2

f Sf jlf (kfSf) (4.68)

and

bfi = δfik
1/2

f Sfylf (kfSf ). (4.69)

The scattering matrix S is then obtained from open-open parts of the reactance

matrix

S = (I + iK)(I− iK)−1. (4.70)

4.6 ABM treatment

The discrete variable representation (DVR) calculations of the surface functions

and energies are very expensive at a large hyperradii. The analytic basis method

(ABM)(116) has some similarities to the Delves hyperspherical methods of Schatz(118),

Kuppermann and coworkers(119), and Kendrick(120) in that the ABM uses both

functions, which are centered in the chemical arrangement channels, and diatomic
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rotational functions of Θτ . These functions are centered in each chemical arrange-

ment channels where we pack more points near the equilibrium point of the diatomic

potential curve.

Because the ABM uses primitive basis functions centered in the chemical ar-

rangements, it describes the surface functions very well at large hyperradius. Be-

cause the ABM is less effective than the DVR at a small hyperradius, one can then

use the DVR at a small ρ and use the ABM at a large ρ. We perform a DVR-to-

ABM transformation to connect the methods so that the Wigner matrix R(DVR)

can be transformed to R(ABM).

4.6.1 The Mixed-Odd-Even-State (MOES) method in the

ABM

The surface Hamiltonian, Hint, is given in Eq. (4.20) and we only consider the

J = 0 case in this study. In order to define the basis functions correctly, we need

to discuss some of the symmetry properties of this surface Hamiltonian. We define

an operator P as Pf(χ) → f(−χ). The surface Hamiltonian can be proved to be

Hermitian, and from Eq. (4.1) and Eq. (4.2) we can derive

PHint = Hint(−χ) = H∗
int. (4.71)

From Eq. (4.71), the surface functions φq(θ, χ; ρn) must have specific symmetry

properties with respect to the operation P. We choose

φq(θ,−χ; ρn) = φ∗
q(θ, χ; ρn), (4.72)

which means φq is neither even nor odd with respect to P. We then express the

surface functions as a basis set expansion of the form

φq(θ, χ; ρn) =
∑

fe

F e
fB

e
fq + i

∑

fo

F o
t B

o
fq (4.73)

where the superscripts e and o denotes even and odd symmetries with respect to

the P operation, respectively, and the coefficients Be
fq and Bo

fq can be determined

by the variational method. We separate the even and odd state with respect to the

P operation in Eq. (4.73) so that the surface functions obey Eq. (4.72). The use of
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a mixture of these even and odd states is thus named the Mixed-Odd-Even-State

(MOES) method.

In order to get the primitive basis functions F centered in each chemical ar-

rangement channel we express them in the delves hyperspherical coordinate θDf

and Θf , where θDf
measures the ratio between two scaled Jacobi vectors in the τf

arrangement and Θf is the angle between these two Jacobi vectors. In order to

make sure the basis functions F have good parity under χi → χi + π we write

Ff(θ, χi; ρn) = cosp(χf )Ff(θDf
,Θf ; ρn) (4.74)

where χf is the kinematic angle between arrangement τf and τi and it is given

as(108)

χf = χi − χfi. (4.75)

In this study, we choose to study the J = 0 and p = 0 case, which makes the

cosp(χf ) factor unity. For brevity we ignore this parity function for the following

derivations.

The transformation between (θ, χf) and (θDf
,Θf) are given in Ref.(108) as

tan θDf
=

[

1− sin θ cos 2χf

1 + sin θ cos 2χf

]1/2

, (4.76)

cos Θf =
sin θ sin 2χf

[

1− sin2 θ cos2 2χf

]1/2
, (4.77)

and their inverse as

tan θ =

[

cos2 2θDf
+ cos2 2θDf

cos2 Θf

]1/2

sin 2θDf
sin Θf

, (4.78)

sin 2χf =
sin 2θDf

cos Θf
[

cos2 2θDf
+ cos2 2θDf

cos2 Θf

]1/2
, (4.79)

cos 2χf =
cos 2θDf

[

cos2 2θDf
+ cos2 2θDf

cos2 Θf

]1/2
. (4.80)

Eq. (4.20) can be partitioned as

(

Th +
15~

2

8µρ2
+ V + (AR + iAI)

)

φq = Eqφq. (4.81)
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Here, Th is given as

Th ≡ − ~
2

2µ

(

4

ρ2
n sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
+

1

ρ2
n sin2 θ

∂2

∂χ2

)

=
1

2µ

[

−~
2

sin2 2θDf

∂

∂θDf

sin2 2θDf

∂

∂θDf

+

[

1

cos2 θDf

+
1

sin2 θDf

]

L2

]

,(4.82)

AR is given as

AR ≡
~

2

2µρ2
n

[

4A2
θ +

1

sin2 θ
A2

χ

]

, (4.83)

and AI is given as

AI ≡
~

2

2µρ2
n

[

8Aθ cot 2θ +
4∂Aθ

∂θ
+ 8Aθ

∂

∂θ
+

1

sin2 θ

∂Aχ

∂χ

2

sin2 θ
Aχ

∂

∂χ

]

, (4.84)

where L2 is given by

L2 =
−~

2

sin Θf

∂

∂Θf

sin Θf
∂

∂Θf

(4.85)

Following Ref.(116), we choose the analytic primitive basis function as

Ff (θDf
,Θf ; ρn) =

Υf(θDf
; ρn)

sin 2θDf

P̂ 0
jf

(cos Θf) (4.86)

where P̂ 0
jf

is the normalized associated Legendre polynomials. Here, Υf (θDf
; ρn) is

chosen to be
Υf(θDf

; ρn)

sin θDf

=
1

Bf (θDf
)
Ξνf

(zf), (4.87)

where Ξ is a simple harmonic oscillator function of zf ,

Ξνf
(zf ) =

1
√

π1/22νf (νf !)
Hνf

(zf )e
−z2

f
/2. (4.88)

Hνf
is a Hermite polynomial, and Bf is a factor chosen to simplify the Jacobian

for Ξ normalized on zf , where zf is

zf = af tan θDf
− bf

tan θDf

+ cf . (4.89)

We choose af > 0 and bf > 0 so that, when θDf
runs from 0 to π/2, zf runs from

−∞ to +∞, and has compact support on the boundaries. Further details of the

choice of these basis functions in the ABM can be found in Ref.(116).
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It can be seen from Eq. (4.76,4.77,4.78,4.79,4.80) that when χ → −χ we have

θDf
→ θDf

and Θf → −Θf . We can then deduce that P̂ 0
jf

(cos Θf) is antisymmetric

with respect to the P operator when jf is even and symmetric with respect to P
when jf is odd. The even primitive basis functions F e

t are of two kinds,

F e(τf = 1) =
Υf(θDf

; ρn)

sin 2θDf

P̂ 0
jf

(cos Θf) (4.90)

where jf are even, and

F e(τf = 2, 3) =

[

Υf (θDf
; ρn)

sin 2θDf

P̂ 0
jf

(cos Θf)

]

(τf = 2)

±
[

Υf (θDf
; ρn)

sin 2θDf

P̂ 0
jf

(cos Θf)

]

(τf = 3) (4.91)

which is a linear combination of the wavefunctions in chemical arrangements 2 and

3. The ± signs are chosen to be + if jf is even and − if jf is odd. In this way, we

have

F e
t (θ,−χ; ρ) = F e

t (θ, χ; ρ). (4.92)

The odd primitive basis functions iF o
t are of two kinds,

F o(τf = 1) =
Υf(θDf

; ρn)

sin 2θDf

P̂ 0
jf

(cos Θf) (4.93)

where jf are odd, and

F o(τf = 2, 3) =

[

Υf(θDf
; ρn)

sin 2θDf

P̂ 0
jf

(cos Θf)

]

(τf = 2)

±
[

Υf(θDf
; ρn)

sin 2θDf

P̂ 0
jf

(cos Θf)

]

(τf = 3) (4.94)

which is a linear combination of the wavefunctions in chemical arrangements 2 and

3. The ± signs are chosen to be − if jf is even and + if jf is odd. In this way, we

have

iF o
t (θ,−χ; ρ) = −iF o

t (θ, χ; ρ). (4.95)
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Therefore, the surface functions φ has the correct symmetry property with respect

to the P operation:

Pφ(θ, χ; ρ) = φ(θ,−χ; ρ) =
∑

fe

F e
f (θ,−χ; ρ)Be

fq + i
∑

fo

F o
t (θ,−χ; ρ)Bo

fq

=
∑

fe

F e
f (θDf

,− cos Θf ; ρ)B
e
fq + i

∑

fo

F o
t (θDf

,− cos Θf ; ρ)B
o
fq

=
∑

fe

F e
f (θDf

, cos Θf ; ρ)B
e
fq − i

∑

fo

F o
t (θDf

, cos Θf ; ρ)B
o
fq

= φ∗(θ, χ; ρ). (4.96)

This condition is satisfied when the expansion coefficients Be
fq and Bo

fq are all real.

4.6.2 Construction of the ABM Hamiltonian

Our basis functions F e
f are real, but the wavefunctions iF o

f are purely imaginary.

Eq. (4.81) shows that the surface Hamiltonian can be partitioned into four parts,

Th,
15~2

8µρ2 + V , AR and iAI . It can be easily shown that this Hamiltonian from Eq.

(4.81) is a Hermitian operator and thus its eigenvalues are real. In general the

Hamiltonian matrix is complex and its solutions are complex. However, because of

our unique choice of the basis functions, we can show that this Hamiltonian, in the

ABM basis set, is real and symmetric. This feature can tremendously reduce our

computational effort.

The even even sub-block of Th is

[Th]me,ne
= 〈F e

m |Th| F e
n〉 , (4.97)

the even odd sub-block of Th is

[Th]me,no
= 〈F e

m |Th| iF o
n〉 , (4.98)

the odd even sub-block of Th is

[Th]mo,ne
= 〈iF o

m |Th| F e
n〉 , (4.99)

and the odd odd sub-block of Th is

[Th]mo,no
= 〈iF o

m |Th| iF o
n〉 . (4.100)
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The integration is done in both θ and χ, and the Th operator is real and symmetric

with respect to the P operation. Because the primitive basis functions F e
m are

symmetric under P and F o
m are antisymmetric under P, we obtain [Th]me,no

=

[Th]mo,ne
= 0. Furthermore, we realize that both [Th]me,ne

and [Th]mo,no
are real

because

[Th]mo,no
= 〈iF o

m |Th| iF o
n〉

= 〈F o
m |Th| F o

n〉 . (4.101)

Thus, the Th matrix is shown to be block-diagonalized real symmetric.

We define

Veff ≡
15~

2

8µρ2
+ V, (4.102)

which, in the ABM basis set, has four sub-blocks. These sub-blocks are the even

even sub-block

[Veff ]me,ne
= 〈F e

m |Veff | F e
n〉 , (4.103)

the even odd sub-block

[Veff ]me,no
= 〈F e

m |Veff | iF o
n〉 , (4.104)

the odd even sub-block

[Veff ]mo,ne
= 〈iF o

m |Veff | F e
n〉 , (4.105)

and the odd odd sub-block

[Veff ]mo,no
= 〈iF o

m |Veff | iF o
n〉 . (4.106)

Likewise, the Veff operator is real and symmetric with respect to the P operator.

Thus, Veff is also block-diagonal and real symmetric. With similar arguments for

the AR operator, which is symmetric with respect to the P operator, AR is also

block-diagonal and real symmetric.

The iAI operator is imaginary. However, it can be shown to be antisymmetric

with respect to the P operator:

iAI(θ,−χ; ρ) = −iAI(θ, χ; ρ) = (iAI(θ, χ; ρ))∗ (4.107)
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which can be deduced from Eq. (5.34) and Eq. (5.35). Therefore, the even even

sub-block

[iAI ]me,ne
= 〈F e

m |iAI | F e
n〉 , (4.108)

and the odd odd sub-block

[iAI ]mo,no
= 〈iF o

m |iAI | iF o
n〉 (4.109)

are both null. The even odd and odd even sub-blocks are non-zero and are both

real:

[iAI ]me,no
= 〈F e

m |iAI | iF o
n〉

= −〈F e
m |AI | F o

n〉 , (4.110)

[iAI ]mo,ne
= 〈iF o

m |iAI | F e
n〉

= 〈F o
m |AI | F e

n〉 . (4.111)

So far, we have shown that all four parts of the surface Hamiltonian in Eq. (4.81)

are real. Because it is a Hermitian operator, this Hamiltonian thus has a symmetric

matrix form. Since the first three parts, Th, Veff and AR, have symmetric matrix

forms, the last part, AI , is also symmetric. We diagonalize this Hamiltonian to

obtain the real expansion coefficients Be
fq and Bo

fq, which will be used later on to

construct the overlap matrices, On,n−1 between the current ρn and the previous

ρn−1. The overlap matrices are, in general, not real because of our complex basis

functions. However, with the choice of our basis set in the MOES method, the

overlap between the even and odd states are simply zero, because they are even/odd

with respect to the χ → −χ operation. Therefore, the overlap matrices are now

real and can be directly used in the propagation of the nuclear wavefunction.

4.7 DVR method

For shorter hyperradius ρ, where the potential is not dominated by the two-body

potential, it is difficult for the ABM and other similar methods to calculate the

adiabatic surface functions and the associated surface energies. On the contrary,

the DVR method is fast, accurate, and very flexible in calculating highly excited
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bound states of arbitrarily shaped multi-dimensional potentials. Bačić, Light and

co-workers have shown the DVR method to be exceptionally effective for calculating

these large amplitude vibrational states of H+H2 (117), F+H2 (121), H+
3 (122) and

others (123; 124; 125; 126). We use the DVR method in the short hyperradius

region to calculate the various matrix elements which will be used in the propagation

calculations.

We adopt the approach of Whitnell and Light (117) to solve for the surface

function φq(θ, χ; ρn) and we utilize the sequential diagonalization-truncation pro-

cedure of Bačić, Light et al (117; 121; 122; 123; 124; 125; 126). Both basis sets for

the θ and χ coordinates are formed in the DVR.

4.7.1 Finite basis representation of surface Hamiltonian

We first construct the Hamiltonian in Eq.(4.20) in the finite basis representation

(FBR), which is then subsequently transformed to the DVR (117). Instead of

using real functions for the basis set, we adopt the MOES method. This basis

set is complex and includes both even and odd states with respect to the χ →
−χ operation. The FBR employed consists of normalized Legendre polynomials

in cos 2θ, P̂l(cos 2θ) l = 0, 1, . . . , lmax, for the θ coordinate, and of normalized

symmetry adapted trigonometric functions Πm(χ) m = 1, 2, . . . , mmax, for the χ

coordinate. Here, the Πm(χ) functions have even and odd labels, as

Πe
m(χ) =

√

1

(1 + δm,1)π
cos 2(m− 1)χ, (4.112)

and

iΠo
m(χ) = i

√

1

π
sin 2nχ, (4.113)

where m,n = 1, 2, . . .. The surface function φq can then be expanded in the FBR

basis set

Φq =
lmax
∑

l=0

mmax
∑

m=1

kqe
lmP̂l(cos 2θ)Πe

m(χ) + i
lmax
∑

l=0

mmax
∑

m=1

kqo
lmP̂l(cos 2θ)Πo

m(χ)

=

lmax
∑

l=0

mmax
∑

m=1

kqe
lmφ

e + i

lmax
∑

l=0

mmax
∑

m=1

kqo
lmφ

o, (4.114)
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where the expansion coefficients kqe
lm and kqo

lm are real. This surface wavefunction

still satisfies the symmetry requirement of the χ→ −χ operation

Φq(θ,−χ; ρn) = Φ∗
q(θ, χ; ρn). (4.115)

The overlap matrices are real and block diagonal in this FBR because the integra-

tion over odd functions of χ in the range of (−π,+π) is simply zero.

We perform a transformation θ′ = 2θ as discussed by Whitnell and Light (117),

which induces a minor modification of the two-dimensional surface function partial-

differential equation Eq.(4.20)

{

− ~
2

2µ

(

16

ρ2
n sin θ′

∂

∂θ′
sin θ′

∂

∂θ′
+

1

ρ2
n sin2(θ′/2)

∂2

∂χ2

)

+
15

8µρ2
n

+ V (θ′/2, χ; ρn) +
~

2

2µρ2
n

[

4A2
θ′ +

1

sin2(θ′/2)
A2

χ

+i

(

8Aθ′ cot θ′ +
8∂Aθ′

∂θ′
+ 16Aθ′

∂

∂θ′
+

1

sin2(θ′/2)

∂Aχ

∂χ

+
2

sin2(θ′/2)
Aχ

∂

∂χ

)]}

φq(θ
′, χ; ρn) = Eq(ρn)φq(θ

′, χ; ρn), (4.116)

where Aθ′ = Aθ(θ
′/2) and Aχ = Aχ(θ′/2). Let us define

hθ′ = − ~
2

2µ

16

ρ2
n sin θ′

∂

∂θ′
sin θ′

∂

∂θ′
, (4.117)

hχ = − ~
2

2µ

1

ρ2
n

∂2

∂χ2
, (4.118)

V̄ (ρn, θ
′, χ) = V (ρn, θ

′/2, χ) +
15

8µρ2
n

, (4.119)

and

fθ′ = [sin(θ′/2)]
−2
. (4.120)

We also define the AR and iAI terms as

AR =
~

2

2µρ2
n

[

4A2
θ′ +

1

sin2(θ′/2)
A2

χ

]

, (4.121)

iAI = iAIθ′ + ifθ′AIχ (4.122)

where

AIθ′ =
~

2

2µρ2
n

(

8Aθ′ cot θ′ +
8∂Aθ′

∂θ′
+ 16Aθ′

∂

∂θ′

)

(4.123)
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and

AIχ =
~

2

2µρ2
n

(

∂Aχ

∂χ
+ 2Aχ

∂

∂χ

)

. (4.124)

With the definitions above, we can express Eq.(4.116) in a much simplified form

[

(hθ′ + fθ′hχ) + V̄ + AR + i(AIθ′ + fθ′AIχ)
]

φq(θ
′, χ; ρn)

= Eq(ρn)φq(θ
′, χ; ρn). (4.125)

Before we make the FBR-to-DVR transformation to obtain the Hamiltonian in

the DVR, we need to investigate the properties of the Hamiltonian in Eq.(4.125) in

the FBR. The entire surface Hamiltonian is Hermitian (105). But, the Hamiltonian

in Eq.(4.125) is complex. Because the (hθ′ + fθ′hχ) + V̄ +AR terms are symmetric

with respect to the χ→ −χ operation, they do not mix the even (φe) and odd (φo)

states. Thus, the (hθ′ + fθ′hχ) + V̄ + AR terms in FBR, using the MOES method,

is block-diagonal and, more importantly, is real symmetric. The proof is similar

to that of the equivalent terms in the ABM, and thus we do not list it here. The

i(AIθ′ + fθ′AIχ) terms are in general complex and is a full matrix. However, with

the choice of the FBR basis functions in the MOES method, the

i(AIθ′ + fθ′AIχ)

terms can be shown to be block-off-diagonal which means the even even and odd

odd blocks are simply zero. The off-diagonal blocks even odd and odd even can

be shown to be real. Because the entire Hamiltonian is Hermitian and real, we

can deduce the total Hamiltonian in the FBR with the MOES method is then

symmetric. The use of this real and symmetric representation of the Hamiltonian

in the calculation can significantly reduce the computational effort as compared to

that with the complex and asymmetric representation of the Hamiltonian.

4.7.2 The DVR Hamiltonian and FBR-to-DVR transformation

The FBR-to-DVR transformation matrices and the DVR points for θ′ and χ are

obtained by diagonalizing the coordinate matrices in the corresponding FBR basis.

The goal is to obtain a diagonal form of the potential matrix V̄ with each diag-

onal element α, β corresponding to the point (θ
′

α, χβ). For the θ′ coordinate, we

diagonalize cos θ′ in the P̂l(cos θ′) basis. The eigenvalues are taken as the θ′ DVR
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points, and the eigenfunctions correspond to the FBR-DVR transformation matrix

T θ′ for the θ′ coordinate. We follow Ref. (117) by using the symmetry-adapted

DVR (SADVR) to form the transformation matrix and the DVR points for the χ

coordinate. Note that, we do not use the C6v symmetry used in Ref. (117) because

it only applies to A3 system. We use the C2v symmetry to form the SADVR so that

it can be applied to the AB2 system with conical intersections in C2v geometries.

Therefore, the SADVR in χ are constructed from the eigenvalues of the matrix of

cos 2χ in the Πm(χ) basis, where the points in χ are not necessarily the same for the

even and the odd states. The FBR-DVR transformation matrix T χ is then formed

with the eigenvectors of this [cos 2χ] matrix. The full FBR-DVR transformation

matrix in (θ′, χ) is the direct product of T θ′ and T χ

T = T θ′
⊗

T χ (4.126)

It should be noted that, cos 2χ is symmetric under the χ → −χ operation and,

therefore, does not mix the even and odd states in the FBR. And thus the Tχ

transformation matrix is block diagonal. We then can show that the FBR-DVR

transformation matrices are real matrices instead of complex matrices. These real

transformation matrices do not conflict with Eq.(4.72). The Hamiltonian in this

DVR is no longer the complex Hamiltonian in Eq.(4.20). However, because the

even and odd states do not mix in the overlap matrices and the eigenvalues Eq are

real, the overlap matrices and eigenvalues in this real DVR is equivalent to those

in the complex DVR. Therefore, we do not need to solve the complex differential

equation as in Eq.(4.20), as done in Ref. (105).

The DVR representation of the surface function Hamiltonian is obtained as

HDV R = TTHFBRT, (4.127)

where HFBR is the matrix representation of the surface Hamiltonian in Eq.(4.125).

HFBR is formed in the FBR defined in Eq.(4.114), and T is defined in Eq.(4.126).

We then can partition the Hamiltonian in Eq.(4.127) as

HDV R = hDV R
θ′

⊗

Iχ + fDV R
θ′

⊗

hDV R
χ + ṼDV R

+ fDV R
θ′

⊗

(iAIχ)DV R + (iAIθ′)
DV R, (4.128)

where Iχ is the unit square matrix in the χ basis,

hDV R
y = TThFBR

y T, (y = θ, χ) (4.129)
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[Ṽ]DV R
α′β′,α,β = [V̄ + AR](ρn, θ

′

α, χβ)δα′αδβ′β, (4.130)

and

[fθ′ ]
DV R
α′α =

[

sin(θ
′

α/2)
]−2

δα′α. (4.131)

We defined (iAIχ)DV R and (iAIθ′)
DV R as

(iAIχ)DV R = TT
χ(iAIχ)FBRTχ, (4.132)

and

(iAIθ′)
DV R = TT (iAIθ′)

FBRT. (4.133)

The δ functions in these equations are due to the fact that the functional operators

are diagonal in the DVR(117; 121; 122; 123; 124; 125; 126); and thus the ṼDV R and

fDV R
θ′ terms are simply evaluated at the corresponding DVR points, (ρn, θα, χβ).

We can obtain the surface functions φq by diagonalizing Eq.(4.128). We have

mentioned in the previous derivation that we adopt the sequential diagonalization-

truncation procedure (117; 121; 122; 123; 124; 125; 126), which is used to reduce the

dimension of HDV R and the associated computational effort required to diagonalize

it. As shown in Ref. (117), the rank of the DVR matrix in the θ coordinates

is lmax + 1. For each θα (α ∈ (0, 1, . . . , lmax)), we construct the one-dimensional

Hamiltonian in χ as

H1D ≡ fDV R
θ′

⊗

hDV R
χ + ṼDV R + fDV R

θ′

⊗

(iAIχ)DV R (4.134)

and thus the matrix elements have the form as

[H1D]α′α,β′β = [fDV R
θ′ ]α′α[hDV R

χ ]β′βδα′α + [ṼDV R]α′α,β′β

+ [fDV R
θ′ ]α′α[(iAIχ)DV R]β′βδα′α (4.135)

We know that the fθ′hχ + Ṽ terms are block-diagonal and real symmetric in the

FBR. Because the transformation matrix Tχ is also real block-diagonal, the first

two terms in Eq.(4.134), fDV R
θ′

⊗

hDV R
χ + ṼDV R, are real symmetric in the DVR.

We also know that fθ′(iAIχ) is real symmetric in the FBR and the transformation

matrix Tχ is real block-diagonal, so the fDV R
θ′

⊗

(iAIχ)DV R is real symmetric but

block-off-diagonal. In this way, the one-dimensional Hamiltonian in the DVR in

Eq.(4.134) is real symmetric and can be solved easily

(dα)TH1D(dα) =1D Eα, (4.136)
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where 1DEα is the real diagonal matrix containing the eigenvalues, and dα is the

associated eigenvector. The dimension of the dα is Nχ, which is the number of χ

points used in the DVR calculation. We truncate the eigenvectors, dα, by retaining

those 1D eigenvectors whose eigenvalues 1DEα
t satisfy the energy cutoff condition

1DEα
t ≤ Ecut. (4.137)

The truncated matrix, dα, is now an Nχ × nα matrix, where nα is the number of

1D eigenvalues retained for each θ
′

α point. We perform convergence study on the

Ecut parameter until we observe no significant change in the scattering results.

We then perform the unitary transformation on the Hamiltonian in Eq.(4.128)

using the 1D eigenvector dα so that part of the Hamiltonian is diagonalized and

truncated. The new Hamiltonian can be expressed as

H̃DV R ≡ (d)THDV R(d)

= hDV R
θ′

⊗

Iχ +1D Eα + (d)T (iAIθ′)
DV R(d). (4.138)

The first two terms in Eq.(4.138) are real symmetric. The last term

(d)T (iAIθ′)
DV R(d),

needs to be analyzed carefully. We have know from the previous subsection that

(iAIθ′)
FBR is real symmetric but block-off-diagonal. Because the FBR-DVR trans-

formation matrices, T, and the 1D eigenvector, d, are both real and unitary, the

resulting (d)T (iAIθ′)
DV R(d) is then still real symmetric. Therefore, the 2D DVR

surface Hamiltonian in Eq.(4.138) is still real symmetric and thus can be diagonal-

ized easily

(C)T H̃DV R(C) = ESF (4.139)

where [ESF ]tt′ = Etδtt′ .

4.7.3 The DVR overlap matrix

Because we use the Numerov propagator, the potential matrix to be used in the

propagation is just the diagonal E eigenvalue matrix. The overlap matrix between

surface functions belonging to the neighboring ρn and ρn+1 sectors,

[O]tt′ = 〈φt(ρn) | φt(ρn)〉 , (4.140)

61



is needed to transform the Numerov ratio matrix from one sector to the next. The

tth surface eigenvector in the 2D DVR is obtained via

φ = dC. (4.141)

And thus the overlap matrix O can be expressed as

O = [dC]T (ρn)dC(ρn+1). (4.142)

Both matrices d and C are real and they lead to a real overlap matrix O.

4.8 Conclusion

In this chapter, we have demonstrated how to solve the time-independent Schrodinger

equation with the conical intersections in the C2v geometries. We have shown that

by using the Numerov propagator, the first derivative terms (∂/∂ρ) and the com-

plex terms are not included. We use the ABM and DVR method to solve for the

surface two-dimensional Hamiltonian. By using the MOES method, the Hamilto-

nian matrix is constructed as a real symmetric matrix and the overlap matrices

are real and do not need special treatment. This MOES method should greatly

simplify the Hamiltonian and the overlap matrices.
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Chapter 5

The C∞v conical intersections

The spin-aligned lithium triatomic system has a seam of conical intersections be-

tween the lowest two electronic potential energy surfaces (PESs) in the collinear

geometries. The lowest conical intersection point is energetically located at 3×10−4

Ha., which is slightly above the three-body dissociation limit at zero(10). However,

the minimum energy required to circumscribe a seam of conical intersections is

−2.11 × 10−3 Ha., which is below the lowest vibrational energy of the separate

diatoms. Therefore, though the reactive scattering processes can happen at ultra-

cold temperatures, the geometric phase should not be neglected. To properly treat

the geometric phase effect, Kendrick and Pack used the vector potential method

to treat H+O2(105), Na3(106) and H+D2(107). These systems either do not have

collinear conical intersections or it is energetically impossible move about the lowest

conical intersections. They did not treat the more difficult situation where collinear

conical intersections occur. However, it has not been applied to the collinear case,

which we will tackle in this study.

The conical intersections in the spin-aligned Li3 system lie in the collinear

geometries, which induce additional difficulties in deriving the geometric phase

angle η. Unlike the cases where the conical intersections lie in the C2v geome-

tries (101; 105), to completely go around the conical intersections in the C∞v ge-

ometries requires very careful derivation.
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5.1 Derivation of η(R)

5.1.1 η(R) in A3 systems

In this section, we will derive a new geometric phase angle for collinear conical

intersections. The major difficulty lies in the dependence of the geometric phase

angle η on the nuclear coordinates. It has been proved that in the Jahn-Teller

molecular system, where the conical intersections are in the non-linear geometries,

the geometric phase angle depends solely on the internal coordinates(15). However,

when the conical intersections are collinear, determining whether η depends only

on the internal coordinates has been a challenging question. In a normal body-

framed (BF) internal coordinates(108; 109; 110) for a triatomic system, the three

nuclei are allowed only to move on half of the BF plane. For instance, the BF

mass-scaled Jacobi coordinate ~sτ is chosen to have a positive component along the

BF X axis in the coordinates of Ref.(108). In the BF APH coordinates, the Z axis

is chosen so that it has the smallest moment of inertia Iz; the Y axis is chosen to

be perpendicular to the triatomic plane. Here, the mass-scaled Jacobi coordinate

is proportional to the internuclear distance between the diatom. The other half of

the BF plane is defined by rotating the BF X-Y plane about the BF Z axis by an

angle of π. Thus, the rotated BF coordinates can still have a positive X component

of ~sτ . However, this rotation results in a problem describing the loop around the

seam of collinear conical intersections because this enclosed loop depends on two

different γQ angles. We will show that the geometric phase angle, for a triatomic

system with collinear conical intersections, depends on both the internal coordinates

(ρ, θ, χ) and one Euler angle γQ. We, therefore, denote this new geometric phase

angle as η̄ = η̄(ρ, θ, χ, γQ), to be distinguished from η = η(ρ, θ, χ).

For simplicity, we start with the half plane in the BF coordinates where the

three Euler angles are constants. In this half plane, we can define an angle η which

depends only on the three internal coordinates. This angle η will describe the

rotation about the conical intersections in this half plane. We will first derive an

expression for this angle η in the half plane with a constant γQ angle, and then

draw a connection between the geometric phase angle η̄ and this angle η.

An explicit functional form for η(R) = η(ρ, θ, χ) needs to be derived very care-

fully because there are three seams of conical intersections in this triatomic lithium
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Figure 5.1: Seams of conical intersections in the θ = π/2 plane.

system. We now focus on the 7Li3 system to illustrate this problem. A more gen-

eral derivation for collinear conical intersections of an ABC system is shown in the

next subsection. Because the coordinate system, which we choose from Ref.(108),

covers the configuration space twice, there are six seams of conical intersections in

these particular internal coordinates. We define Cartesian coordinates (x, y, z) in

the upper half of the sphere in the internal coordinates via x = ρ sin θ cosχ, y = ρ

sin θ sinχ and z = ρ cos θ. It is called upper half sphere because the θ angle is

defined in the range of [0, π/2]. The conical intersections are located in the collinear

geometries where (θ = π/2). And, thus, these six seams of conical intersections are

confined in the Z = 0 plane, which is shown in Fig. 5.1. As we have mentioned

in the previous sections, a triatomic system has three internal degrees of freedom

and two relations are need for the nuclear coordinates to form conical intersections.

Therefore, there are, in general, several seams (lines) of conical intersections in

these triatomic systems. We define the rotating angle η(ρ, θ, χ) as a sum of six

angles, each of which describes the rotation about one particular seam of conical

intersections

η(ρ, θ, χ) =
6
∑

i=1

Biηi(ρ, θ, χ), (5.1)

where Bi are the signs for each ηi angle, as will be explained later.
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Take the i = 1 case for example. This seam of conical intersection is confined

to the χ ∈ [0, π/3] region. If we rotate the seam clockwise by χ = π/6 and fit the

functional form of this curve as x = f(y), it is clear that f(y) = f(−y). It is, in

general, difficult to define an angle of rotation about a curve instead of a straight

line. Therefore, we perform a diffeomorphism so that we can bijectively map (x, y, z)

to (x′, y′, z′) in which the x′ = f(y′) is a straight line. A diffeomorphism is a map

between manifolds which is differentiable and has a differentiable inverse. The

mapping relation is given as

x′ = x− f(y) = ρ sin θ cosχ− f(ρ sin θ sinχ)

y′ = y = ρ sin θ sinχ

z′ = z = ρ cos θ, (5.2)

where the x′ = f(y′) is given as a straight line x′ = 0. We then need to rotate the

seam of conical intersections back by rotation about the Z axis counter-clockwise

through χ = π/6. Therefore, for the first seam of the conical intersections, the new

coordinate transformation is given as

x′′ = ρ sin θ cos(χ− π/6)− f(ρ sin θ sin(χ− π/6))

y′′ = ρ sin θ sin(χ− π/6)

z′′ = ρ cos θ. (5.3)

Therefore, for the new coordinates (x′′, y′′, z′′), the rotating angle η1(ρ, θ, χ) is de-

fined as

tan η1(ρ, θ, χ) ≡ z′′

x′′
=

ρ cos θ

ρ sin θ cos(χ− π/6)− f(ρ sin θ sin(χ− π/6))
. (5.4)

Note that, this angle ηi is defined only in the range of [0, π), because θ is only defined

in the range of [0, π/2] and thus ρ cos θ is always positive. All the other rotating

angles ηi(ρ, θ, χ) can be obtained in the same fashion or simply by doing a rotation

by χ, because the shape of each seam of conical intersections are identical. Both

procedures give the same representation of the rotating angles ηi(ρ, θ, χ). Therefore,

if we define

η1(ρ, θ, χ) = tan−1

[

ρ cos θ

ρ sin θ cos(χ− π/6)− f(ρ sin θ sin(χ− π/6))

]

≡ g(ρ, θ, χ),

(5.5)
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all six angles can be expressed as

ηi(ρ, θ, χ) = g(ρ, θ, χ− (i− 1)
π

3
). (5.6)

The signs of the coefficients Bi in Eq. (5.1) are not always positive, which is

due to the special coordinate system. As pointed by Kuppermann in Ref. (8), the

geometric phase factor needs to satisfy certain initial conditions, e.g. parity. The

total wavefunction has definite parity, ptotal, because the Hamiltonian operator in

Eq. (3.2) is invariant under the inversion operator. The total wavefunction can be

written as

Ψtot(~R,~r) = ΨSV
0 (~R)ϕSV

0 (~r)

= ΨDV
0 (~R)ϕDV

0 (~r) (5.7)

where “SV” denotes single-valued and “DV” denotes double-valued. Because ϕDV
0 (~r)

and ϕSV
0 (~r) are eigenvectors of the He(~r, R) operator, and He(~r, R) is invariant un-

der inversion, ϕDV
0 (~r) and ϕSV

0 (~r) need to have definite parity. Thus, the geometric

phase angle needs to have definite symmetry under the inversion operation. The

rotation of the χ angle about the z axis is completely orthogonal to the rotation

of our geometric phase angle in this study. Therefore, the inversion operator in

O(2), χ → χ + π, should not change the geometric phase factor, exp[−l/2η̄]. In

other words, the geometric phase angle, η̄(ρ, θ, χ, γQ), should be invariant under

inversion. It should be noted that the inversion operator can also be expressed in

O(3), α → α + π, β → π − β, γQ → π − γQ. This also implies that η̄(ρ, θ, χ, γQ)

needs to be invariant under the inversion operator in O(3), which will be used as

a check of our final expression of η̄. With the parity argument above, we choose

Bi = 1 so that

η(ρ, θ, χ) =
6
∑

i=1

ηi(ρ, θ, χ). (5.8)

In order to relate η̄(ρ, θ, χ, γQ) to η(ρ, θ, χ), we need to visualize the closed path

which goes completely around the seam of conical intersections in the collinear

geometries. One can start from a point outside the conical intersections at the

collinear plane (θ = π/2), e.g. point a in Fig. 5.2. One then goes to point b, and

then point c, which is inside the conical intersection on the collinear plane. However,

the internal coordinates only define the upper hemisphere where θ ∈ [0, π/2]. In
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Figure 5.2: The closed loop encircles the χ = π/6 conical intersection seam.

the body fixed frame, the internal coordinates define the angle between the two

mass-scaled Jacobi coordinates ~Sτ and ~sτ to be in the range of [0, π] while these

two coordinates in the range (π, 2π] are not defined, because this (π, 2π] range can

be achieved by rotating the X − Y axis about the Z axis for π while fixing all

the internal coordinates the same. In order to completely go around the conical

intersection, one needs to rotate the Euler angle γQ. Therefore, this closed path

depends on the Euler angle, which means a virtual rotation of the BF X − Y axis.

This action can be express in terms of the γQ angle as γQ → γQ ± π. We then

can “stitch” the upper (γQ ∈ [0, π]) hemisphere in the internal coordinates to the

lower ((γQ + π) ∈ [π, 2π]) hemisphere, which is shown in Fig. 5.2. To be simple,

we express the η̄ angle as η̄(ρ, θ, χ, γQ).

The closed path which encircles the χ = π/6 conical intersection seam once can

be shown in Fig. 5.2 as a → b → c → d → e → f . The total angle η̄ needs

to change by a factor of 2π along this path. We know that in either hemisphere

the angle γQ remains constant and only undergoes a rotation of a π angle when it

passes the collinear plane, the stitching plane. Therefore, we can relate η̄ with η in

a simple form as

η̄(ρ, θ, χ, γQ) = h1(γQ)η(ρ, θ, χ) + h2(γQ), (5.9)
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Figure 5.3: The closed loop does not encircle the χ = π/6 conical intersection seam.

where h1(γQ) and h2(γQ) depend only on γQ. The functional forms of h1(γQ) and

h2(γQ) are not arbitrary because they need to satisfy three rules:

1. Sign change rule: η̄ needs to change by a factor of 2π when it goes completely

around the seam of conical intersections. This rule can be expressed as

η̄(f)− η̄(a) = 2π (5.10)

where a and f denotes the points on the path in Fig. 5.2.

2. Continuous rule: η̄ needs to be continuous when it changes from point c to d

as we rotate the γQ angle by π. This rule can be expressed as

η̄(d) = η̄(c). (5.11)

Interestingly this rule can also be viewed as a special case of the sign change

rule, which means that a closed loop does not change sign when it does not

encircle the seam of conical intersections. This case can be seen from Fig.

5.3.
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3. No bias rule: the upper hemisphere (γQ ∈ (0, π)) and the lower hemisphere

((γQ + π) ∈ (π, 2π)) should be equivalent and there should be no basic dis-

crimination against either one of the hemispheres. This rule can be expressed

as

η̄(c)− η̄(a) = π. (5.12)

These rules result in a usual branch cut of the η̄ angle outside of all conical in-

tersections, due entirely to the geometric phase. However, another discontinuous

plane is also introduced when γQ = π; it is also due to the conical intersections.

The effect of this discontinuous plane at γQ = π should be treated carefully, as we

will discuss in the next section.

The three mathematical expressions, Eq. (5.10, 5.11,5.12), for the three rules

can lead to the following conditions:

h2(γQ + π)− h2(γQ) = 2π

h1(γQ)π + h2(γQ) = h1(γQ + π)π + h2(γQ + π)

h1(γQ)π = π (5.13)

where γQ ∈ (0, π). And then we obtain

h1(γQ)π = 1

h1(γQ + π) = −1

h2(γQ) = h2(γQ + π)− 2π (5.14)

where γQ ∈ [0, π). Here, the choice of h2(γQ) is simply an initial condition of the η̄

at point a. We then choose h2(γQ) = 0 where γQ ∈ [0, π) so that η̄(a) = 0.

Therefore, the angle η̄ can be expressed as

η̄(ρ, θ, χ, γQ) =

{

η(ρ, θ, χ) if γQ ∈ [0, π);

−η(ρ, θ, χ) + 2π if γQ ∈ [π, 2π).
(5.15)

It can be seen from Fig. 5.2 that η̄ changes by 2π from point a to f and encircles

the seam of conical intersections; it can also be seen from Fig. 5.3 that η̄ remains

unchanged as it goes from point a to f because it does not encircle the seam of

conical intersections. the three-dimensional plot of this stitching is illustrated in
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Figure 5.4: Three dimensional plot of the stitched hemispheres and the geometric

phase angle to encircle the χ = π/6 conical intersection seam.

Fig. 5.4. We can also start with a much more general relation between η̄ and η

than Eq. (5.9):

η̄ = F (ρ, θ, χ, γQ). (5.16)

Using the three rules from Eq. (5.10,5.11,5.12), one obtains the same relation

between η̄ and η expressed in Eq. (5.15).

One alternative way to find η̄ is to start from a different set of coordinates. Here

we define ~R
′

= (ρ, θ
′

, χ, αQ, βQ, γ
′

Q) where the new θ
′ ∈ [0, π] and γ

′

Q ∈ [0, π). This

set of coordinates is equivalent to Pack’s coordinates in Ref.(127; 128; 129), in which

the whole BF plane is defined by the internal coordinates. The new coordinates,

~R
′

, make the geometric phase angle very easy to express as

η1(ρ, θ
′

, χ) = tan−1

[

ρ cos θ
′

, ρ sin θ
′

cos(χ− π/6)− f(ρ sin θ
′

sin(χ− π/6))
]

.

(5.17)

This geometric phase angle, in the ~R
′

coordinates, does not depend on γ
′

Q because

the internal coordinates allow the BF ~sτ to have negative values in the X direction;

the geometric phase angle, in the ~R coordinates, however, does depend on γQ

because the BF ~sτ is chosen to be positive in the x direction while the negative

part are described by a new BF frame which undergoes a virtual rotation in γQ by

an angle of π.
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The relation between ~R
′

and ~R can be obtained via the transformations to the

SF coordinates (~S,~s)

(

~Sτ

~sτ

)

= T̃ (χτ )R̃(αQ, βQ, γQ)

























0

0
ρ√
2

√
1 + sin θ

ρ√
2

√
1− sin θ

0

0

























, (5.18)

and

(

~Sτ

~sτ

)

= T̃ (χτ )R̃(αQ, βQ, γ
′

Q)

























0

0
ρ√
2

√
1 + sin θ′

ρ√
2
(cos θ

′

2
− sin θ

′

2
)

0

0

























. (5.19)

Here, T̃ is a kinematic rotation matrix and R̃ is the spatial rotation matrix, both

of which can be found in Appendix E.3 or Ref.(108). By setting Eq. (5.18) equal

to Eq. (5.19), we obtain the relation between the ~R
′

and ~R coordinates,

θ
′

=

{

θ if γQ = γ
′

Q and γQ ∈ [0, π)

π − θ if γQ = γ
′

Q + π and γQ ∈ [π, 2π)

or θ
′

= θ = π/2. (5.20)

Therefore, we can simplify the relation in Eq. (5.20) as

θ
′

= 2[H(π − γQ)− 1/2]θ + [1−H(π − γQ)]π, (5.21)

where H(x) is the Heaviside function defined as

H(x) =

{

0 if x ≤ 0

1 if x > 0
. (5.22)

Note that, the third solution in Eq. (5.20) is incorporated in Eq. (5.21) because it

also complies with Eq. (5.20). The geometric phase angle η̄, in the ~R
′

coordinates,

can be expressed in the conventional ~R coordinates as

η̄1(ρ, θ, χ, γQ) = tan−1

[

ρ cos[2[H(π − γQ)− 1/2]θ + [1−H(π − γQ)]π]

ρ sin θ cos(χ− π/6)− f(ρ sin θ sin(χ− π/6))

]

. (5.23)
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Figure 5.5: Fitting results of the x = f(y) function.

We notice that Eq. (5.23) is exactly the same as Eq. (5.15).

We numerically fit the x = f(y) function to the seam of conical intersections

using more than 1000 data points, which depends on ρ and χ because θ = π/2.

We use a form of x = f(y) =
√

a+ 3y2 + b − √a to give the correct asymptotic

behavior, where a and b are adjustable parameters. In the fitting process, we give

heavier weights to the data points near the χ = π/6 line where the energies of the

conical intersections are comparatively much smaller than those at other χ angles.

For example, the energy of the conical intersection at (ρ = 16 Bohr, θ = π/2,

χ = π/6) is 0.02 Ha. which is much higher than the atom-diatom dissociation limit.

After minimizing the room-mean-square error the fitted parameters are obtained

as a = 16.5716 a.u.and b = 10.9344 a.u., and the fitted function is plotted against

the data in Fig. 5.5.

It should be noted that we cannot directly follow the derivation in Ref.(105)

to get the one-form components of A(R), because η̄ now depends on the Euler
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angle, γQ. Therefore, we use Ā(~R) to denote the new one-form components and it

depends on ρ, θ, χ and γQ. We first express A(R) in terms of η

Aρ(R) = − l
2

∂η(R)

∂ρ
,

Aθ(R) = − l
2

∂η(R)

∂θ
,

Aχ(R) = − l
2

∂η(R)

∂χ
. (5.24)

Therefore, Ā(~R) can be expressed as

Āx(ρ, θ, χ, γQ) =

{

Ax(R) if γQ ∈ (0, π);

−Ax(R) if γQ ∈ (π, 2π).
(5.25)

where x = (ρ, θ, χ). Notice, the ĀγQ
is zero when γQ 6= π. The discontinuity

problem of ĀγQ
at γQ = π will be addressed later on.

Using the fitted form of f(y) and Eq. (5.5), we can solve the expression for

A1
ρ ≡ −

l

2

∂η1(R)

∂ρ
(5.26)

as

A1
ρ = − l

2

× cos θ

ρ2 cos2 θ + [ρ sin θ cos(χ− π/6)−
√

a+ 3ρ2 sin2 θ sin2(χ− π/6)− b+
√
a]2

× −a + (b−√a)
√

a+ 3ρ2 sin2 θ sin2(χ− π/6)
√

a+ 3ρ2 sin2 θ sin2(χ− π/6)
, (5.27)

which leads to

Aρ = A1
ρ + A2

ρ + A3
ρ + A4

ρ + A5
ρ + A6

ρ. (5.28)

Likewise we can obtain A1
θ

A1
θ = − l

2

× 1

ρ2 cos2 θ + [ρ sin θ cos(χ− π/6)−
√

a+ 3ρ2 sin2 θ sin2(χ− π/6)− b+
√
a]2

×
[

ρ sin θ(a+ 3ρ2 sin2(χ− π/6))
√

a+ 3ρ2 sin2 θ sin2(χ− π/6)
− ρ2 cos(χ− π/6)

+ (b−
√
a)ρ sin θ

]

, (5.29)
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which leads to

Aθ = A1
θ + A2

θ + A3
θ + A4

θ + A5
θ + A6

θ; (5.30)

and we can obtain A1
χ

A1
χ = − l

2

× ρ2 sin θ cos θ sin(χ− π/6)

ρ2 cos2 θ + [ρ sin θ cos(χ− π/6)−
√

a + 3ρ2 sin2 θ sin2(χ− π/6)− b+
√
a]2

×
[

3ρ sin θ cos(χ− π/6)
√

a + 3ρ2 sin2 θ sin2(χ− π/6)
+ 1

]

, (5.31)

which leads to

Aχ = A1
χ + A2

χ + A3
χ + A4

χ + A5
χ + A6

χ. (5.32)

Before we continue our derivation of the Hamiltonian with the inclusion of

this geometric phase angle, η̄(ρ, θ, χ, γQ), we write down certain properties of the

Hamiltonian with respect to certain operations, e.g. inversion. We have tested that

the η(ρ, θ, χ) is invariant under inversion operator in O(2) with χ → χ ± π, and

thus η̄(ρ, θ, χ, γQ) is also invariant under inversion in O(2). The inversion operator

can also be expressed in O(3) as α → α + π, β → π − β, γQ → π − γQ. Because it

only depends on γQ, η̄(ρ, θ, χ, γQ) is also invariant under inversion in O(3). We can

conclude that all the Ā(~R) terms are invariant under inversion operation.

We define P as (ρ, θ, χ, α, β, γQ)→ (ρ, θ,−χ, α, β, γQ). It can be shown that

Pη1 = η6, Pη6 = η1

Pη2 = η5, Pη5 = η2

Pη3 = η4, Pη4 = η3 (5.33)

and thus Pη = η. It can be easily shown that certain symmetry properties exist

for the vector potential terms, A, with respect to χ→ −χ:

Aθ(ρ, θ,−χ) = Aθ(ρ, θ, χ)
(

∂Aθ

∂θ

)

(ρ, θ,−χ) =

(

∂Aθ

∂θ

)

(ρ, θ, χ) (5.34)

and

Aχ(ρ, θ,−χ) = −Aχ(ρ, θ, χ)
(

∂Aχ

∂χ

)

(ρ, θ,−χ) =

(

∂Aχ

∂χ

)

(ρ, θ, χ). (5.35)
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This property will be used in the next subsection to simplify the Hamiltonian.

5.1.2 η(R) in ABC systems

The lithium atom has two major isotopes, 6Li and 7Li. Conical intersections in

a 6Li7Li7Li system should be treated differently than in a 7Li7Li7Li system. In

general, we denote a triatomic system by A3 when three atoms are identical and

by ABC when three atoms are different. We will briefly discuss how to treat the

geometric phase angle of an ABC system with collinear conical intersections.

The fundamental difference is the symmetry group for an ABC system. An

A3 system’s PES belongs to a D3h group; and an ABC system’s PES belongs

to a lower symmetry group, CS. Let us assume this ABC system still has three

seams of conical intersections in the configuration space. Because the locations of

conical intersections in an ABC system are different from those in an A3 system,

our expression of the η in Eq. (5.6) does not apply to the ABC system. We thus

need to change Eq. (5.6) into

ηi(ρ, θ, χ) = tan−1 [ρ cos θ, ρ sin θ cos(χ− π/6− (i− 1)π/3)

−fi(ρ sin θ sin(χ− π/6− (i− 1)π/3))] , (5.36)

where the fitted functions fi are different for each seam of conical intersections.

The total geometric phase angle η̄ is then expressed as

η̄(ρ, θ, χ, γQ) =

{

η(ρ, θ, χ) if γQ ∈ [0, π);

−η(ρ, θ, χ) + 2π if γQ ∈ [π, 2π),
(5.37)

where η is

η =
6
∑

i

ηi. (5.38)

The associated vector potential terms can still be computed in a similar fashion,

and no symmetry argument should be used to simplify those expressions. These

new expressions of the vector potential terms, Ā, can be directly applied to the

Hamiltonian, as will be discussed in the next section. The molecular Hamiltonian

is no longer invariant under the symmetry operation P and thus there is no need

to discuss the even or odd states with respect to this operation.
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5.2 The Hamiltonian

The double-valued nuclear wavefunction, Ψ exp[−l/2η̄(ρ, θ, χ, γQ)], includes the ge-

ometric phase factor which now depends on the Euler angle γQ. Therefore, we need

to modify Eq. (3.14) and Eq. (3.15) as

ĀR(~R) = − l
2
∇R η̄(~R), (5.39)

ĀR̂(~R) ≡ i
〈

ϕ̄0(~R)|U−1(R̂)
(

∇R̂U(R̂)
)

|ϕ̄0(~R)
〉

− l

2
∇R̂η̄(

~R) (5.40)

where

Ā(~R) = ĀR(~R) + ĀR̂(~R). (5.41)

The first term in Eq. (5.40) has been assumed to play a very minor role and thus we

ignore this factor. The additional term in Eq. (5.40) is because of the dependence

of η̄ on the Euler angle γQ, which is only true for the collinear conical intersections.

More explanations can be found in previous sections.

Before we rewrite Eq. (3.17), we need to specify the approximations we have

made in deriving Eq. (3.17): one-state adiabatic representation with the Born-

Oppenheimer approximation and an appropriate boundary condition(8). In this

one-state adiabatic representation with the Born-Oppenheimer approximation, we

assume that the effect of the other electronic adiabatic PESs is negligible. We have

also assumed the diagonal part of the nonadiabatic couplings are negligible. These

assumptions are valid when the probability of the nuclear wavefunction near the

conical intersection is negligible, which eliminates the divergence problem of the

nonadiabatic coupling terms. This approximation is, therefore, valid for scatter-

ing at the ultracold temperatures, where the nuclear wavefunction exponentially

dies off in the conical intersection region. However, because the nuclear wavefunc-

tion is able to completely move around the conical intersections, an appropriate

boundary condition must be applied. This boundary condition is different from

the conventional Born-Oppenheimer approximation, which excludes the geometric

phase effect. This boundary condition states that the use of a real double-valued

adiabatic electronic function leads to the double-valued nuclear wavefunction so

that the total molecular wavefunction remains single-valued; or, equivalently, that

the use of a complex, single-valued, adiabatic electronic wavefunction leads to a

77



single-valued nuclear wavefunction and additional vector potential terms in the

Hamiltonian. These non-trivial vector potential terms are the major difference

between this study and the previous scattering calculations(31; 32).

One major difference in the modified Hamiltonian from the derivations with

nonlinear conical intersections for a Jahn-Teller system in Eq. (3.17), is the γQ

dependence of the vector potentials. However, not only the geometric phase angle

depends on γQ, but also the BF adiabatic double-valued electronic wavefunction

depends on γQ. The single-valued adiabatic electronic wavefunction is defined as

φSV = eilη̄/2φDV (5.42)

where SV denotes the single-valuedness and DV denotes the double-valuedness.

The eilη̄/2 term in Eq. (5.42) is included to compensate for the phase accumulated

by the double-valued φDV as it transverses the conical intersections. We then can

choose the single-valued φSV to have a constant zero derivative with respect to

the Euler angle γQ. This choice should not change the dynamics of this problem

because the dependence on γQ is simply a Heaviside function and, therefore, the

only non-zero derivative terms are at γQ = π. The derivative term (∂η̄/∂γQ) later

leads to an integration of a δ(γQ−π) function over γQ and needs to be treated very

carefully. However, the single-valued function φSV is required to be continuous

and differentiable everywhere in the nuclear coordinates. Therefore, the derivative

terms at γQ = π are finite. Therefore, the subsequent integration of the derivative

terms for the γQ dependence, multiplied by the Wigner rotational matrices over

γQ ∈ [0, 2π) is zero. In other words, the singularity of the derivative terms of the

eilη̄/2 exactly cancels the singularity of the derivative terms of φDV , making the

singled-valued φDV differentiable. Therefore, the neglecting the γQ dependence of

the single-valued φSV function is legitimate and does not change the dynamics of

the scattering process.
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We now modify Eq. (3.17) as

~
2

2µ
(−i∇− Ā(~R))2 = − ~

2

2µ

(

∂

∂ρ
ρ5 ∂

∂ρ
+

4

ρ2 sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
+

1

ρ2 sin2 θ

∂2

∂χ2

)

+
J2

x

µρ2(1 + sin θ)
+

J2
y

µρ2 sin2 θ
+

J2
z

µρ2(1− sin θ)

+ i
~

2

2µ

[

5

ρ
Āρ +

∂Āρ

∂ρ
+

8 cot 2θ

ρ2
Āθ +

4

ρ2

∂Āθ

∂θ

+
1

ρ2 sin2 θ

∂Āχ

∂χ
+ 2Āρ

∂

∂ρ
+

8

ρ2
Āθ

∂

∂θ
+

2

ρ2 sin2 θ
Āχ

∂

∂χ

]

+
~

2

2µ

[

Ā2
ρ +

4

ρ2
Ā2

θ +
1

ρ2 sin2 θ
Ā2

χ

]

− i~ cos θ

µρ2 sin2 θ
Jy

∂

∂χ
.(5.43)

The vector potential terms for the Ĵz operator are dropped because Ĵz ≈ ∂/(∂γQ)

and we have chosen
∂

∂γQ

φSV = 0. (5.44)

Note that, the Ā(ρ, θ, χ, γQ) terms are different from the conventional vector po-

tential terms A(ρ, θ, χ) because the Ā terms also depend on γQ.

5.2.0.1 Zero total J case

In this study, we focus on the derivation of the J = 0 scattering process on the 14A′

surface and we can simplify Eq. (5.43) as

~
2

2µ
(−i∇−A(~R))2 = − ~

2

2µ

(

∂

∂ρ
ρ5 ∂

∂ρ
+

4

ρ2 sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
+

1

ρ2 sin2 θ

∂2

∂χ2

)

+ i
~

2

2µ

[

5

ρ
Āρ +

∂Āρ

∂ρ
+

8 cot 2θ

ρ2
Āθ +

4

ρ2

∂Āθ

∂θ

+
1

ρ2 sin2 θ

∂Āχ

∂χ
+ 2Āρ

∂

∂ρ
+

8

ρ2
Āθ

∂

∂θ
+

2

ρ2 sin2 θ
Āχ

∂

∂χ

]

+
~

2

2µ

[

Ā2
ρ +

4

ρ2
Ā2

θ +
1

ρ2 sin2 θ
Ā2

χ

]

(5.45)

We expand the single-valued nuclear wavefunction following Ref. (108)

ΨJMpn = 4
∑

t,Λ

ρ−5/2ψJpn
tΛ (ρ)ΦJp

tΛ(θ, χi; ρζ)D̂
Jp
ΛM(αQ, βQ, γQ). (5.46)

Because we take J = 0 in this study, the Wigner rotation matrix, D̂Jp
ΛM(αQ, βQ, γQ),

is just a constant, 1/
√

8π2. We left-multiply the complex conjugate of the Wigner
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rotation matrix, and then integrate the Hamiltonian over the three Euler angles.

Eq. (5.45) now becomes

∫ 2π

0

1

2π
dγQ

~
2

2µ
(−i∇−A(~R))2

= − ~
2

2µ

(

∂2

∂ρ2
+ +

15

8µρ2
+

4

ρ2 sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
+

1

ρ2 sin2 θ

∂2

∂χ2

)

+

∫ 2π

0

1

2π
dγQ iĀI +

∫ 2π

0

1

2π
dγQ ĀR, (5.47)

where iĀI is defined as the complex component

iĀI ≡
~

2

2µ

[

5

ρ
Āρ +

∂Āρ

∂ρ
+

8 cot 2θ

ρ2
Āθ +

4

ρ2

∂Āθ

∂θ

+
1

ρ2 sin2 θ

∂Āχ

∂χ
+ 2Āρ

∂

∂ρ
+

8

ρ2
Āθ

∂

∂θ
+

2

ρ2 sin2 θ
Āχ

∂

∂χ

]

, (5.48)

and ĀR is defined as part of the real components

ĀR ≡
~

2

2µ

[

Ā2
ρ +

4

ρ2
Ā2

θ +
1

ρ2 sin2 θ
Ā2

χ

]

. (5.49)

The integral
∫ 2π

0

1

2π
dγQ iĀI can be done by separating the integration into

∫ 2π

0
=

∫ π

0
+
∫ 2π

π
. We don’t have to worry about γQ = π in this integral, because ĀI is

discontinuous at γQ = π but remains finite at this point. As shown in the previous

subsection, all the Āx terms have the symmetry property as Āx(γQ +π) = −Āx(γQ)

and thus we have
∫ 2π

0

dγQ iĀI

=

∫ π

0

dγQ iĀI +

∫ 2π

π

dγQ iĀI

=

∫ π

0

dγQ iĀI +

∫ π

0

dγ
′

Q i(−ĀI(γ
′

Q))

= 0, (5.50)

where γ
′

Q = γQ − π.
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The integral
∫ 2π

0

1

2π
dγQ ĀR can be simplified in the same fashion by separating

the integration into
∫ 2π

0
=
∫ π

0
+
∫ 2π

π
. Because [Āx(γQ + π)]2 = [Āx(γQ)]2, we obtain

∫ 2π

0

1

2π
dγQ ĀR

=
1

2π
[

∫ π

0

dγQ ĀR +

∫ 2π

π

dγQ ĀR]

=
1

2π
[

∫ π

0

dγQ ĀR +

∫ π

0

dγ
′

Q (+ĀR(γ
′

Q))]

= AR, (5.51)

where γ
′

Q = γQ − π and AR is defined as

AR ≡
~

2

2µ

[

A2
ρ +

4

ρ2
A2

θ +
1

ρ2 sin2 θ
A2

χ

]

. (5.52)

It should be noted that this AR term does not have the bar and depends only on

the three internal coordinates, ρ,θ and χ.

After integration over the Euler angles, the nuclear Hamiltonian becomes

Htot

= − ~
2

2µ

(

∂2

∂ρ2
+ +

15

8µρ2
+

4

ρ2 sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
+

1

ρ2 sin2 θ

∂2

∂χ2

)

+
~

2

2µ

[

A2
ρ +

4

ρ2
A2

θ +
1

ρ2 sin2 θ

]

+ V (ρ, θ, χ) (5.53)

We then choose the basis function ΦJp
tΛ to satisfy a two-dimensional Schrodinger

equation

{

− ~
2

2µ

(

4

ρ2 sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
+

1

ρ2 sin2 θ

∂2

∂χ2

)

+
15

8µρ2
ζ

+ V (θ, χ; ρζ)

+
~

2

2µρ2
ζ

[

A2
ρρ

2
ζ + 4A2

θ +
1

sin2 θ
A2

χ

]

}

ΦJp
tΛ = Et(ρζ)Φ

Jp
tΛ (5.54)

Solving this real two-dimensional Schrodinger equation leads to real eigenvalues

Et(ρζ) and eigenvectors ΦJp
tΛ . Therefore, all overlap matrices and interaction matri-

ces are real and can be easily generated to be used in the propagation.

Three things should be noted when we compare this study to Ref.(105):
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1. The generally complex Hamiltonian, with the inclusion of the vector potential,

becomes real in the internal coordinates. This information does not conflict

with the gauge invariance property of the vector potentials. It needs to be

noted that the inspection of gauge invariance needs to be done at Eq. (5.45),

in which the generally complex terms ~A · ~p and ~p · ~A still exist. Here, ~A refers

to the general form of the vector potential term and ~p refers to the momentum

operator. Eq. (5.54) does not need to satisfy the gauge invariance because

we have made further approximation as mentioned the previous sections.

2. The two-dimensional Hamiltonian in Eq. (5.54) now is invariant under the

χ→ −χ operation. Therefore, the even and odd symmetry states with respect

to this operator do not mix. This does not conflict with Ref.(105). The reason

lies in the geometric phase angle. In Ref.(101; 105), the geometric phase angle

is or is proportional to the χ angle in the APH coordinates or the φ angle

in the symmetrized spherical coordinates, and this geometric phase angle is

antisymmetric with respect to the χ → −χ operation. Furthermore, the iAI

term does not depend on the Euler angle γQ, and remains nonzero after the

integration over the Euler angles. In Ref.(105) AI(−χ) = −AI(χ), which

makes the Hamiltonian asymmetric with respect to the χ → −χ operation.

So even and odd states for this operation do mix. However, in this study, the

ĀI terms are antisymmetric with respect to the γQ → γQ + π operation and

thus the integration of this term over (0, 2π) is zero. The rest of the geometric

contribution to the Hamiltonian, AR, is symmetric with respect to the χ →
−χ operation and thus the Hamiltonian remains symmetric with respect to

this operation. Therefore, in this study where the conical intersections are in

the collinear geometries, the even and odd states for the χ → −χ operation

are not mixed by the geometric phase. We can then just focus on either set

of the symmetry states.

3. The Hamiltonian remains real and there are no first derivative terms, ∂/∂ρ.

Therefore, one does not need to use Numerov propagator to get rid of the first

derivative terms in ρ. Also the interaction matrices and the overlap matrices

are always real and symmetric, which does not need special treatments to

make them real.
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5.3 Conclusion

In this chapter, we have shown how to solve the time-independent Schrodinger

equation with conical intersections in the collinear geometries. We have shown

that, by stitching the γQ and γQ + π hemispheres together, we are able to describe

the complete loop around the conical intersections in the C∞v geometries. We are

the first, as far as we know, to derive the general form of the geometric phase angle

and the associated vector potentials for collinear conical intersections.

We then shown that, in the J = 0 case, the Hamiltonian in the internal coor-

dinates (ρ, θ, χ), after the integration of the three Euler angles, is real. This real

Hamiltonian is a result of the special collinear conical intersections and does not

break gauge invariance. The Hamiltonian with the inclusion of the geometric phase

differs from that without the inclusion of the geometric phase by only a real effec-

tive potential term. This additional potential term, which depends on the vector

potential terms, diverges at the conical intersections and thus the resultant nuclear

wavefunction tends to die off in these highly repulsive regions.

This additional potential term can then be included in a scattering calculation

or a triatomic bound states calculation to show how much the geometric phase effect

can affect these results. Because, even at ultracold temperatures, the real electronic

wavefunction needs to be double-valued as nuclear coordinates completely around

the conical intersections, proper treatment of the geometric phase effect needs to

be included. We have confidence to state that the geometric phase effect should be

non-trivial in a reactive scattering calculation for the spin-aligned triatomic lithium

system.
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Part IV

Other subjects
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Chapter 6

Potential Construction

6.1 Motivation

Potential energy surface (PES) plays a fundamental role in understanding collisions

and field-induced interactions between cold and ultracold atoms and molecules.

Some of the simplest systems are alkali metal trimers, whose ground-state atoms

have only one valence electron in an s orbital. Spin-aligned alkali-trimer systems

have received considerable attention since the discovery of Bose-Einstein conden-

sation in ultracold hydrogen (67), lithium (68), sodium (69), rubidium (70) and

cesium(71). For lithium, the lightest of the alkalies, understanding the lowest PES’s

is important for dynamics of elastic and inelastic collisions as well as field-induced-

interactions. Several global surfaces for low-lying 14A′ have been reported(130; 32)

with a seam of conical intersections between the 4Σ and 4Π surfaces in the C∞v

geometries(75; 31; 10). To the best of our knowledge, the present work is the first

to calculate all four low-lying global PES’s, 14A′, 24A′, 14A′′, and 24A′′, of the

spin-aligned lithium trimer(140).

Intuitively, the pairwise-additive two-body interactions should contribute more

than the three-body interaction to the PES of spin-aligned trimers. However, the

three-body contribution is not generally negligible for these alkali metal trimers.

Theoretical and experimental work on sodium(9) has shown that the pairwise-

additive potential (PAP) accounts for only 62% of the well depth 849.37 cm−1 of

the Na3 potential, and the diatomic bond distance at the true minimum of the full

PES is 1.5 Bohr smaller than the value predicted from the PAP. For Li3, the PAP

predicts only 25% of the well depth of the absolute minimum in D3h geometry,
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and a bond distance nearly 2 Bohr larger than the correct value(130). What is

more, assignment of the contribution from diatomic potentials to the PAPs for

excited PES’s is complicated because diatomic potentials mix. Take the 24A′′ PES.

A sum of three diatomic potentials is not accurate because the PAP can have

contributions from 3Σ+
u , 3Σ+

g , 3Πu,
3Πg states. Moreover, the three-body term

should die off in the asymptotic region, but a sum of three diatomic potentials

does not give the correct dissociation limit unless the symmetry of the system is

broken. A DIM (diatomics in molecules) model (131; 132; 133; 134; 11), which can

couple all the relevant diatomic potentials and give the correct dissociation limit,

can thus represent the mixed pairwise-additive terms. The DIM terms obtained by

diagonalizing the electronic Hamiltonian represent the ground and first few excited

PES’s. To construct the three-body terms, we perform ab initio calculations for

the 14A′, 24A′, 14A′′, and 24A′′ PES’s using full configuration interaction for the

three valence electrons with an augmented Gaussian basis and the effective core

potential of Stevens, Basch and Krauss(135) for the other electrons. We then use a

global-fit method of Aguado et al.(136) to fit the result of Vtotal−VDIM at the points

where the ab initio calculations are performed to obtain the three-body terms. The

DIM method is quantitatively correct in the conical intersection regions (in the

C∞v geometries). Therefore, the DIM method gives the electronic eigenvectors in

these regions, and from these the geometric phase and non-adiabatic effects can be

computed.

We use a DIM (diatomics in molecules) model to fit the ab initio calculation of

the four lowest spin-aligned potential energy surfaces of triatomic lithium. There

are two advantages in using the DIM model as compared to other models(130; 32):

1. The DIM model gives an accurate potential almost everywhere. The mixings

of all the diatomic energy levels gives a detailed and explicit description of

the potential in both the well region and the asymptotic region of the global

potential. The ability to accurately describe the ground spin-aligned potential

enables us to perform accurate scattering calculations at a cold or ultracold

temperature. Also, the ability to accurately describe the excited potential

energy surfaces enables us to accurately describe the triatomic bound states.

The information of the bound state on this electronically excited PES can be

used to compute transition dipole moments so that one can utilize laser(s)
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to link the continuum states on the ground PES and the bound state on

the excited PES to coherently control the chemical reaction of the triatomic

lithium system on the ground state.

2. The DIM method is quantitatively correct in the conical intersection regions

(in the C∞v geometries). Therefore, the DIM method is able to produce

the electronic adiabatic eigenvectors in these regions. Also, the derivative

couplings (nonadiabatic coupling) terms can be analytically computed from

the DIM model, which can be used to include the geometric phase effect

with either one-state or two-state adiabatic representation(8). Another way

to treat the geometric phase effect is to use a diabatic representation of the

electronic wavefunctions. One can use the DIM model to obtain the accu-

rate diabatic-to-adiabatic transformation to treat these the geometric phase

and non-adiabatic effects. More information on using the electronic diabatic

representation to treat the geometric phase is covered in Chapter 3.

6.2 Results

The ab initio PES’s for all four states of Li3 were generated via three-electron full

configuration interaction calculations, using the effective core potentials of Stevens,

Basch and Krauss (SBK)(135) and an augmented Gaussian basis with the MOL-

PRO software package(137). The SBK basis set is augmented with three d-type and

one f -type polarization functions. The basis is shown in Table I. Further descrip-

tion of this basis set can be found in refs. (135; 130). Each Li3 PES is calculated

at 2958 internuclear configurations in the C2v, D3h, D∞h and C∞v geometries.

Our global potential very accurately describes the conical intersection regions

and is also quantitatively correct elsewhere. Table II. shows the RMS deviation of

our global fitting for the four PES’s at different regions. SET 3 tests our global

potential at unfitted ab initio points for arbitrary Cs geometries. Figure 6.1 shows

the behavior of our PES’s in D∞h geometries, where the solid circles are the ab

initio points, and the solid curves are our fitted PES’s with R = R1 = R2 = 0.5R3.

Figure 6.2 shows the behavior of our PES’s in D3h geometries, where the solid

87



PES type SET 1 SET 2 SET 3

1A′ 1.8× 10−4 Ha. 1.2× 10−4 Ha. 5.3× 10−4 Ha.

2A′ 9.1× 10−4 Ha. 3.4× 10−4 Ha. 1.6× 10−3 Ha.

1A′′ 2.5× 10−4 Ha. 0.8× 10−4 Ha. 1.5× 10−4 Ha.

2A′′ 5.1× 10−4 Ha. 1.0× 10−3 Ha. 2.1× 10−4 Ha.

Table 6.1: RMS deviation of all four PES’s in different geometries. SET 1 stands

for RMS error of global potential (E ≤ 0.01 Ha. for the 1A′ surface and E ≤ 0.08

Ha. for the 2A′, 1A′′ and 2A′′ surfaces), SET 2 stands for RMS error in the C∞v

geometries and SET 3 stands for RMS error only of unfitted Cs points

Figure 6.1: The 4A′ surfaces in D∞h geometries. Solid curves are the fitted poten-

tial, VFULL, and dark circles are the ab initio data for 4A′ surfaces:(a)-1A′ surface,

(b)-2A′ surface, (c)-1A′′ surface and (d)-2A′′ surface.
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Figure 6.2: The 4A′ surfaces inD3h geometries. Solid curves are the fitted potential,

VFULL, and dark circles are the ab initio data for 4A′ surfaces:(a)-1A′ surface, (b)-

2A′ surface, (c)-1A′′ surface and (d)-2A′′ surface.
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Figure 6.3: Nonadiabatic couplings around the conical intersection in the C2v ge-

ometries: (a)-W eg
ρ and (b)-W eg

θ .

circles are the ab initio points, and the solid curves are our fitted PES’s with

R = R1 = R2 = R3.

Plots of the nonadiabatic coupling in the C2v geometries are shown in Figure 6.3,

where ϕ is defined to describe the enclosed loop around the conical intersection in

D∞h geometries:

ρ = 11 + sin(ϕ)[Bohr], θ = 90 + cos(ϕ)[degree]. (6.1)

Because the ground and excited electronic wavefunctions both change signs as they

follow an enclosed loop around the conical intersections, the nonadiabatic coupling

terms are still single-valued.

In the ab initio calculation, we noticed one possible diabolic conical intersections

in the C2v geometries. The other known symmetry-allowed CIs have been observed

and discussed elsewhere (32). The diabolic conical intersections are often referred

to as accidental degeneracies. These diabolic conical intersections are a result of

two PES’s of the same irreducible representation crossing, when, in general, the

symmetry arguments require avoided crossings. These diabolic conical intersections

are not predicted by group theory. They occur only if the coupling between two

degenerate PES’s are zero. These unexpected diabolic conical intersections can

clarify confusing branching ratios(138; 139).

Figure 6.4 shows a possible diabolic conical intersections of the A2 states in the

C2v geometries when φ = 99.17525o where φ is the angle between two diatomic
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Figure 6.4: Possible diabolic conical intersection in the C2v geometries for the lowest

A2 states, where ∆V ≡ V − 0.0419418 Ha. and ∆R ≡ R − 5.952103 Bohr.

separations, and R = R1 = R2 = 5.952103 Bohr, at 0.0419418 Ha. above the

(2S+2S+2S) three-body dissociation limit. We calculated more than 100 ab initio

points in the neighborhood of this diabolic conical intersection region. The two

PES’s are shown to be separated by 1 × 10−8Ha.. To verify the true existence of

this diabolic conical intersection, we trace the sign of the electronic wave function

along a path in the nuclear configuration space which encircles this diabolic conical

intersection in the C2v geometries. Figure 6.5 shows the coefficients of the config-

uration interaction vectors of two electronic wavefunctions at C2v geometries in a

loop defined as:

R = 5.952103 + 0.0001 sin(ϕ)[Bohr]

φ = 99.17525 + 0.001 cos(ϕ)[degree]. (6.2)

This diabolic conical intersection, which indicates a seam of diabolic conical

intersections in Cs geometries, may cause unexpected behavior in calculations using

these excited PES’s.

6.3 Conclusions

We have constructed all four low-lying spin-aligned electronic PES’s, 14A′, 24A′,

14A′′ and 24A′′, for Li3. The resulting fit accurately describes D∞h conical intersec-

tion for both the 14A′ and 24A′ surfaces. It is a global fit with an RMS deviation
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Figure 6.5: Coefficients of the configuration interaction vectors of two electronic

wavefunctions along the loop which encircles the diabolic conical intersction in the

C2v geometries: (a)-the ground state and (b)-the excited state.

of 1.8 × 10−4 Ha. for 14A′, 9.2× 10−4 Ha. for 24A′, 2.5 × 10−4 Ha. for 14A′′, and

5.1×10−4 Ha. for 24A′′. The DIM terms can be used to compute the non-adiabatic

terms to describe the conical intersection beyond the Born-Oppenheimer approx-

imation. We have found a possible diabolic conical intersection in A2 ab initio

calculations in the C2v geometries, which indicates a seam of conical intersections

in Cs geometries.

More information on how to use the DIM model to fit the ab initio calculation

of all four low-lying spin-aligned potential energy surfaces, fitting results, and the

possible seam of diabolic conical intersection on the excited potential energy surface,

can be found in Appendix F or equivalently Ref.(140).
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Chapter 7

Bound states calculation of Li3

7.1 Motivation

In this study, we present the most comprehensive calculation of the bound states

of the spin-aligned lithium trimer to date. We also present a new method for cal-

culating these bound states, which is noteworthy because of a tremendous increase

in efficiency of these normally very expensive calculations.

Calculation of accurate bound states for the Li3 system is motivated by several

applications. One of the most prominent is Bose-Einstein condensation, which has

driven ultracold reactive molecular collisions to become one of the key interests in

chemical reaction dynamics. The simplest, non-trivial systems to study are the

alkali metals, and as such many physicists and chemists are interested in ultracold

chemical reactions of Li3. The formation of ultracold molecules (T ≤ 100 µK)

from laser-cooled alkali atoms has been observed by several groups (141; 142; 143;

144). Photoassociation and radiative stabilization processes are necessary in the

formation of ultra-cold molecules, and both require knowledge of the quartet bound

states. One of the most important factors in these process is the Frank-Condon

(FC) factor between the ground continuum atom-diatom state and the excited

bound triatomic state. With the knowledge of all bound states on the excited

electronic PES, one has more freedom to choose a good candidate which has large

FC overlaps with the initial continuum state to maximize the photoassociation

rate and further steps. Also, the spin-aligned states are of particular interest for

such ultracold studies because the large magnetic moment of the quartet states

makes the molecules easier to contain in a magneto optical trap (MOT). Studies of
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three-body recombination, a primary vehicle of trap loss, are also performed on the

quartet potential surface because of the relatively shallow energy wells. Another

possible application is the formation of Feshbach molecules. Feshbach molecules can

be produced by using a ramped magnetic field (5). The Feshbach molecules then

can be used to produce the low-lying rovibrational molecules by using STIRAP

(stimulated Raman adiabatic passage) with two-frequency laser irradiation (6).

The key to this technique is the accurate knowledge of the weakly bound excited

rovibrational Feshbach molecules. Accurate calculation of the highly excited bound

state on the ground electronic PES can lead to the first formation of a triatomic

molecule at ultracold temperature. Another possible application of highly excited

bound state of this kind is the photoassociation process.

Another reason the bound states of this specific system are interesting is the

opportunity to study the effects of non-adiabatic couplings. This system exhibits a

conical intersection between the two lowest spin-aligned (4A′) states when the atoms

are collinear (C∞v geometries). Our group (10) and others (31; 75; 32) have made

reference to this conical intersection before. The effect of the conical intersection

is to couple the states of these two surfaces, as well as introduce geometric or

Berry phase effects. This conical intersection is an interesting example because

of its proximity to the three-body dissociation limit. Geometric phase effects are

introduced to the system because a real electronic wavefunction is double-valued

as the nuclear coordinates moves about the conical intersection in a closed loop.

In this system, it is possible to circumscribe the conical intersection at energies

below the three-body dissociation limit! The lowest point of intersection is at

the symmetric-stretch collinear (D∞h) geometry at an energy of 0.0952eV above

the dissociation limit. However, in order to traverse a path around the conical

intersection, the maximum energy needed is -0.057eV, below the dissociation limit.

More information about this structure can be found in reference (10). Because

of its proximity to the ranges of energies studied in ultracold collisions, many are

interested to see what effects the conical intersection will have on both bound state

and scattering calculations. This present study will provide a comparison of the

bound states with a future calculation including the non-adiabatic effects of the

conical intersection.
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Yet another application of accurate bound states is the study of floppy molecules,

that is, those with large amplitude vibrational motions. Bačić and Light (145) have

noted these states and their importance:

‘The LAM (large amplitude motion) vibrational states, because of

the delocalized nature of their wave functions, contain detailed infor-

mation about large regions of the potential surface beyond the global

minimum. Moreover, while executing LAM vibrations, molecules can

populate high-energy local minima inaccessible at lower energies, thus

permitting detection of new isomers with strange structures and dy-

namics.’

The study of LAM states is very difficult as it requires knowledge of large regions

of the potential energy surfaces, and also the coupling between the LAM vibrational

states and the other vibrational modes. These calculations are difficult and become

increasingly so for the highly excited vibrational states. Successful calculations of

LAM states have been performed by Bačić et al. (146; 147; 148; 149; 150; 151; 152),

Tennyson et al. (153; 154; 155) and other groups (156; 157; 158; 159; 160; 161; 162;

163; 164; 165; 166; 167; 168; 169; 170; 171). The calculation for many-bound-

states system is extremely difficult especially for the most highly excited states,

and no comprehensive study on Li3 bound states has been published. Rather than

using a Lanczos type method to find the eigenvalue of the Hamiltonian, our new

subspace method utilizes the ray diagonalization of Bačić et al.(172) to generate

adiabatic potential energy surfaces and the associated surface functions in the one-

dimensional(1D) hyperradius. We then obtain reasonable subspace vectors by solv-

ing the 1D Schrödinger equation on each adiabatic surface without non-adiabatic

couplings. Finally, we include the non-adiabatic couplings and use the subspace

vectors to form the Hamiltonian matrix to solve for the eigenvalues and eigenvec-

tors. We estimate the number of Li3 bound states at 601 for the A1 symmetry. We

hope that the new, more efficient calculation method described in Appendix G will

enable studies of the LAM states of more complicated systems.
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7.2 Novelty of the Method

In this study, we present a calculation of the bound states of A1 symmetry on

the spin-aligned Li3(1
4A′) potential energy surface. We apply a mixture of the

discrete variable representation (DVR) and distributed approximating functional

(DAF) methods to discretize the Hamiltonian. We also introduce a new method

that significantly reduces the computational effort needed to determine the lowest

eigenvalues and eigenvectors (bound state energies and wavefunctions of the full

Hamiltonian)(171). More detailed information of the derivation of the subspace

method can be found in Ref. (171) or equivalently Appendix G.

The subspace basis method is necessary to reduce computational effort. The full

construction and direct diagonalization of the Hamiltonian would require storage

for an Npoints ×Npoints matrix where Npoints = Nρ ×Nθ × Nχ. The subspace basis

method requires only memory for an Npoints×NG matrix. In this study, the memory

required for the largest calculation was reduced from 14 TB to 30 GB, and the time

from months to days. (Calculations were performed on a single computer with 32

GB of RAM and Xeon Intel EM64T processors.)

We also compared Implicitly Restarted Arnoldi Method (IRAM) and the sub-

space method on the same computer. When the matrix to be diagonalized is sym-

metric, IRAM reduces to a variant of the Lanczos process called the Implicitly

Restarted Lanczos Method (IRLM). Many groups have used IRLM method with

parallel processing and obtained excellent results (163; 153; 154; 155; 158). But

most aspects of our subspace method can be parallelized as well. We performed

calculations using both methods to illustrate their time difference. Table 1 lists

the CPU time for each method with different numbers of points. “Direct diago-

nalization” means directly diagonalizing the fully constructed Hamiltonian matrix

H̄ . As the number of points increases, the time difference between IRAM and the

subspace method increases greatly.

The present theory is for J = 0. When J = 1 and parity p is even, for instance,

the Hamiltonian matrix doubles in size with respect to the J = 0 case. The

treatment of the J = 1 Hamiltonian would be similar to that for J = 0. First

diagonalize the subblock matrices Ho + Hr to form a subspace basis. Then use

a carefully truncated subspace basis to construct the Hamiltonian matrix . This
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Method # of Points # of eigenvalues CPU Time(hour)

IRAM 40× 30× 6 100 0.30

IRAM 40× 30× 6 600 5.58

DD 40× 30× 6 600 0.24

NM(NG = 2000) 40× 30× 6 600 0.18

IRAM 50× 40× 8 600 18.52

DM 50× 40× 8 600 2.37

NM(NG = 2000) 50× 40× 8 600 0.42

IRAM 60× 40× 11 600 > 150

DD 60× 40× 11 600 9.96

NM(NG = 2000) 60× 40× 11 600 0.73

Table 7.1: Time comparison of different methods with different number of points;

DD stands for Direct Diagonalization and NM stands for our new subspace method.

matrix will have dimensions of NG(Λ = 0)+N ′
G(Λ = 1) by NG(Λ = 0)+N ′

G(Λ = 1)

for J = 1. The memory required is the same as for J = 0, because we construct

each subblock one at a time. However, the time required is four times larger than

for J = 0, because there are four nonzero submatrices for J = 1. Other J 6= 0 cases

can be treated similarly. The time required for matrix operations compared to the

time T for J = 0 is estimated to be (14 + (J − 3)× 5)× T , because of the banded

structure of the total Hamiltonian.

7.3 Results

In table III, we show convergence of the A1 bound state energies with respect to NG.

We list the extrapolated energies from the data in the last column. We perform

the extrapolation for the ith bound state in the form of

Ei(NG) = Ei(∞) +
A

(NG)B
, (7.1)

where A and B are constants and Ei(∞) is the extrapolated energy. The lowest

150 energies are converged to be less than 0.005%, those between the 200th and

350th energies are obtained to 0.05% to 1%, while most of the excited energy states
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State NG = 800 NG = 900 Ei(∞)

E1 −0.4721655833 −0.4721655834 −0.4721655839

E50 −0.2652297 −0.2652297 −0.2652343

E100 −0.2035117 −0.2035118 −0.2035163

E150 −0.168091 −0.168092 −0.168126

E200 −0.139570 −0.139581 −0.139847

E300 −0.0997 −0.0998 −0.1018

E400 −0.06840 −0.06870 Failed

E500 −0.04340 −0.04424 −0.51239

E600 −0.03430 −0.03476 −0.03754

State NG = 2800 NG = 2900 Ei(∞)

E1 −0.4721655839 −0.4721655839 −0.4721655839

E50 −0.2652343 −0.2652343 −0.2652343

E100 −0.2035155 −0.2035155 −0.2035163

E150 −0.168119 −0.168120 −0.168126

E200 −0.139776 −0.139777 −0.139847

E300 −0.1009 −0.1009 −0.1018

E400 −0.07164 −0.07207 Failed

E500 −0.04899 −0.04939 −0.51239

E600 −0.03678 −0.03680 −0.03754

Table 7.2: Convergence of the A1 bound state energies in eV; NG is the number of

subspace basis functions

98



are converged with less than 2.0% error. Some of the extrapolated energies are not

available, because the extrapolation failed. (See section IIIC. in Appendix G or

Ref. (171)) The minimum energy needed to circumscribe the conical intersection

is −0.0574eV. Any state with an energy greater than −0.0574eV may be affected

by the conical intersection.

As expected, convergence of the most highly excited states is not as good as

that of low-lying states. The highly excited states are notoriously difficult to obtain

accurately and our stated accuracies are as good as those of other researchers on

similar systems. Lack of better convergence may be due to the strong nonadiabatic

coupling between surface energy curves. We are using subspace bases associated

with the ith adiabatic surface energy curve. Strong nonadiabatic couplings between

curves would make the adiabatic surface energy curves rough at high energy. Con-

vergence in Nθ and Nχ for the 100 highest bound states is better than 0.05%, but

the rough feature for ρ ∈ [10ao, 13ao] is troublesome for the calculation of the sub-

space basis. This rough feature has been confirmed by our independent DVR study

in θ and χ without a symmetry-adapted transformation. One possible explanation

for this rough behavior is the influence from the seam of the conical intersection for

ρ ∈ [11ao, 15ao] Bohr that is accessible by the bound states (10). The potential is

not differentiable at the conical intersection, which may cause strong nonadiabatic

couplings between surface energy curves here.

Despite the imperfect convergence of some of the most highly excited energies,

states with less than 1%− 2% error would provide us a good comparison when we

move on to the nonadiabatic case to investigate the effect of the conical intersection.

Moreover, based on the convergence of the A1 bound states, the extrapolated energy

for the 600th state is −0.03754eV , that of the 601th state is −0.03746eV , and that of

the 602th state is −0.03731eV . The dissociation limit for Li and ground state Li2 is

at −0.03742eV. So the number of the A1 bound states should be no larger than 601.

We also calculated energies for LI3 without the three-body potential term, where

we assume the interaction potential is a sum of pairwise additive potential and

three-body potential. Excluding the three-body potential term makes the potential

much shallower and we estimate the number of A1 bound states to be no larger

than 183.
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More detailed information can be found in Appendix G and equivalently in

Ref.(171)
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Part V

Epilogue
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Chapter 8

Conclusion

To summarize, we have shown different ways to control chemical reactions at differ-

ent temperatures and in different cases. We show that, at very low collision energies

and for energetically narrow (∼ 0.01 cm−1) initial reactant wave packets, it is possi-

ble to tune the yield of the exchange reaction from 0 to near-unity. Controllability

is somewhat reduced at collisions involving energetically wider (∼ 1 cm−1) initial

reactant wave packets. At these energetic bandwidths the radiative reactive con-

trol, though still impressive, is limited to the 0 − 76% reactive-probability range,

in which case we use interferences of two intermediate bound states to boost the

final reaction yield. We developed the population transfer by adiabatic passage

theory. This theory relates laser catalysis to adiabatic passage, enhancing chemical

reactions with the freedom to choose the translational energies of the reactants and

products separately. We showed the ability to use pulsed lasers to form homonu-

clear and heteronuclear molecules at ultracold temperatures. The production rate

is estimated to be 4 × 105 /s. This technique should be an alternative way of

producing ultracold molecules.

We have also shown the treatment of the geometric phase in two different cases.

When the conical intersection occurs in the C2v geometries, we developed the Mixed-

Odd-Even-States method to expand the nuclear wavefunctions, so the general com-

plex problems can be treated in a simple fashion where all the matrices are real

and symmetric. The Hamiltonian does not need to give additional treatment, e.g.

permutation symmetry treatment, to produce real overlap matrices which are used

in the propagation stage. When the conical intersection occurs in the C∞v geome-

tries, we carefully derived the geometric phase angle η̄, and, as far as we know, this
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is the first derivation of treating conical intersections in collinear geometries. We

show that the geometric phase angle not only on the internal coordinates but also

depends on the Euler angles. This additional dependence caused the Hamiltonian,

with the inclusion of the vector potential terms, to be different from the Hamilto-

nian with vector potentials of a Jahn-Teller system. After integration over three

Euler angles, the resultant Hamiltonian is real and can be directly applied to the

reactive scattering calculations.

In addition to the coherent control and the geometric phase, we have also done

other important studies. We use a MOLPRO software package to calculate the ab

initio electronic PES’s for the spin-aligned triatomic lithium system. We then use a

DIM model to fit the four low-lying PES’s and obtain a very accurate description of

both the global potential and the conical intersections. The DIM model can be used

to produce the adiabatic electronic wavefunction, which can be used to compute

the non-adiabatic coupling terms; the DIM model can also be used to produce the

adiabatic-to-diabatic transformation matrix at any point, which can be used in the

two-state diabatic representation to treat the geometric phase.
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[32] M. T. Cvitaš, P. Soldán, J. M. Hutson, P. Honvault, and J.-M. Launay, J.
Chem. Phys. 127, 074302 (2007).

[33] For reviews, see “Molecules in Laser Fields”, A.D. Bandrauk editor (Marcel
Dekker, New York, 1994); M. Shapiro and P. Brumer, “Principles of the
Quantum Control of Molecular Processes” (Wiley, New York, 2003)

[34] M.V. Fedorov, O.V. Kudrevatova, V.P. Makarov, and A.A. Samokhin, Opt.
Commun. 13, 299 (1975)

[35] N.M. Kroll and K.M. Watson, Phys. Rev. A 8, 804 (1973); 13, 1018 (1976)

[36] J.I. Gerstein and M.H. Mittleman, J. Phys. B 9, 383 (1976)

105



[37] J.M. Yuan, T.F. George, and F.J. McLafferty, Chem. Phys. Lett. 40, 163
(1976); J. M. Yuan, J.R. Laing, and T.F. George, J. Chem. Phys. 66, 1107
(1977); T.F. George, J.M. Yuan, and I.H. Zimmermann, Faraday Discuss.
Chem. Soc. 62, 246 (1977); P.L. DeVries and T.F. George, ibid. 67, 129
(1979); T.F. George, J. Phys. Chem. 86, 10 (1982)

[38] A.M.F. Lau and C.K. Rhodes, Phys. Rev. A 16, 2392 (1977); A.M.F. Lau,
ibid. 13, 139 (1976); 25, 363 (1981)

[39] V.S. Dubov, L.I. Gudzenko, L.V. Gurvich, and S.I. Iakovlenko, Chem. Phys.
Lett. 45, 351 (1977)

[40] A.D. Bandrauk and M.L. Sink, Chem. Phys. Lett. 57, 569 (1978); J. Chem.
Phys. 74, 1110 (1981)

[41] A.E. Orel and W.H. Miller, Chem. Phys. Lett. 57, 362 (1978); 70, 4393
(1979); 73, 241 (1980)

[42] J.C. Light and A. Altenberger-Siczek, J. Chem. Phys. 70, 4108 (1979)

[43] K.C. Kulander and A.E. Orel, J. Chem. Phys. 74, 6529 (1981)

[44] H.J. Foth, J.C. Polanyi, and H.H. Telle, J. Phys. Chem. 86, 5027 (1982)

[45] T. Ho, C. Laughlin, and S.I. Chu, Phys. Rev. A 32, 122 (1985)

[46] M. Shapiro and Y. Zeiri, J. Chem. Phys. 85, 6449 (1986)

[47] T. Seideman and M. Shapiro, J. Chem. Phys. 88, 5525 (1988); 92, 2328
(1990); 94, 7910 (1991)

[48] T. Seideman, J.L. Krause, and M. Shapiro, Chem. Phys. Lett. 173, 169
(1990); Faraday Discuss. Chem. Soc. 91, 271 (1991)

[49] A. Zavriyev, P.H. Bucksbaum, H.G. Muller, and D.W. Schumacher, Phys.
Rev. A 42, 5500 (1990)

[50] A. Guisti-Suzor and F.H. Mies, Phys. Rev. Lett. 68, 3869 (1992)

[51] G. Yao and S.-I. Chu, Chem. Phys. Lett. 197, 413 (1992)

[52] E.E. Aubanel and A.D. Bandrauk, Chem. Phys. Lett. 197, 419 (1992); A.D.
Bandrauk, E.E. Aubanel, and J.M. Gauthier, Laser Phys. 3, 381 (1993)

[53] D.R. Matusek, M.Yu. Ivanov, and J.S. Wright, Chem. Phys. Lett. 258, 255
(1996)

[54] J. Herbig, T. Kraemer, M. Mark, T. Weber, C. Chin, H.-C. Nägerl, and R.
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We present a nonperturbative time-dependent quantum mechanical theory of the laser catalysis and

control of a bifurcating A+BC↔

!"0

ABC*!v"↔
!"0

AB+C reaction, with ABC*!v" denoting an

intermediate, electronically excited, complex of ABC in the vth vibrational state. We apply this

theory to the low collision energy fermion-boson light-induced exchange reaction, 6Li!2S"

+ 7Li2!3
#u

+"↔
!"0

!6Li7Li7Li"*↔

!"0
6Li7Li!3

#
+"+ 7Li!2S". We show that at very low collision energies and

energetically narrow !#0.01 cm−1" initial reactant wave packets, it is possible to tune the yield of

the exchange reaction from 0 to near-unity !yield $99%" values. Controllability is somewhat

reduced at collisions involving energetically wider !#1 cm−1" initial reactant wave packets. At these

energetic bandwidths, the radiative reactive control, although still impressive, is limited to the

0%–76% reactive-probabilities range. © 2008 American Institute of Physics.

$DOI: 10.1063/1.2899666%

I. INTRODUCTION

The possibility of enhancing or suppressing atomic and

bimolecular reactions by lasers has attracted the attention of

many researchers over the years.
1–27

Some of the most stud-

ied scenarios involve the modification of the potential sur-

faces of the colliding systems by light, thereby creating

“light-induced potentials” !LIPs". The laser parameters are

tuned so as to produce LIPs that possess lower reaction bar-

riers along the reaction pathways leading to the desired prod-

ucts. The main stumbling block in realizing these scenarios is

the requirement for high laser powers !in the TW /cm2

range". These high powers are needed because of the relative

weakness of continuum-continuum transition dipoles which

are at the heart of the mechanism leading to the formation of

LIP.

The necessity of strong laser fields can be reduced when

!quasi-" bound states are involved. Here, the presence of the

much stronger bound-continuum transition dipoles is ex-

pected to lower the power requirements to the

MW /cm2 to GW /cm2 regime.
14,15,28–30

This is the situation

in the “laser catalysis” !LC" scenario,
14,15,28–30

called such

because it involves no net absorption of photons. Rather,

colliding partners, which cannot react due to the existence of

a high potential barrier, are made to “hop” over this barrier

by first absorbing a photon to an excited bound state which

straddles both sides of the barrier. The system is then de-

excited, by stimulated emission of a photon identical to the

one just absorbed, to the products’ side of the original reac-

tion barrier. The process can occur on resonance or off

resonance
31

with respect to the continuum-bound transition

frequencies. It has also been shown
28

that for a coherent

process, as the laser power goes up, the population of the

intermediate bound state goes down. Eventually, the interme-

diate state becomes unpopulated, in great similarity to the

simple three-state adiabatic passage process.
32,33

The use of ultracold reactants,
34

e.g., hydrogen,
35

lithium,
36

sodium,
37

rubidium,
38

and cesium,
39

is expected to

greatly enhance the ability to quantum mechanically control

reactive scattering. Of special interest are reactions between

spin-aligned atoms and molecules. This is so because spin-

aligned states have relatively large magnetic moments, which

make them easier to be captured in magnetic traps. Using

this technique one may consider reactions between cold

bosons and fermions, resulting in a large variety of bimo-

lecular interactions. For example, isotopic mixtures of fermi-

onic 6Li and bosonic 7Li give rise to the formation of either

heteronuclear or homonuclear diatomic molecules.
40–43

Thus, it is of great interest to examine the use of laser

fields to coherently control the reactive scattering process in

cold and ultracold mixtures of spin-aligned 6Li+ 7Li2. In ad-

dition to the light-induced interaction between the two low-

est spin-aligned !4A!" states, this system displays a variety of

interesting features, including conical intersections between

the two surfaces in the collinear !C%u" configurations.
43–46

In what follows, we consider a strong-field laser-assisted

reactive scattering process of the typea"
Electronic mail: li@nhn.ou.edu.
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A + BC ——→

!"0

!ABC"*
——→

!"0 #A + BC !q = 1"

AB + C !q = 2" .
$ !1"

As indicated above, the coupling between the electronic sur-

faces is induced by a laser pulse of carrier frequency "0.

Conducting the above reaction constitutes the joining to-

gether of two radiatively induced “half-collisions”
15,47,48

in

which the first half-collision constitutes a photoassociation

process, and the second constitutes a photodissociation pro-

cess.

Extensive work on photoassociation has been conducted

in recent years in the context of ultracold collisions, as this

process appears to be an efficient way of producing ultracold

molecules.
49–52

For example, one may consider
49,53

the anti-

Stokes stimulated Raman process,

Na + Na ——→

!"1

Na2!A 1#u/b3$u"

%!v!" ——→

!"2

Na2!X 1#g"!v = 0" !2"

as a way of forming ultracold ground state Na2 molecules.

The same process was considered for Rb+Rb !Ref. 53" and

for Rb+K. Possibly the most efficient way of executing such

a process is to use a train of coherent pulses !optical fre-

quency comb".54
In that scheme, transfer is implemented in a

piecewise fashion using sequences of ultrashort small-area

pulses with pulse-to-pulse amplitude and phase variation.
54,55

Equivalently viewed in the frequency perspective, these

techniques exploit interferences between many quantum

pathways leading to the same final state.

In the present paper, we capitalize on all the above fea-

tures: Laser catalysis, cold collisions, and the joining to-

gether of two light-induced half-collisions. As explained in

Sec. II, it is possible to develop a nonperturbative time-

dependent theory for treating the general process of Eq. !1"
in a rather complete fashion. In Sec. III, we apply this theory

to the collinear 6Li+ 7Li2 system coupled to one or more

bound states in the excited state complex. We show that for

cold collisions with a very narrow distribution of initial re-

actant energies, the inclusion of one bound state is enough to

obtain an essentially complete transfer to the reactive chan-

nel of interest. We also show that with a comparatively en-

ergetically wide initial reactant wave packet, the involvement

of at least two bound states is necessary in order to signifi-

cantly affect the reaction yield. The excitation of several in-

termediate states introduces time to the excited state dynam-

ics, thereby utilizing the interference between these states in

addition to the interference between the radiative and nonra-

diative scattering processes.

II. THEORY

The dynamics of all light-induced processes is governed

by the total !matter+radiation" Hamiltonian Htot=H

−! ·"!t", where H is the material Hamiltonian, and "!t"
= &̂&!t" is the laser’s electric field, with &̂ being the polariza-

tion direction and &!t"—the !scalar" electric field amplitude.

In order to solve the time-dependent Schrödinger equation,

i!
!'

!t
= Htot' , !3"

we expand '!t" in a complete basis, composed of %Ei&, the

bound and %E ,q ,n−&, the continuum, eigenstates of H,

!Ei − H"%Ei& = 0,

!4"
!E − H"%E,q,n−& = 0, q = 1,2.

In the above, Ei are the bound energies in the excited elec-

tronic state and E are the continuum energies of the ground

electronic state, with n being asymptotic internal quantum

numbers associated with each arrangement channel q.

The—notation in the above signifies that each %E ,q ,n−& state

approaches as t→(, a single asymptotic eigenstate,

%E ,q ,n ;0&, of Hq
0—the q-arrangement material Hamiltonian

for well separated reactants !or products". These states

satisfy the energy eigenvalue relations,

!E − Hq
0"%E,q,n;0& = 0, q = 1,2. !5"

The expansion of '!t" thus assume the form,

%'!t"& = '
q,n

( dEbE,q,n!t"%E,q,n−&exp!− iEt/!"

+ '
j

b j!t"%E j&exp!− iE jt/!" , !6"

where bE,q,n!t" and b j!t" are the expansion coefficients of the

continuum and bound states, respectively.

Substitution of Eq. !6" into Eq. !3" results in the follow-

ing set of differential equations for the expansion

coefficients:

ḃi =
i

!
&!t"#'

j

b j!t")!i, j"e−i"jit

+ '
q,n

( dEbE,q,n
− !t")−!E;i,q,n"e−i"E,it$ !7"

ḃE,q,n =
i

!
&*!t"'

j

b j!t")
−!E;q,n, j"e−i"E,jt +

i

!
&!t"

% '
q!,m

( dE!bE!,q!,m!t")!E,E!;q,q!,n,m"e−i"E!,Et,

!8"

where

" j,i ) !E j − Ei"/!, "E,i = !E − Ei"/!,

!9"
"E!,E ) !E! − E"/!

124314-2 Li et al. J. Chem. Phys. 128, 124314 "2008#
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!!i, j" # $Ei%! · "̂%E j&,

!−!E;i,q,n" # $Ei%! · "̂%E,q,n−& , !10"

!!E,E!;q,q!,n,m" # $E,q,n−%! · "̂%E!,q!,m−& .

Here, # j,i, #E,i, and #E!,E are the transition frequencies be-

tween the bound-bound, bound-free, and free-free states, re-

spectively; !!i , j", !−!E ; i ,q ,n" and !!E ,E! ;q ,q! ,n ,m"
are the bound-bound, bound-free, and free-free dipole

moment coupling terms, respectively. Assuming that

!!E ,E! ;q ,q! ,n ,m"'0, i.e., there is no radiative coupling

between different continuum states on the ground electronic

surface, which allows us to eliminate the continuum cou-

plings in Eq. !8" and enables us to solve for bE,q,n!t" to yield,

bE,q,n!t" = bE,q,n!− $"

+ !i/%"(
j

)
−$

t

dt!b j!t!"!
−!E;q,n, j""*!t!"ei#E,jt!.

!11"

The initial wave packet has been assumed to belong to

the !qs=1" 6Li+ 7Li2 reactant channel with the initial bound

state coefficients b j!−$"=0. The continuum coefficients,

bE,q,n!−$", are determined from the form of the incoming

wave packet, assumed to belong to the qs=1 arrangement

with the 7Li2 vibrational quantum number ns=0,

&in =) dEbE,qs=1,ns=0
+ !t"%E,qs = 1,ns = 0+&e−iEt/%. !12"

The bE,qs,ns

+ !t" coefficients, specifying the shape of the incom-

ing wave packet, are chosen, as specified below, as Gaussian

functions in energy.

Using the well known relations between the incoming

and outgoing scattering solutions, we have

%E,qs,ns
+& = (

q,n

%E,q,n−&$E,q,n−%E,qs,ns
+&

= (
q,n

%E,q,n−&Sq,n;qs,ns
. !13"

Hence,

bE,q,n!− $" = Sq,n;1,ns
bE,1,ns

+ !− $" , !14"

where as mentioned above, qs is assigned the value 1 and

Sq,n;1,ns
is the nonradiative S-matrix. Substituting the solution

of bE,q,n!t" into Eq. !7", we obtain a !smaller" set of integro-

differential equations for bi!t"

ḃi!t" =
i"!t"

%
!i

s!t" +
i"!t"

%
(

j
*b j!t"!!i, j"e−i#jit

+ e−i#j,it)
−$

t

dt!b j!t!"Fi,j!t − t!""*!t!"+ !15"

where !i
s!t" are known source terms, given as,

!i
s!t" # (

q,n

) dEbE,q,n!− $"!−!E;i,q,n"e−i#E,it, !16"

and

Fi,j!'" =
i

%
) dE(

q,n

!−!E;i,q,n"!−!E;q,n, j"e−i#E,j' !17"

are the spectral cross-correlation functions. When i= j, Fi,j

become the spectral autocorrelation functions, i.e., the Fou-

rier transform of Ai!#", the photoabsorption spectrum from

bound levels i,

Fi!'" # i) d#Ai!#"e−i#', !18"

where

Ai!#" = (
q,n

%!−!Ei + %#;i,q,n"%2. !19"

Using, e.g., the artificial channel method
56–58

to calculate

!−!E ; i ,q ,n", as customarily done to obtain the weak field

photodissociation cross sections, we can construct, based on

Eq. !17", the Fi,j!'" spectral cross-correlation functions.

Having Fi,j!'" constructed, one can obtain bi!t" in the strong

laser field domain by solving the integro-differential equa-

tions ,Eq. !15"-. The continuum coefficients bE,q,n!t" are then

directly obtained from Eq. !11". This gives the entire wave

packet &!t", from which we can obtain the reactive yield at

any time t. Varying the experimentally controllable functions

"!t" and the initial condition &!t=−$", allows one to coher-

ently control the reactive scattering process.

In the above, we have used two approximations, the di-

pole approximation and the rotating wave approximation

!RWA". For the comparatively long IR and visible wave-

lengths, the dipole approximation is quite accurate, even for

strong fields. In the present system, the validity of the RWA

is more questionable for short (100 fs pulses at high

)1013 W /cm2 intensities. It turns out that since all the tran-

sitions we consider are nearly on resonance, if the pulse is

longer than .100 fs and the power weaker than

.1013 W /cm2, the assumption of the RWA in our system, as

confirmed by our calculations, is completely justified.

III. RESULTS

A. The spin-aligned Li3 system

In this section, we report on computations based on the

formulation presented above of the laser enhancement and

suppression of the

6Li!2S" + 7Li2!3*u
+"↔

%#0

!6Li7Li7Li"*↔

%#0
6Li7Li!3*+" + 7Li!2S" .

reaction. Both the 7Li2 and 6Li7Li diatomic molecules are in

their lowest !3*+" spin-aligned electronic states. The

triatomic states of interest are the lowest 4A! states for the

reactants and products, and the 4A" states for the

!6Li7Li7Li"* complex.

In order to control this reaction, we apply a light pulse

given as,

124314-3 Theory of laser control of Li+Li2 collisions J. Chem. Phys. 128, 124314 !2008"
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!!t" = !0e−!t/"t"
2

exp!− i#0t" , !20"

where #0 is the carrier laser frequency, chosen to induce

the transition between the intermediate states and the

reactant/product states.

The potential barrier along the reaction path leading

from reactants to products on the lower 4A! potential surface

of the 6Li7Li7Li system is essentially zero. The ground vi-

brational energy of 7Li7Li is calculated to be −301.78 cm−1,

whereas the ground vibrational energy of 6Li7Li is calculated

to be −300.50 cm−1, so that reaction from the ground state
7Li2 to the ground state 6Li7Li is possible nonradiatively.

This means that at cold temperatures in our study, which

corresponds to kinetic energies in the range of 17–30 cm−1,

the energy of the system is below the first excited vibrational

energy level of the 7Li7Li at −243.78 cm−1. Thus, the forma-

tion of 6Li7Li in the first excited state is energetically impos-

sible in the absence of the laser field.

Based on the small energy separation and the compara-

tively large dipole moments, we have chosen the #E1$ and

#E2$ intermediate states to be the 15th and 16th bound vibra-

tional states of the 6Li7Li7Li !4A"" complex. These states are

separated by 1.4 cm−1 from one another. Figure 1!a" shows

the two electronic potential energy surfaces !PES" and the

reaction path on the ground PES. The Frank–Condon region

is best represented by the 2460 cm−1 contour line !the 4th

line outward from the minimum" of part !b" in Fig. 1!a". For

reference, the energy of the 14th state is 87.79 cm−1 below

the 15th state, and that of the 17th state is 109.7 cm−1 above

the 16th state. Thus, the 14th and 17th bound states need not

be included in the calculation, provided that the laser power

is lower than 1 TW /cm2 and its carrier frequency is not too

close to the 14th or the 17th states.

B. Narrow initial wave packet case

We consider a narrow initial wave packet whose energy

bandwidth is 0.01 cm−1, and in this case, we use a laser

whose bandwidth is 3.5$10−3 cm−1, i.e., %3 ns in duration.

At this bandwidth, when the laser’s carrier frequency is on

resonance with transition to the #E1$ bound state, the maxi-

mum population of the #E2$ bound state is 10−7 that of the

#E1$ state. Thus, for the above laser and wave packet param-

eters there is no need to include the #E2$ state in the calcu-

lation.

We control the laser assisted scattering into the 7Li

+ 6Li7Li product channel by varying the laser power !P", the

temporal width of the laser !"t", the carrier frequency of the

laser !#0", the energy bandwidth of initial wave packet !"E",
and the center of the initial wave packet !E0". The range of

control obtained is truly impressive: Figure 2 shows that one

can maximize the reaction probability to near unity values.

By varying the above parameters we are, in fact, able to

change the reaction probability from 0% to 99.9%. Thus, we

are able to suppress the naturally occurring reaction, as well

as enhance it.

Of the above parameters, the reaction probability ap-

pears to be especially sensitive to P and E0. Specifically, an

increase in P while leaving all other parameters unchanged

causes the population of the #E1$ intermediate state to go

down and the reaction yield to increase. Thus, as in other

reactions,
28

at high laser powers one approaches the three-

state adiabatic passage
32

limit.

As shown in Table I, the wave packet average energy E0

can also greatly affect the reaction probability. Figure 3 de-

picts the energy-dependent dipole moments #%−!E0 ; i

=1,q ,n=0"# as a function of energy E0 for the two arrange-

ment channels. Figure 4 describes the behavior of the opti-

FIG. 1. !a" Ground potential energy

surface !PES". Contour lines are

spaced by 440 cm−1, increasing out-

ward from the indicated minimum.

Reaction path is shown as a thick line

that connects the 6Li+ 7Li2 and the 6Li
7Li+ 7Li products. !b" Excited PES.

Contour lines are spaced by 330 cm−1,

increasing outward from the indicated

minimum. The coordinates S and s are

the mass-scaled Jacobi coordinates.

FIG. 2. The integrated populations of the continuum states and the popula-

tion of the intermediate state #E1$. The dashed line is the intensity profile of

the Gaussian pulse whose maximum intensity is 20 GW /cm−1, the temporal

width is "t=3 ns. The carrier frequency #0 is chosen such that the laser is on

resonance with the #E1$ state. The initial wave packet has a center energy of

E0=−270.7 cm−1 and a width of "E=0.01 cm−1.

124314-4 Li et al. J. Chem. Phys. 128, 124314 !2008"
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mized reactive yield versus the ratio of different dipole

moments. It is clear that the ratio !!"E0 ; i=1,q=1,

n=0# /!"E0 ; i=1,q=2,n=0#! should be near unity in order

to maximize the reactive yield. This phenomenon is analo-

gous to Young’s two slits experiment for which the highest

fringe contrast is obtained when the slits widths are the same.

When the transition dipole moments do not vary appre-

ciably within the bandwidth of the laser or the initial wave

packet, it is possible to use the "Markovian-like# slowly

varying Continuum Approximation "SVCA#.49
This is the

case when both the initial wave packet and the laser have

energy bandwidths of a few wavenumbers or less, since

within this narrow bandwidth the continuum-bound dipole

moments are essentially constant. When the SVCA is valid,

the spectral cross-correlation functions of Eq. "17# become

essentially proportional to a ""## function, and the integro-

differential equations of Eq. "15# become simple differential

equations.

C. Wide initial wave packet case

In the wide initial wave packet case, the initial wave

packet assumes a wider bandwidth, e.g., "E$1 cm−1. The

laser power must now be higher and the laser duration made

shorter in order to maintain a high reaction yield. When the

laser bandwidth is sufficiently high, both !E1% and !E2% inter-

mediate states are excited. The coherent motion of the two

bound states now becomes an important knob in controlling

the total reactive yield.

We find that the results are insensitive to "t as long as

"t$2 /"E. Hence, calculations are performed with a fixed

laser temporal width, "t=16.1 ps. We also fix the initial wave

packet’s parameters, "E and E0, in order to focus on the

effect of the external laser field and on the interference be-

tween the two intermediate states. Specifically, we vary the

laser power P and %&E0+&'0− "E1+E2# /2, the difference

between the average energy of the system after absorbing a

laser photon and the average value of the intermediate states

energies "E1+E2# /2.

Figure 5 shows the nonreactive and reactive yields’

dependence on P and % at t=50 ps. The maxima and minima

are not shown on the plot because the maxima may occur at

a very high powers where the present calculation may be

invalid. The initial wave packet has a center energy of

E0=−272.87 cm−1, and bandwidth "E=1.097 cm−1 and laser

time duration "t=16.1 ps. At energy E0, the nonradiative re-

active probability is calculated to be 4.2%. We see that the

reactive yield can be controlled from 0% to 76% with this

range of parameters.

To illustrate the importance of the interference between

the two intermediate states as an additional control mecha-

nism, we perform a calculation in which only one bound

state is included. With equivalent range of experimental pa-

rameters, the reactive yield is found to vary over a much

smaller range. For example, at P=450 GW /cm2, the reactive

yield with two bound states ranges from 1% to 71%, while

the reactive yield obtained with only one bound intermediate

state can be varied from 7% to 56% only.

In the present study, we refrained from increasing the

laser power beyond 1 TW /cm2 to avoid complicating the

dynamics, as at these intensities the involvement of excited

reactant and product states on the ground electronic surface

is unavoidable.

It should be noted that this calculation is performed on

the collinear reactive scattering process which has no hyper-

fine structures and, thus, the effect of different hyperfine

states do not contribute to this case. In general, cold atoms

and molecules in different hyperfine states have been shown

to have very different interaction properties, especially dif-

TABLE I. The reactive yield vs the position of the center of initial wave

packet E0. All other parameters have been optimized. The 15th vibrational

state is used as the intermediate state.

E0 "cm−1#

Reaction

yield

"%# !!"E0 ; i=1,q=1,n=0#! !!"E0 ; i=1,q=2,n=0#!

−277.46 99.9 8.3(10−2 8.1(10−2

−272.6 94.1 0.62 0.80

−273.9 27.1 0.28 0.99

FIG. 3. Dipole moment !!−"E0 ; i=1,q ,n=0#! as a function of the wave

packet center energy E0. Solid line, !!−"E0 ; i=1,q=1,n=0#!; dashed

line, !!−"E0 ; i=1,q=2,n=0#!; dotted line, !!−"E0 ; i=1,q=1,

n=0# /!−"E0 ; i=1,q=1,n=0#!.

FIG. 4. The reactive yield vs the ratio of two dipole moments in different

channels. All experimental parameters have been optimized and the 15th

state is used as the intermediate state.
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ferent !in magnitude and sign" coupling matrix elements be-

tween the intermediate states and the continua. Therefore,

when the hyperfine splittings are smaller than the pulse width

multiple intermediate, the reactant and product quantum

states are coupled and these effects should not be neglected.

Thus, two possible effects should be addressed: The inclu-

sion of more intermediate states and the inclusion of more

reactant and product states. We know from stimulated Raman

adiabatic passage !and laser catalysis has the main features

of an adiabatic passage" under what conditions it works

when multiple intermediate states are involved, and more

details on how to maximize the reaction yield for multiple

intermediate states under different conditions can be found in

the work Vitanov and Stenholm.
59

In principle, the scheme

should still work with the inclusion of more intermediate

states, one should expect probably less efficiency compared

to the single intermediate state case, but promising reaction

yields are possible. The inclusion of different reactant and

product states, at a cold temperature, might decrease the con-

trol ability. However, one can consider systems with only

one reactant and product hyperfine state, i.e., systems with

total angular momentum F !including the nuclear spin" equal

to zero, in which case high reaction yield !!99% " can be

achieved.

IV. CONCLUSIONS

In this paper, we have derived a nonperturbative time-

dependent theory of laser enhancement and suppression of

reactive scattering. The theory has been applied to a system

of bosons !7Li" and fermions !6Li" on the spin-aligned elec-

tronic PES. We have shown that for an initially prepared

reactant wave packet with a narrow bandwidth

!#0.01 cm−1", the reactive yield can be varied from 0%

!complete suppression of the reactive scattering" to 99.9%

!complete population transfer to the products". In this case,

one intermediate bound state, which utilizes the coherence

between the radiative process and the nonradiative process

suffices for control. Studies using a wider initial reactant

wave packet !#1 cm−1" are found to require several interme-

diate bound states to enhance the control. In this case, con-

trol of the reactive yield extends from 0% to 76%, with in-

terference between the intermediate bound states playing an

important role in enhancing or suppressing the reaction.

The current theory and calculation can be applied to sys-

tems with a relatively small number of atoms which involves

continuum states and bound states on different electronic

PES to achieve quantum control of a reactive scattering pro-

cess. The control is more significant in a system with negli-

gible reactive probability into the product arrangement either

with a barrier in the reaction path leading from reactants to

products or in a similar system like the current one. To op-

timize the controllability one should look for an intermediate

bound state which has a pair of not only relatively large but

also close dipole couplings with the reactant and product

arrangements, respectively. Also, the number of internal

quantum modes should be chosen to be as few as possible for

the reactant and product states so that the calculation does

not have to include many states to wash out the perfect

interferences.
14,15
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We present a new theory of population transfer by adiabatic passage. This theory relates laser

catalysis to adiabatic passage, enhancing chemical reactions with the freedom to choose the

translational energies of the reactants and products separately. The process, A

+BC↔

!"p

ABC*!v"↔
!"s

AB+C, involves two laser fields that are slowly varying so the process is

adiabatic, and sufficiently intense so the population of the intermediate bound complex !ABC" is

minimized. We apply this theory to the collinear exchange reaction 6Li

+ 7Li2!Tr"↔
!"p

!6Li7Li7Li"*↔

!"s
6Li7Li!Tp"+ 7Li. We show that at translational energies Tp=Tr=1 mK

with a narrow energy bandwidth of #E=0.01 mK, we can obtain nearly total !$98% " population

transfer from the reactant to the product states. This can be done with a pump laser and a Stokes

laser in an “intuitive” sequence !tp% ts" at a low intensity !Ip&600 MW /cm2" and a “coincident”

sequence !tp= ts" at a higher intensity. © 2008 American Institute of Physics.

#DOI: 10.1063/1.2920186$

I. INTRODUCTION

The ability to transfer population from one chemical ar-

rangement to another is very attractive to physicists and

chemists. However, the need to use high laser intensities, up

to TW /cm2, has been a major obstacle. Two possible proce-

dures that require lower intensities are laser catalysis and

adiabatic passage !AP".

Laser catalysis involves no net absorption of photons

and usually requires a laser intensity of MW /cm2.
1–3

It en-

ables colliding partners, which cannot react due to a high

potential barrier, to “hop” over this barrier by absorbing a

photon to an excited bound state which straddles both sides

of the barrier. The conventional laser catalysis scenario uses

a single laser pulse and predicts different translational ener-

gies for the reactants and products when the diatoms have

distinct energy levels. When a system consists of different

atoms or isotopes, a single laser does not allow much free-

dom to tune the product’s temperature for a fixed reactants’

temperature. Such tuning would also change the system’s

overall temperature because the conservation of the total en-

ergy of the molecular system enforces a relationship between

the translational energies of the reactants and of the products

when no net photon is absorbed. Freedom to choose the re-

actants and products’ translational energies requires a new

theory. Reactions between cold or ultracold boson and fer-

mion isotopes can cause a variety of bimolecular interac-

tions. For example, in isotopic mixtures of fermionic 6Li and

bosonic 7Li, either heteronuclear or homonuclear diatomic

molecules may form.
4–7

Conventional AP,
8,9

on the other hand, involves three

bound states and two slowly varying laser fields. The popu-

lation is transferred from the initial bound state to the final

bound state without populating the intermediate bound state.

Vardi et al.
10

extends conventional AP theory to the photo-

association AP !PAP", which involves one initial continuum

state, one intermediate bound state, and one final bound

state. In this process, the population in the intermediate state

is minimized, and the process is adiabatic. Both conventional

AP and the PAP require a pump laser and a Stokes laser in a

“counterintuitive” sequence, i.e., the Stokes pulse comes be-

fore the pump pulse !tp' ts". For conventional AP, this

mechanism can be understood in terms of dark states.
11

However, dark states do not formally exist in the PAP mecha-

nism, and total suppression of the population of the interme-

diate state may be difficult.
10

Our goal is to relate laser catalysis and AP theories in-

volving two slowly varying laser pulses so as to keep the

process adiabatic, to allow for two sets of continuum reactant

and product states, and to minimize the population in the

intermediate bound state. Figure 1 shows a schematic of

population transfer by AP !PTAP" from the reactant channel

to the product channel using two pulsed lasers. This PTAP

theory can be applied to control the exchange process, in

which one wishes to replace an atom attached to a molecule

with another atom without adding heat to the system. PTAP

can also be applied to control tuning of a vibrational mode,a"
Electronic mail: li@nhn.ou.edu.
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which uses two lasers to change the vibrational quantum

number of the diatoms in an ensemble of cold or ultracold

atom-diatom mixtures without heating the ensemble. PTAP

does not necessarily keep the temperatures of the reactants

and the products the same but it can tune the products’

temperature.

We study ultracold PTAP of the 6Li+ 6Li7Li

!Tr=1 mK" arrangement channel into the 6Li6Li+ 7Li

!Tp=1 mK" arrangement channel. In Sec. II, we present a

nonperturbative theory of PTAP using two laser pulses. In

Sec. III, we use this theory for the time-dependent ultracold

mixtures of the 6Li6Li7Li system. We show that to obtain the

maximum reaction yield !!98% ", one should apply the

pump laser and the Stokes laser either in an “intuitive” se-

quence with a low laser intensity, or in a coincident sequence

with a higher laser intensity.

II. THEORY

The dynamics of all light induced processes are gov-

erned by the total !matter+radiation" Hamiltonian Htot=H

−"! ·#!!t" where H is the material Hamiltonian, "! is the dipole

moment, and #!!t"= #̂#!t" is the laser’s electric field, with #̂ as

the polarization direction and #!t" as the !scalar" electric field

amplitude. We consider two lasers, with #p!t" as the pump

pulse and #s!t" as the Stokes pulse. Both pulses are assumed

to be Gaussian,

#p!t" = #op exp#− $ t − tp

$ts

%2&exp!− i%pt" !1"

and

#s!t" = #os exp#− $ t − ts

$ts

%2&exp!− i%st" , !2"

where #op and #os are the field strengths, $tp and $ts are the

temporal pulse widths, and %p and %s are the carrier frequen-

cies. To solve the time-dependent Schrödinger equation,

i&
!'

!t
= Htot' , !3"

we expand '!t" in a complete basis that consists of all bound

eigenstates 'Ei(, and all continuum eigenstates 'E ,q ,n−( of H,

!Ei − H"'Ei( = 0,

!4"
!E − H"'E,q,n−( = 0, q = 1,2.

In the above equations, Ei are the bound state energies in the

excited electronic state, and E is the continuum energy of the

ground electronic state, with n as the asymptotic internal

quantum numbers associated with the arrangement channel

q. The minus superscript on n− signifies that as t→(, each

'E ,q ,n−( approaches a single asymptotic eigenstate,

'E ,q ,n ;0(, of Hq
0—the q-arrangement channel material

Hamiltonian for well separated reactants !or products". These

states satisfy the energy eigenvalue relations,

!E − Hq
0"'E,q,n;0( = 0, q = 1,2. !5"

The expansion of '!t" in Eq. !3" thus assumes the form,

''!t"( = )
q,n

* dEbE,q,n!t"'E,q,n−(exp!− iEt/&"

+ )
j

b j!t"'E j(exp!− iE jt/&" , !6"

where bE,q,n!t" and b j!t" are the expansion coefficients of the

continuum and bound states, respectively. We limit the num-

ber of intermediate bound states to one !A study of including

two intermediate states in order to use the phase evolution to

coherently control PTAP is underway."
Substitution of Eq. !6" into Eq. !3" results in the follow-

ing set of differential equations for the expansion coeffi-

cients:

b j =
i

&
#!t")

q,n

* dEbE,q,n
− !t""−!E; j,q,n"e−i%E,jt, !7"

ḃE,q,n =
i

&
#*!t"b j!t""

−!E;q, j,n"ei%E,jt +
i

&
#!t"

) )
q!,m

* dE!bE!,q!,m!t","!E,E!;q,q!,n,m"e−i%E!,Et,

!8"

where

% j,i + !E j − Ei"/&, %E,i = !E = Ei"/& ,

%E!,E + !E! − E"/& , !9"

"!i, j" + ,Ei'"! · #̂'E j(, "−!E;i,q,n" + ,Ei'"! · #̂'E,q,n−( ,

FIG. 1. Schematic plot of population transfer by adiabatic passage with two

pulsed lasers.
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!!E,E!;q,q!,n,m" # $E,q,n−%!! · "̂%E!,q!,m−& . !10"

Here, # j,i, #E,i, and #E!,E are the transition frequencies be-

tween the bound-bound, bound-free, and free-free states, re-

spectively. The quantities !!i , j", !−!E ; i ,q ,n", and

!!E ,E! ;q ,q! ,n ,m" are the bound-bound, bound-free, and

free-free dipole-moment coupling matrix elements, respec-

tively. Assuming that !!E ,E! ;q ,q! ,n ,m"'0, i.e., that there

is no radiative coupling between different continuum states

of the ground electronic surface, we can eliminate the con-

tinuum couplings in Eq. !8" and solve for bE,q,n!t",

bE,q,n!t" = bE,q,n!− $"

+ !i/%"(
−$

t

dt!b j!t!"!
−!E;q,n, j""*!t!"ei#E,jt!.

!11"

We have assumed that the initial wave packet belongs to

the !qs=1" reactant channel with initial bound state coeffi-

cients b j!−$"=0. The continuum coefficients, bE,q,n!−$", are

determined from the form of the incoming wave packet,

which we assume belongs to the qs=1 arrangement with vi-

brational quantum number ns=0,

&in =( dEbE,qs=1,ns=0
+ !t"%E,qs = 1,ns = 0+&e−iEt/%. !12"

The bE,qs,ns

+ !t" coefficients, which specify the shape of the

incoming wave packet, are chosen, as specified below, to be

Gaussian functions in energy.

Using the well-known relationship between the incoming

and outgoing scattering solutions, we have

%E,qs,ns
+& = )

q,n

%E,q,n−&$E,q,n−%E,qs,ns
+&

= )
q,n

%E,q,n−&Sq,n;qs,ns
. !13"

Hence,

bE,q,n!− $" = Sq,n;1,ns
bE,1,ns

+ !− $" , !14"

where as mentioned above, qs=1, and Sq,n;1,ns
is the nonra-

diative S-matrix. Substituting the solution bE,q,n!t" into Eq.

!7", we obtain a !smaller" set of integrodifferential equations

for bi!t",

ḃ j!t" =
i"!t"

%
! j

s!t" +
i"!t"

%
(

−$

t

dt!b j!t!"F j!t − t!""*!t!" ,

!15"

where ! j
s!t" are the known source terms

! j
s!t" # )

q,n

( dEbE,q,n!− $"!−!E; j,q,n"e−i#E,jt, !16"

and

F j!'" =
i

%
( dE)

q,n

%!−!E; j,q,n"%2e−i#E,j' !17"

are the spectral autocorrelation functions. The function F j is

the Fourier transform of Ai!#", the photoabsorption spectrum

from bound levels j,

F j!'" # i( d#A j!#"e−i#', !18"

where

A j!#" = )
q,n

%!−!E j + %#; j,q,n"%2. !19"

We will ignore the summation over n because in an ultracold

system, n=0 for all arrangements.

To investigate the second term on the right-hand side of

Eq. !15", we explicitly write out "p!t" and "s!t" and define

(!t" # −

1

%2(
−$

t

dt!b j!t!"

))
q

( dE%!−!E j + %#; j,q,n"%2Ê!t,t!" , !20"

where

Ê!t,t!" # *"p!t" + "s!t"+*"p
*!t!" + "

s
*!t!"+e−i#!t−t!". !21"

The operator E!t , t!" can be written as the sum of the four

terms

E!t,t!" = %"op%
2e−!t − tp/*tp

"2

e−!t! − tp/*tp
"2

e−it!#p+!E−Ej/%""eit!!#p+!E−Ej/%""

+ "op"os
* e−!t − tp/*tp

"2

e−!t! − ts/*ts
"2

e−it!#p+!E−Ej/%""eit!!#s+!E−Ej/%""

+ "
op
* "ose

−!t − ts/*ts
"2

e−!t! − tp/*tp
"2

e−it!#s+!E−Ej/%""eit!!#p+!E−Ej/%""

+ %"os%
2e−!t − ts/*ts

"2

e−!t! − ts/*ts
"2

e−it!#s+!E−Ej/%""eit!!#s+!E−Ej/%"". !22"
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The first and third terms correspond to coupling between

the intermediate state and the states !E j −!"p ,q ,n−" with re-

spect to integration over t! and E; the second and fourth

terms correspond to coupling between the intermediate state

and the states !E j −!"s ,q ,n−" with respect to the integration

over t! and E. Therefore, the states !E j −!"p, q=2,n−" do not

exist, and we can ignore the contribution from the first and

third terms when q=2. If we write ##t$%#q=1#t$+#q=2#t$,
we can use the slowly varying continuum approximation

12–15

#SVCA$ to express

#q=2#t$ = −

$

!
b j#t$!%

−#E j − !"s; j,q = 2,n$!2&
os
* e−#t − ts/'ts

$2

( &&ope
−#t − tp/'tp

$2

e−it#"p−"s$ + &ose
−#t − ts/'ts

$2

' #23$

and

#q=1#t$ = −

$

!
b j#t$!%

−#E j − !"s; j,q = 1,n$!2&
os
* e−#t − ts/'ts

$2

( &&ope
−#t − tp/'tp

$2

e−it#"p−"s$ + &ose
−#t − ts/'ts

$2

'

−

$

!
b j#t$!%

−#E j − !"p; j,q = 1,n$!2&
op
* e−#t − tp/'tp

$2

(&&ose
−#t − ts/'ts

$2

e+it#"p−"s$ + &ope
−#t − tp/'tp

$2

' . #24$

In Eqs. #23$ and #24$, we can identify three rapidly oscillat-

ing terms e)it#"p−"s$. If these terms oscillate much faster than

the slowly varying &s#t$ and &p terms, we can eliminate them.

Making this adiabatic approximation, which ignores the

three rapidly oscillating terms, we can express ##t$ as

##t$ = − *#t$b j#t$ , #25$

*#t$ % +
$

!
!%−#E j − !"s; j,q = 2,n$!2!&os!

2e−2#t − ts/'ts
$2

+
$

!
!%−#E j − !"s; j,q = 1,n$!2!&os!

2e−2#t − ts/'ts
$2

+
$

!
!%−#E j − !"p; j,q = 1,n$!2!&op!

2e−2#t − tp/'tp
$2

.

#26$

Equation #26$ implies an approximate ratio between Ip and Is

for an optimized reaction yield,

Is

Ip

(
!%1p!2

!%1s!
2 + !%2s!

2
, #27$

where %1p%%−#E j −!"p ; j ,q=1,n$, %1s%%−#E j −!"s ; j ,q

=1,n$ and %2s%%−#E j −!"s ; j ,q=2,n$. Equation #27$ bal-

ances the pump and dump processes to achieve perfect inter-

ferences.

Using the artificial channel method
16–18 #ACM$ to calcu-

late %−#E ; i ,q ,n$, we can calculate the ##t$ absorbing term

in Eq. #15$ from Eq. #25$. Having constructed ##t$, we can

calculate b j#t$ by solving the first-order differential equations

&Eq. #15$'.
To obtain an analytical solution of Eq. #15$, we write this

equation as

ḃ j#t$ = iG#t$ − *#t$b j#t$ , #28$

where

G#t$ =
&#t$

!
% j

s#t$ . #29$

Therefore, the analytical solution of b j#t$ is

b j#t$ = v#t$+#t$ + v#t$b j#t0$ , #30$

where

v#t$ = exp)− *
t0

t

*#t!$dt!+ #31$

and

+#t$ = i*
t0

t
G#t!$

v#t!$
dt!. #32$

Implying the initial condition b j#t0$=0, we obtain

b j#t$ = i*
t0

t

G#t!$exp)− *
t!

t

*#t"$dt"+dt!. #33$

From b j#t$, we can calculate the continuum coefficients

bE,q,n#t$ from Eq. #11$.

III. RESULTS

The theory in Sec. II enables one to easily study laser-

assisted population transfer. We apply the theory to popula-

tion transfer between reactant and product states of a coher-

ent wave packet of the collinear ultracold triatomic 6Li6Li7Li

system. We describe the coherent wave packet of the initial

reactant wave packet by a normalized Gaussian wave packet

bE,qs,ns

+ #− ,$ = #-E
2$$−1/4 exp&− #E − E0$2

/#2-E
2$' , #34$

where -E is the narrow energy bandwidth, and E0 is the

energy center of the initial reactant wave packet. In our

simulations, we have chosen the mean initial kinetic energies

of the reactants to be E0=E#q=1,n=0,Tr=1 mK$ and the

wave packet width to be -E=0.01–0.1 mK.

As depicted in Fig. 1, the combined effect of the two

laser pulses with carrier frequencies "p and "s is to transfer

population from the ultracold initial reactant #q=1, n=0, Tr

=1 mK$ to the ultracold product #q=2, n=0, Tr=1 mK$ on

the 4A! electronic potential energy surface, with the bound

#v=31, J=0$ state acting as an intermediate resonance on the
4A" electronic potential energy surface. The energy level of

this intermediate state lies 2693.04 cm−1 above the three-

body dissociation limit of the ground 4A! surface.

For a narrow initial reactant wave packet, with -E

=0.01–0.1 mK, and a long temporal pulse, with 'p,s

,2 /-E, the %−#E ; j ,q=1,n$ bound-continuum coupling does

not vary appreciably with kinetic energy over the spectral

bandwidth of the pulse. Therefore, we can apply the SVCA

to Eq. #29$ to form the simplified G#t$ function

184113-4 X. Li and G. A. Parker J. Chem. Phys. 128, 184113 !2008"
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G!t" # $4!E
2"

#
%1/4

$−!E0; j,q = 1,n"%op

&exp&− $ t − tp

'tp

%2

− i
'p

#
t −

!E
2
t2

2#2' , !35"

where the detuning 'p is

'p ( (p − )E j − E!q = 1,n = 0,Tr = 1 mK"* . !36"

We have neglected a rapidly oscillating term which is pro-

portional to exp+−i!E0−E j +(s"t /#,, because we assume that

the two carrier frequencies (s and (p are significantly differ-

ent compared to the energy bandwidth of the pulses.

To maximize the reaction yield, one can vary the experi-

mental parameters 'ts
,'tp

, tp , ts ,'s ,'p along with the laser

intensities Ip and Is, where the detuning 's is

's = (s − )E j − E!q = 2,n = 0,Tp = 1 mK"* . !37"

There exists an exact scaling relation between these param-

eters. According to Eq. !28", this relation is obtained when

the initial wave packet’s width and the pulse intensities are

scaled down as

!E →

!E

w
, Ip,s →

Ip,s

w
, !38"

and the duration of both pulses and tp,s are scaled up as

'p,s → 'p,sw, tp,s = tp,sw . !39"

It follows from Eqs. !35" and !26" that under these transfor-

mations

G!t" → Ḡ!t" =
G!t/w"

w
, )!t" → )̄!t" =

)!t/w"

w
, !40"

so Eq. !28" becomes

d

d!t/w"
b j = iG!t/w" − )!t/w"b j . !41"

In all cases studied, we obtained optimized results by choos-

ing 's and 'p to be zero which implies the on-resonance

case, and the laser temporal widths 'ts
and 'tp

to be equal.

We choose !E to be smaller than 0.15 mK so the SVCA is

valid.

In this case, the ability to execute AP is limited because

the initial and the final states are continuum states. However,

it would be interesting to check how close to AP we can be in

PTAP so as to minimize the population of the intermediate

state. The PTAP scheme does not take into account losses

due to spontaneous emission from the intermediate bound

state, which may be significant if there is appreciable popu-

lation in this state. In the laser catalysis scenario,
1–3

this

problem can be effectively eliminated by increasing the laser

intensities, as can be done in PTAP. For Tr=Tp=1 mK and

!E=0.1 mK, the populations transferred into the bound states

are less than 1% provided the laser intensity Ip is greater than

2.4 GW /cm2 and the two pulses have significant overlaps.

The process described here, though not a perfect AP, is nev-

ertheless adiabatic, since the solution of Eqs. !11" and !15",
with or without the fast oscillating terms in Eq. !23" and

Eq. !24", agree to within a 0.5% error with 6&103

* !(p−(s"'ts,tp
and a 0.05% error with 6&104

* !(p−(s"'ts,tp
.

More interesting is the relationship between tp and ts.

When the pump laser’s intensity is smaller than 6 GW /cm2,

the maximum reaction yield occurs with an intuitive se-

quence, in which the pump pulse proceeds the Stokes pulse

!tp+ ts". With an intensity of Ip,2.45 GW /cm2, the opti-

mum reaction yield with an intuitive sequence is almost ex-

actly equal to the reaction yield for a coincident sequence,

and -tp− ts- for the optimum reaction yield with an intuitive

sequence goes to zero which indicates the coincident se-

quence. However, PTAP with the intuitive and coincident

sequences depends differently on the laser intensities. Addi-

tionally, for the counterintuitive sequence !tp- ts", the reac-

tion yield is smaller than that with the intuitive and coinci-

dent sequences. Moreover the dependence on the laser

intensities are similar for the counterintuitive sequence and

the coincident sequence. Therefore, we only present the co-

incident sequence and the intuitive sequence cases herein.

A. Coincident sequence

Setting tp and ts to be zero maximizes overlaps in time

for the pulses with the initial reactant wave packet. To opti-

mize population transfer into the product channel, one should

be aware of four possible resultant states: Wave packets cen-

tered at -E=E j −(p, q=1, n=0., -E=E j −(s, q=1, n=0., and

-E=E j −(s, q=2, n=0., and the intermediate bound state

-E j.. !The wave packet centered at -E=E j −(p, q=2, n=0.
does not exist because these energies are not allowed in this

case." The population of the intermediate bound state may

decrease with increasing laser intensities. The population of

the wavepacket centered at -E=E j −(p, q=1, n=0. can be

optimized to nearly zero using the destructive interference

between the optical route and the nonradiative scattering

route. However, the product wave packet centered at -E=E j

−(s, q=2, n=0. must compete with the reactant wave packet

centered at -E=E j −(s, q=1, n=0. because the probability

that the system will stay in the final reactant wave packet at

-E=E j −(s, q=1, n=0. cannot be coherently controlled by

interference between the optical route and the nonradiative

scattering route because the latter does not exist in this case.

Therefore, to minimize the effect of the “satellite state” -E
=E j −(s, q=1, n=0., one should use an intermediate bound

state that preferentially couples to the -E=E j −(s, q=2, n

=0. state rather than the -E=E j −(s, q=1, n=0. state. We

need not to worry about the ratio between $−!E j −#(p ; j ,q

=1,n" and $−!E j −#(s ; j ,q=2,n" because the intensities of

pump and Stokes lasers can be scaled according to Eq. !27".
At Tr=Tp=1 mK, we choose 'ts

='tp
=431 ns and !E

=0.1 mK. For the intermediate bound state we choose the

32nd bound state of the excited state complex, 6Li6Li7Li in

the collinear geometry. By using two lasers with intensities

Ip=2.45 GW /cm2 and Is=1 MW /cm2, we obtain a popula-

tion transfer into the 6Li6Li+ 7Li chemical arrangement with

a probability of 98.44%. Figure 2 shows the time dependence

of the probabilities of the reactant, product, and intermediate

states. Wave packets centered at -E=E j −(p, q=1, n=0. and
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!E=E j −!s, q=1, n=0" contribute to the reactant probabili-

ties, which are both minimized. The total probability of the

reactant wave packet centered at !E=E j −!s, q=1, n=0" is

1.55%, and the probability that the system will stay in the

initial reactant wave packet centered at !E=E j −!p, q=1, n

=0" is 0.01%.

One way to decrease the laser intensities without chang-

ing the reaction yield is to use the exact scaling relation in

Eqs. #38$ and #39$. Setting w=10, we can control population

transfer using laser intensities ten times smaller than that

with w=1, as shown in Fig. 3. The large ratio of Ip / Is, which

requires a large Ip, results from the small dipole moment

"−#E j −#!p ; j ,q=1,n$, and a possible solution for this prob-

lem is to perform a full three-dimensional #3D$ calculation

where more intermediate bound states can be found in the

Frank–Condon region.

When tp= ts=0, the two-pulse PTAP theory is very simi-

lar to the laser catalysis theory, which use only one pulsed

laser. For population transfer, the bimolecular system absorbs

a photon from the pump laser and, simultaneously, the Stoke

laser stimulates a photon emission while minimizing the

population of the intermediate state; in laser catalysis, the

system absorbs a photon and simultaneously emits the same

photon into the field. The reaction yield of PTAP monotoni-

cally increases with increasing laser intensity, as shown in

Fig. 4, which is very similar to Fig. 9 of Vardi and Shapiro’s

laser catalysis paper.
2

B. Intuitive sequence

When tp$ ts, the pump pulse proceeds the Stokes pulse,

and the maximum reaction yield requires the pulses to over-

lap appreciably. Because the optimized reaction yield with an

intuitive sequence is very close to the reaction yield obtained

with a coincident sequence, we do not show the time-

dependent probabilities of all possible states. However, the

relationship between laser intensities and the reaction yield

with the intuitive sequence with the ratio Is / Ip fixed, as

shown in Fig. 5, differs from that with the coincident se-

quence. The reaction yield has a clear maximum with respect

FIG. 2. Integrated population of the reactant wave packet centered at !E
=E j −!p, q=1, n=0", product wave packet centered at !E=E j −!s, q=2, n

=0" #solid lines$, and reactant wave packet centered at !E=E j −!s, q=q, n

=0" #dashed lines$ vs time; laser profile #dotted line$ vs time; Tp=Tr

=1 mK, %E=0.1 mK, &ts
=&tp

=431 ns, tp= ts=0 and Ip=2.45 GW /cm2 and

Is=1 MW /cm2.

FIG. 3. Integrated population of the reactant wave packet centered at !E
=E j −!p, q=1, n=0", product wave packet centered at !E=E j −!s, q=2, n

=0" #solid lines$, and reactant wavepacket centered at !E=E j −!s, q=q, n

=0" #dashed lines$ vs time; laser profile #dotted line$ vs time; Tp=Tr

=1 mK, %E=0.01 mK, &ts
=&tp

=4.31 "s, tp= ts=0 and Ip=245 MW /cm2

and Is=1 MW /cm2.

FIG. 4. Reaction yield vs laser intensity Ip. Here, T=1 mK, %E=0.1 mK,

tp= ts=0, &ts
=&tp

=431 ns, and Is / Ip satisfies the relation in Eq. #27$.

FIG. 5. Reaction yield vs laser intensity Ip. Here, T=1 mK, %E=0.1 mK,

tp=−ts=12 ns, &ts
=&tp

=431 ns, and Is / Ip satisfies the relation in Eq. #27$.
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to laser intensities; merely increasing the pulse intensity does

not improve the transfer yield. This feature is similar to the

radiative recombination studies by Vardi et al.,
10

where the

system has two bound states and one continuum state. In the

PTAP, if one decreases !tp− ts!, thereby increasing the overlap

of the pulses, then the maxima occurs at a higher intensity. In

the tp− ts=0 limit, the location of the maximum approaches

positive infinity, where a PTAP with the intuitive sequence

becomes one with the coincident sequence and the reaction

yield monotonically increases with increasing laser intensity.

In the PTAP, the optimum reaction yield occurs with the

intuitive sequence or the coincident sequence; but in both

conventional AP and PAP, the optimum reaction yield occurs

with the counterintuitive sequence. In the conventional AP,

the counterintuitive sequence enables a dark state to connect

the initial and final states without populating the intermediate

state. Both optimum reaction yields occur with the intuitive

and counterintuitive sequence in PAP, but only the latter does

not populate the intermediate state appreciably. It is not clear

why the intuitive sequence gives a higher yield when both

the initial and the final are in the continuum. This is currently

under investigation.

IV. CONCLUSION

We have developed a nonperturbative theory of two-

photon pulsed PTAP for triatomic reactions. This is the first

theory that shows the connection between the laser catalysis

and adiabatic passage. We have demonstrated control of

population transfer of ultracold molecules with the freedom

to choose the translational energies for the reactants and the

products separately. We have presented results for the 6Li

+ 6Li7Li"Tr=1 mK#→ 6Li6Li+ 7Li"Tp=1 mK# process, and

found that 98.4% of the population of the reactants is trans-

ferred to the products. We further found that, PTAP with the

intuitive sequence at a low laser intensity, and with the co-

incident sequence at a high laser intensity give the optimum

reaction yields. PTAP with a coincident sequence with two

pulsed lasers acts like the laser catalysis scheme with a single

laser pulse.

The system in this study is collinear. The 3D calculations

are currently in progress. Moving to 3D greatly increases the

number and density of states. The 3D calculation will include

a plethora of rotational angular momentum states but the

increase in the number of states on the ground electronic

surface is not overwhelming at ultracold temperatures. The

increase in the number and the density of states on the ex-

cited electronic potential surface is not as problematic be-

cause the narrow-band laser pulse is very selective. When the

laser detuning is several magnitude larger than the energy

bandwidth of the lasers, one can totally suppress the reaction

process. The calculations presented here are model calcula-

tions designed to describe the physical process and the abil-

ity of PTAP to control the process at cold and ultracold

temperatures.
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Appendix C

Formation ultracold heteronuclear molecules

Laser-catalyzed production of ultracold molecules:

The 6Li + 6Li7Li
~ω

−→
6Li6Li+ 7Li reaction.

by X. Li, G. A. Parker, P. Brumer, I. Thanopulos I and M. Shapiro
Phys. Rev. Lett., Volume 101 Article 043003 (2008)
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We show that by using laser catalysis, we can employ translationally cold (Tr # 1:75 K) collisions to

produce ultracold (0:01 mK< Tp < 1 mK) (homonuclear) molecules. We illustrate this approach by

studying the laser catalysis of the 6
Li! 6

Li
7
Li !

@!
$6Li6Li7Li%&$14A00% !

@! 6
Li

6
Li! 7

Li reaction in the

collinear approximation. Ultracold 6Li6Li product molecules are shown to be produced at an extraordinary

yield of up to 99.97%, using moderate laser intensities of I ' 100 kW=cm2 " 10 MW=cm2.

DOI: 10.1103/PhysRevLett.101.043003 PACS numbers: 37.10.Mn, 33.80."b, 37.10.Pq, 42.50."p

The existence of Bose-Einstein Condensates (BEC) of

various atoms [1] and the possibility of the production of

their molecular analogues [2–7] has spurred great interest

in reactions between ultracold, bosonic, or fermionic (spin-

aligned), molecules. For the lightest alkali, Li, isotopic

mixtures of the fermionic 6
Li and the bosonic 7

Li are of

great interest because they lead to the creation of either

heteronuclear or homonuclear diatomic molecules [3,7–

11].

In this Letter, we show that the involvement of pulsed

lasers of moderate intensities in the reactions between cold

reactants can lead to the production of ultracold diatomic

molecules. We propose achieving this goal via the ‘‘laser

catalysis’’ scenario [12–16], according to which, a laser

assists a chemical reaction in a process involving no net

absorption of photons. According to this scenario, the laser

assists the A! BC ! AB! C reaction by first forcing a

(virtual) transition of the A! BC reactants to the $ABC%&

excited state complex (ESC). The ESC then undergoes a

stimulated emission process to the AB! C ground state

products, releasing a photon identical to the photon just

absorbed. Thus, no net photons are absorbed, justifying the

name ‘‘laser catalysis.’’ When the process is done coher-

ently and the intensity of the laser is high enough, the

prediction is that the system would transit smoothly from

reactants to products, with the ESC ‘‘stepping stone’’

remaining unpopulated even in a transient way [12], thus

rendering the ESC an authentic ‘‘virtual state.’’

As an illustration of this concept, we consider in detail

the A ' 6
Li$2S%, B ' 6

Li$2S%, and C ' 6
Li$2S% triatomic

system. The diatomic molecules AB ' 6
Li

2
$3!!

u % and

BC ' 7
Li

6
Li$3!!% are taken to be in their lowest spin-

aligned electronic states. The triatomic states are the 14A0

states for the reactants and products, and the 14A00 states for

the ESC $ABC%&. The zero energy is chosen to be at the

three-body break up limit (2S! 2S! 2S). There is no

natural barrier in the reaction path between chemical ar-

rangements of the quartet 6Li6Li7Li system. We note,

however, that the lowest vibrational energy of the triplet
6Li7Li state is calculated to be E$q ' 1; v ' 0% '
"300:51194 cm"1, while the lowest vibrational energy

of the triplet 6Li6Li state is calculated to be slightly higher,

at E$q ' 2; v ' 0% ' "299:29412 cm
"1. Figure 1 shows

the schematic energy levels of the current 6
Li

6
Li

7
Li in a

laser catalysis scenario.

We thus envision a collinear collision between counter-

propagating 6
Li and 6

Li
7
Li beams, having zero center of

mass velocity, each prepared with translational tempera-

FIG. 1. Schematic energy levels of 6Li6Li7Li system in the

laser catalysis scheme.
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tures of Tr ! 1:75 K. By tuning the laser center frequency

to be in exact resonance with a transition to one of the

bound states of the ESC, we can make use of the energetic

difference between the reactant and product diatoms to

produce the 6Li6Li at ultracold temperatures. These tem-

peratures range between 0:01 mK< Tp < 1 mK, depend-

ing on the bandwidth of the laser used. The intervention of

the laser is necessary because at translational temperatures

of 1:75 K, the nonradiative reaction probability is negli-

gible ( < 1%).

We proceed now to outline the theoretical basis of our

calculations. The total matter " radiation Hamiltonian is

given in the dipole approximation as Htot # H $ ~! % ~"&t',
where H is the material Hamiltonian and ~"&t' # "̂"&t',
with "̂ being the laser’s polarization direction and "&t',
its electric field strength. We expand the wave function,

!&t', which solves the time-dependent Schrödinger equa-

tion, i@@!=@t # Htot!, in a complete basis composed of

jEji, the bound ESC, and jE; q; n$i, the ground-electronic

or nuclear-continuum, eigenstates of H,

 &Ej$H'jEji#&E$ i"$H'jE;q;n$i#0: q#1;2: (1)

In the above, q denotes the asymptotic chemical arrange-

ments and n, the internal quantum numbers associated with

them, in the t ! 1 limit. For narrow laser bandwidths it is

usually sufficient to consider a single excited jEji bound

state since in that case, the effect of other bound states is

negligible [14,16]. Thus, the laser pulse creates a superpo-

sition of ground continuum states and one excited bound

state of the form

 j!&t'i #
X

q;n

Z

dEb$E;q;n&t'jE; q; n
$i exp&$iEt=@'

" bj&t'jEji exp&$iEjt=@': (2)

We assume that initially there is no population in the

ESC bound states, i.e., that bj&t # $1' # 0. The sys-

tem that starts in the 6Li" 6Li7Li reactants (qs # 1)

channel at the ground vibrational state (ns # 0) is

composed of a translational wave packet given as
R
dEb"E;qs;ns jE; qs; n

"
s i exp&$iEt=@' whose energetic de-

pendence is determined by b"E;qs;ns . Using the connection

between the jE; q; n$i and the jE; qs; n
"
s i states, we have

that

 b$E;q;n&t # $1' # Sq;n;qs;ns&E'b
"
E;qs;ns

;

where

 Sq;n;qs;ns&E' ( hE0; q; n$jE; qs; n
"
s i#&E$ E0'

is the nonradiative scattering matrix element.

Substituting Eq. (2) into the time-dependent

Schrödinger equation, and using the rotating wave approxi-

mation (RWA) [17], we obtain a set of integro-differential

equations for the expansion coefficients, bj&t' and b$E;q;n&t',

 

_bj #
i"&t'

@
!s

j&t' "
X

q;n

Z

dEb$E;q;n&t'!
$&E; j; q; n'

) e$i!E;jt;

b$E;q;n&t' # b$E;q;n&$1' "
i

@

Z t

$1
dt0bj&t

0'"*&t0'hE; q; n$j ~!

% "̂jEjie
i!E;jt

0
; (3)

where !s
j&t' is the ‘‘source’’ term

 !s
j&t' (

X

q;n

Z

dEb$E;q;n&$1'hEjj ~! % "̂jE; q; n$ie$i!E;jt:

(4)

Assuming the Markov-like ‘‘slowly varying continuum

approximation’’ (SVCA) [4,18], which can be fully justi-

fied for this case [12], we obtain after some manipulations

a simple differential equation for bj,

 

d

dt
bj&t' #

i"&t'

@
!s

j&t' $
$

@
jhEjj ~! % "̂jEo; q; n

$i"&t'j2bj&t'

(5)

where Eo is the energy center of the initial reactant wave

packet.

The solution of Eq. (5) and its substitution into Eq. (3)

yields the time-dependent probabilities to observe the in-

termediate state, the reactants, and the products. One can

vary the experimentally controllable function "&t' and the

initial wave packet, !&t # $1', to optimize the reactive

scattering process, using, as the case may be, the construc-

tive or destructive interferences between the nonradiative

scattering route and the radiatively assisted route.

Computational results.— We have chosen the light pulse

that induces transitions between the intermediate states and

the reactant/product states to have a Gaussian envelope

function,

 "&t' # 2Re"0 exp&$t2="2
t ' exp&$i!0t'; (6)

where "0 is the field strength, "t (often # 431 ns) is the

temporal pulse width, and !0 is the carrier frequency

chosen to be in resonance with the jEj#21i state. We have

also chosen the initial reactant wave packet to have a

Gaussian shape,

 b"E;qs;ns # &#2
E$'

$1=4 exp+$&E$ Eo'
2=&2#2

E',; (7)

where #E is the energy bandwidth, determined by the

initial temperature, and Eo is the center of the initial

reactant wave packet. The energy-dependent dipole cou-

pling terms, hEjj ~! % "̂jE; q; n$i, are then calculated using

the reactive version of the Artificial Channel Method [19].

In order to achieve the desired ultracold product tem-

perature, we choose the detuning parameter defined as " (

!0 $ Ej " Eo to be equal to 0. In this way, a narrow (e.g.,

"t # 431 ns$ 43:1 !s) transform-limited laser pulse
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carves out of the Tr ! 1:75 K initial reactant distribution a

narrow energetic component whose width is "0:01 mK#

1 mK and transforms it into products of roughly

"0:01 mK# 1 mK. Therefore, the molecular reactants,
6Li7Li, can be prepared with a Maxwell-Boltzmann distri-

bution at Tr $ 1:75 K. With the typical experimental error

in preparing the translational energies of the initial atomic

species, the narrow energy bandwidth (!E) of the atomic

species 6
Li and a narrow laser pulse will filter out the

ultracold portion of the initial molecular beam of 6
Li

7
Li

reacting with 6
Li to form an ultracold cloud of 6

Li
6
Li and

7Li. Depending on the experimental error in beam prepa-

ration, the product cloud will then move uniformly in one

direction with a known center of mass (c.m.) velocity

which will be at least three to 4 times slower than the

reactants and thus can be removed by a molecular optical

lattice.

Figure 2 shows the time dependence of the probabilities

in each state using a laser with an intensity of I !
13:7 MW=cm2 with a !t ! 431 ns. The reaction yield of

the ultracold (Tp ! 1 mK) product is shown to be 99.3%

when the nonradiative reaction probability at this tempera-

ture is negligible (<1%). The probability of the intermedi-

ate state jEj!27i (dashed line in Fig. 2) remains very small

compared to that of the reactant or product so that sponta-

neous emission is essentially nonexistent.

To illustrate the effect of the laser intensity, Fig. 3 shows

the reaction yield as a function of the laser intensity with

other parameters being fixed as they are in Fig. 2. Before

reaching saturation at I " 2 MW=cm2, the reaction yield

increases monotonically with increasing laser intensity.

However, in order to avoid spontaneous emission, losses

from the population of the intermediate bound state neces-

sitate a much higher intensity of I % 10 MW=cm2. The

intense laser pulse couples the material state with the field

state to form two dress states that the population follows

adiabatically from the reactants to the products on the

ground dress state without populating the intermediate

state significantly [12].

Total suppression of the reaction scattering process can

also be achieved. For instance, if we use a detuning of ! !

3& 10#3 cm#1 with the other parameters assuming the

values of Fig. 2, total suppression, due to destructive

interference with the nonradiative reactive process, results.

The effect (not shown in detail here) is more significant in

the cold regime (Tp ! 10–100 K) where the nonradiative

tunneling probability is non-negligible [16].

We also performed calculations for radiatively assisted

reactions yielding other product temperatures, Tp ! 0:1

and 0.01 mK. Here, we define a scaling variable, s, to

describe the change of product temperatures as Tp !

Tp=s. And thus, for Tp ! 1, 0.1, and 0.01 mK, we choose

the following scaling relation for the experimental parame-

ters

 ! ! !=s; !T ! !T & s (8)

and a laser intensity, I, large enough to saturate the reaction

yield. These experimental parameters at Tp ! 0:1,

0.01 mK with such scaling relation are suggested values

to make sure the SVCA is still valid when the dipole

moments vary faster for lower temperatures than they do

for Tp ! 1 mK. Though the SVCA is not necessary for the

entire scheme to work, it requires more computations when

the SVCA is not valid. The intermediate bound states are

Ej!37 for Tp ! 0:1 mK and Ej!32 for Tp ! 0:01 mK to

maximize the reaction yield.

For Tp ! 0:1 mK, !t and ! are related to those in the

Tp ! 1 mK case by a scaling relation (s ! 10) in Eq. (8),

and the carrier frequency, !0, is changed to have a tem-

perature of Tp ! 0:1 mK. With I ! 1:37 MW=cm2, the

reaction yield is saturated at 99.97%. For Tp ! 0:01 mK,

!t and ! are related to those in the Tp ! 1 mK case by a
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FIG. 2. Population of the reactant (dashed-dot line), product

(solid line), and intermediate (dashed line of near zero value)

states, and laser profile (dotted line) vs time; Tp ! 1 mK.
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scaling relation (s ! 100) in Eq. (8), the laser intensity is

I ! 137 kW=cm2, and the reaction yield is 99.2%. For

brevity, we do not show the plot of the Tp ! 0:1 mK and

Tp ! 0:01 mK cases which is almost identical to Fig. 2

except for a scaling factor in Eq. (8).

The trap loss process in the above simulations is not

appreciable. Since the product diatomic states are in the

ground vibrational level and they correspond to nonrota-

tional motion (n ! 0), the inelastic collision in the reaction

channel is zero. Though the reaction channel 7
Li" 6

Li
6
Li

is exoenergetic, the reactive scattering probability of the

reaction channel is calculated to be small (#1%) at Tp $

1 mK. This does not conflict with the previous scattering

calculations [11,20] on this system because Cvitaš et al.

focused on the rotationally excited 7
Li" 6

Li
6
Li (v ! 0,

n ! 1) state. The production rate of the ultracold 6
Li

6
Li

diatoms, for the Tp ! 1 mK case, is estimated to be 4%

105=s. This estimate is based on the temporal width of the

pulse, the percentage of the carved portion of the broadly

distributed initial molecular beam, and a typical molecular

beam density of 1012 cm
&3.

The electronic potential energy surface (PES) used in

this calculation is based on a full configuration interaction

ab initio computation. Though a better PES with inclusion

of future experimental spectra can be constructed, we see

no reason why this should alter the qualitative features of

this scheme. This is because laser catalysis only requires

that the intermediate state is properly chosen so that the

population transfer from the intermediate state to the re-

actants and the products are balanced [16]. Thus, one can

tune the laser intensity and the laser detuning, respectively,

to compensate the quantitative difference in Franck-

Condon overlap and the transition energies. The same

argument applies when one wishes to move to the three-

dimension (3D) case. This simulation uses a collinear

approximation which specifies all the rotational motions

are absent, and in a 3D calculation only an additional 6Li"
6
Li

7
Li'v ! 0; n ! 1( level would be opened on the

ground-electronic PES. As long as the intermediate state

is properly chosen to have a small Franck-Condon overlap

with this additional state, the final reaction yield would

remain optimum. One needs to perform a careful scattering

calculation to make sure the reverse reactive scattering

process is suppressed at the desired product temperature.

In summary, we have pointed out the possibility of

producing mK 6
Li

6
Li molecules, which according to our

calculation may be performed at a yield as high as 99.97%,

as a result of a laser-catalyzed reaction between counter-

propagating 1.75 K cold 6Li and 6Li7Li beams. This

scheme is not restricted to the production of homonuclear

molecules, and we can also apply this scenario to hetero-

nuclear molecules which is of interest for applications like

quantum computations.
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Appendix D

Formation of ultracold heteronuclear molecules

Laser-catalyzed production of ultracold heteronuclear molecules:

The 6Li + 7Li7Li
~ω−→ 6Li7Li+ 7Li reaction.

by X. Li, G. A. Parker, P. Brumer, I. Thanopulos I and M. Shapiro
to be submitted to Chem. Phys. Lett.

Quantum control of molecular dynamics by lasers has been applied to a wide
variety of processes, and one of the most studied scenarios which requires a mod-
erate laser intensity of MW/cm2 is the “laser catalysis” (LC) scenario(60; 61; 88).
In the laser catalysis scenario, a pulsed laser is used to alter a chemical reaction,
but returns to its initial photon state with no net photons absorbed in the pro-

cess: A + BC
~ω0←→ ABC∗(v)

~ω0←→ AB + C, with ABC∗(v) denoting an interme-
diate, electronically-excited, complex state (ESC) of ABC in the v-th vibrational
state. With the recent discovery of Bose-Einstein condensation in ultracold hydro-
gen (67), lithium(68), sodium(69), rubidium(70), cesium(71) and chromium(173),
quantum control of the spin-aligned systems is of great interest. This is so because
spin-aligned states have relatively large magnetic moments, making them easier to
capture in magnetic traps. With the laser catalysis theory one may consider the re-
action between mixed cold or ultracold bosons and fermions which leads to a great
variety of triatomic interactions. For example, isotopic mixtures of 6Li (fermion)
and 7Li (boson) are of great interest because one can create either heteronuclear
or homonuclear ultracold diatoms(72; 73; 74; 32). In this Letter we consider the
theory of laser catalysis to control the reactive scattering process of this mixture on
two spin-aligned electronic potential energy surfaces to either enhance or suppress
the reation of forming the ultracold dimer, 6Li7Li.

We consider quantum control of the reactive scattering process where the atoms
are A=6Li(2S), B=7Li(2S) and C=7Li(2S) in the ultracold regime. The diatomic
molecules AB=6Li7Li(3Σ+) and BC=7Li2(

3Σ+
u ) are taken to be in their lowest spin-

aligned electronic states. The triatomic states are the 14A′ states for the reactants
and products, and the 14A′′ states for the ESC (A-B-C)∗. The zero energy is chosen
to be at the three-body break up limit (2S+2S+2 S). There is no natural barrier in
the reaction path between chemical arrangements of the quartet 6Li7Li7Li system.
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Figure D.1: Schematic energy levels of 6Li7Li7Li system in the laser catalysis sce-
nario

However, the lowest vibrational energy of the triplet 7Li7Li state is calculated to be
E(q = 1, v = 0) = −1.37501101×10−3 Hartree, while the lowest vibrational energy
of the triplet 6Li7Li state is calculated to be E(q = 2, v = 0) = −1.36923315×10−3

Hartree. Therefore, the initial reactant 6Li+7Li7Li is prepared at a cold temperature
of Tr ≈ 1.8 K, then is subjected to a moderate laser field (I = 1 ∼ 100 MW/cm2)
and transferred to the product arrangement 6Li+7Li7Li with an ultracold temper-
ature of 0.01 mK ≤ Tp ≤ 1 mK. Here, Tr and Tp denote the temperatures in the
reactant arrangement and the product arrangement respectively, and thus defined
as Tr = [E − E(q = 1, v = 0)]/KB and Tr = [E − E(q = 2, v = 0)]/KB where
KB is the Boltzmann constant. Fig. D.1 shows schematic energy levels of the cur-
rent 6Li7Li7Li in a laser catalysis scenario. At the ultracold temperature, Tp, the
non-radiative tunneling probability is negligible (< 1%) and thus a laser catalysis
scenario is useful to achieve the optimum controllability.

The matter+radiation interaction is described by the Hamiltonian Htot = H −
~µ · ~ε(t) with the dipole approximation, where H is the material Hamiltonian and
~ε(t) = ε̂ε(t), where ε̂ is the polarization of the laser field and ε(t) is its electric field
strength. We expand the wave function, Ψ(t), which solves the time dependent
Schrödinger equation,

i~
∂Ψ

∂t
= HtotΨ, (D.1)

in a complete basis that is composed of the sets of bound, |Ej〉, and continuum,
|E, q, n−〉, eigenstates of H , defined as,

(Ej −H)|Ej〉 = 0

(E −H)|E, q, n−〉 = 0, q = 1, 2. (D.2)

Ej are the bound-state energies on the excited electronic potential energy surface
(PES); E are the continuum energies on the ground electronic PES; and n are the
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t → ∞ asymptotic internal quantum numbers associated with each arrangement
channel q. In this study, we choose to use a single intermediate bound state because
the effect from other bound states is negligible when the energy bandwidth of
the pulse laser is narrow compared the energy separation between the discrete
intermediate states (60; 61) for this ultracold case.

The laser pulse excites the system into a superposition of continuum states of
the ground electronic PES and bound states of the excited electronic PES. The
resulting wavepacket is

Ψ(t) =
∑

q,n

∫

dE b−E,q,n(t) |E, q, n−
〉

exp(−iEt/~)

+ bj(t) |Ej〉 exp(−iEjt/~) (D.3)

where q = 1, 2 represent the reactant and product chemical arrangement channels
respectively. We have assumed that the initial wavepacket starts in channel qs =
1(reactant channel A+BC=6Li+7Li7Li) with the following initial conditions:

b−E,q,n(−∞) = Sq,n;qs,ns
b+
E,qs,ns

(−∞)

bj(−∞) = 0. (D.4)

where b+
E,qs,ns

(−∞) is chosen so as to give the initial wavepacket the desired (Gaus-
sian) shape in state ns of the reactant arrangement qs. Here, Sq,n;qs,ns

is the scat-
tering matrix element between the |E, q, n−〉 state and the |E, qs, n

+
s 〉 state.

Substituting the wavepacket in Eq. (D.3) into the time-dependent Schrödinger
equation, Eq. (D.1), and using the rotating wave approximation (RWA) we then
obtain an ordinary differential equation to solve for the expansion coefficients, bj(t)
and b−E,q,n(t). The solution of the coefficients bj(t) is subjected to the simplified
ordinary differential equation:

ḃj(t) = (iε(t)/~)µs
i (t)

− (π/~)
∣

∣〈Ej |~µ · ε̂|Eo, q, n
−〉ε(t)

∣

∣

2
bj(t) (D.5)

where Eo is the center energy of the initial reactant wavepacket and µs
i (t) is the

source term for the reactant channel qs = 1

µs
i (t) ≡

∑

q,n

∫

dEb−E,q,n(−∞)

× 〈Ej |~µ · ε̂|E, q, n−〉. exp(−iωE,it) (D.6)

And, the solution of the coefficients b−E,q,n(t) are subjected to the relation:

b−E,q,n(t) = b−E,q,n(−∞)

+ (i/~)

∫ t

−∞
dt′bj(t

′)ε∗(t′)

× 〈E, q, n−|~µ · ε̂|Ej〉 exp(iωE,jt
′). (D.7)
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It should be noted that in deriving these solutions we have used SVCA (slowing
varying continuum approximation) (174; 175; 176; 85) which assumes the molecular
continua are unstructured. A detailed derivation subjected to reasonable approxi-
mations can be found in reference (60).

The solution of the expansion coefficients, bj(t) and b−E,q,n(t), determines the
wavepacket Ψ(t) from which we can obtain the intermediate state, reactant and
product probabilities at any time. To obtain the optinum controllability of the
reactive scattering process, we consider differernt initial conditions, Ψ(t = −∞),
and vary the electric field strength scalar ε(t). We use constructive or destructive
interferences between the non-radiative scattering route and the radiative route
to achieve near-complete (≥ 99%) population transfer or near-complete (≤ 1%)
reactive suppresion.

The light pulse is chosen as a Gaussian,

ε(t) = εo exp(−t2/∆2
t ) exp(−iωot), (D.8)

where εo is the field strength, ∆t is the temporal pulse width, and ωo is the carrier
frequency of the laser pulse which induces the transition between the intermediate,
reactant and product states. The initial reactant wavepacket is,

b+
E,qs,ns

(−∞) = (δ2
Eπ)−1/4 exp

[

−(E − Eo)
2/

(

2δ2
E

)]

, (D.9)

where δE is the energy bandwidth and Eo is the center of the initial reactant
wavepacket. The energy dependent dipole coupling terms, 〈Ej|~µ · ε̂|E, q, n−〉, are
obtained using the artificial channel method (177; 178; 179).

Different ultracold temperatures are studied, and therefore, we define a scaling
variable, s, to describe the change of product temperatures as tp → tp/s. And thus,
for Tp = 1 mK, 0.1 mK and 0.01 mK we choose the following scaling relation for
the experimental parameters

∆→ ∆/s, δE → δE/s, ∆T → ∆T × s (D.10)

and a laser intensity, I, large enough to saturate the reactive yield. It should be
noted that this scaling relation is not the same scaling relation in reference (60), and
these experimental parameters at Tp = 0.1, 0.01 mK are only changed to make sure
the SVCA is still valid since the dipole moments varies faster for lower temperatures
than that for Tp = 1 mK.

For the Tp = 1 mK case, the center of the initial reactant wavepacket is prepared
to be Eo = −1.3692300× 10−3 Hartree with an energy bandwidth of δE = 0.1 mK.
The cold reactant (Tr = 1.825491 K) is then under the influence of a strong laser
field with a temporal width of ∆t = 431 ns and a detuning of ∆ = 0. The detuning
parameter, ∆, is defined as ∆ = ωo−(Ej−Eo), which in this case is optimized to be
zero so that carrier frequency ωo is on resonance with the 21st bound state to obtain
the maximum reactive yield. Different intermediate bound states, Ej , were tested
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Figure D.2: Integrated population of the reactant, product (solid lines) and inter-
mediate state (dashed lines) vs time; laser profile (dotted line) vs time; Tp = 0.01
mK

and we choose to use the 21st bound state because we obtain the best reactive yield
results with it for Tp = 1 mK. Reactive yield is optimized to be 97.4% with a laser
intensity of I = 137 MW/cm2. Total suppression of the reactive scattering process
can also be achieved, for instance, if we use a detuning of ∆ = 4 × 10−7 Hartree
with the other parameters the same as in Fig. D.2. The total suppresion is more
significant in the cold regime (Tp = 1 ∼ 100 K) when the non-radiative reactive
probability is not negligible and therefore we do not show plots here for brevity.

For the Tp = 0.01 mK case, shown in Fig. D.2, the reactive yield is optimized to
be 99.8% with an intensity of I = 1.37 MW/cm2. The experimental parameters are
chosen according to the scaling relation in Eq. (D.10) and the 29th intermediate
bound state is used. The probability of the intermediate state |Ej > (dashed
line in Fig. D.2) is very small compared to that of the reactant or product so
that spontaneous emission is essentially nonexistent. To illustrate the effect of
the laser intensity, Fig. D.3 shows the reactive yield as a function of the laser
intensity with other parameters fixed at their optimized values as in Fig. D.2 at
Tp = 0.01 mK. Before reaching saturation at I ∼ 1 MW/cm2, the reactive yield
increases monotonically with increasing laser intensity. However, in order to avoid
the spontaneous emission losses from the population of the intermediate bound
state we suggest the use of intensity I ≥ 2.5 MW/cm2.

Results for the Tp = 0.1 mK is shown Fig. D.4 with a decreased optimum
reactive yield. With the scaled experimental parameters in Eq. (D.10), we use the
29th intermediate bound state and an optimized laser intensity of I = 13.7MW/cm2.
The reactive yield is optimized to be 76.6%, though the total suppression is achieved
with a detuning of ∆ = 4 × 10−8 at the same intensity. The reason for decreased
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Figure D.3: Reactive yield vs laser intensity; Tp = 0.01 mK
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Figure D.4: Integrated population of the reactant, product (solid lines) and inter-
mediate state (dashed lines) vs time; laser profile (dotted line) vs time; Tp = 0.1
mK
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Figure D.5: Dipole moments 〈Ej |~µ · ε̂|E, q = 1, n−〉 (solid line) and 〈Ej |~µ · ε̂|E, q =
2, n−〉 (dashed line) vs temperature Tp; ratio (dotted line) vs Tp; |Ej〉 as the 29th

bound state

control ability at Tp = 0.1 mK, compared to that at Tp = 1 mK and 0.01 mK,
is due to the large difference between 〈Ej|~µ · ε̂|E, q = 1, n−〉 and 〈Ej|~µ · ε̂|E, q =
2, n−〉. With a specific intermedate state, e.g. the 29th bound state, the ratio
of these two dipole moments changes as the ultracold temperature Tp varies, as
shown in Fig. D.5, and this large ratio causes the inbalance between the population
transfers into the reactant and into the product arrangements. As it is shown
elsewhere (76) the optimized reactive yield decreases as the ratio deviates from
unity. This phenomenon is analogous to Young’s two slits experiment for which the
highest fringe contrast is obtained when the slits widths are the same. In order to
achieve the optimum controllability, we look for an intermediate bound state with
the near-unity ratio of the two dipole couplings, however, the 29th bound state is
the best candidate for the intermediate state in the current system.

In summary, we have presented the possible quantum control of ultracold re-
active scattering process in collinear 6Li7Li7Li system using laser catalysis theory.
Our results show a control ability of up to 99.8% reactive yield to form the ultra-
cold dimer 6Li7Li and total suppresion of the reactive scattering process with a 0%
yield.

We thank Dr. Dimitri Abrashkevich for the use of his absorbing potentials codes.
We also thank Professor James P. Shaffer for interesting discussion on coherent
control. This work is supported by the National Science Foundation (Grant No.
NSF PHY-0100794), the Oklahoma State Regents for Higher Education (OSRHE),
and the Air Force Office of Scientific Research (FA9550-05-0328).
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Appendix E

Jacobi, Delves and APH coordinates

E.1 Jacobi coordinates

For a triatomic system we use A, B and C to label three atoms. We denote masses
mτ (τ = A,B,C) and use ~xτ as the column vectors of the atoms’ coordinates relative
to an fixed origin. Here, we use τ to denote each chemical arrangements. After
separation of the center of mass motion, we define Jacobi coordinates for relative
motion in this triatomic system as

~Rτ = ~xτ −
mτ+1~xτ+1 + mτ+2~xτ+2

mτ+1 + mτ+2

, (E.1)

~rτ = ~xτ+2 − ~xτ+1, (E.2)

where τ, τ + 1,and τ + 2 are any cyclic permutation of A, B and C. We define the
corresponding mass-scaled Jacobi coordinates for arrangement τ as (180; 181)

~Sτ = dτ
~Rτ , ~sτ = d−1

τ ~rτ , (E.3)

where dτ are the dimensionles mass-scaling factors as

dτ =

[

mτ

µ

(

1− mτ

M

)

]

. (E.4)

Here, µ is the three-body reduced mass

µ =
[mAmBmC

M

]

, (E.5)

and M is the total mass of the triatomic system

M = mA + mB + mC . (E.6)
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E.2 Delves coordinates

We can express the well-known Delves coordinates (182) of arrangement τ in terms
of the mass-scaled Jacobi coordinates

ρ =
√

S2
τ + s2

τ (E.7)

and
θDτ

= tan−1(sτ/Sτ ). (E.8)

Here, ρ is referred as the hyperradius and it does not depend on arrangement
channel τ . We define the Θτ as the angle between two Jacobi vectors, ~Sτ and ~sτ ,
for arrangement τ :

Θτ =
~Sτ · ~sτ

Sτsτ

. (E.9)

E.3 APH coordinates

The adiabatically adjusting, principal axes hyperspherical (APH) coordinates (108)
can be related to the mass-scaled Jacobi coordinates as

ρ =
√

S2
τ + s2

τ , (E.10)

tan θ =

√

(S2
τ − s2

τ )
2 + (2~Sτ · ~sτ )2

2Sτsτ sin Θτ
, (E.11)

sin(2χτ ) =
2~Sτ · ~sτ

√

(S2
τ − s2

τ )
2 + (2~Sτ · ~sτ )2

, (E.12)

and

cos(2χτ ) =
(S2

τ − s2
τ )

√

(S2
τ − s2

τ )
2 + (2~Sτ · ~sτ )2

. (E.13)

Here, the hyperradius ρ is defined the same as in the Delves coordinate; and θ and
χτ angles describe the shape of the three atoms. θ = 0 cooresponds to an oblate
top triangular configuration; θ = π/2 cooresponds to a collinear configuration.

The three Euler angles in the APH coordinates, αQ, βQ, and γQ, are defined to
describe the rotation of a rigid body:

(

~Sτ

~sτ

)

= T̃ (χτ )R̃(αQ, βQ, γQ)



















0
0

ρ√
2

√
1 + sin θ

ρ√
2

√
1− sin θ

0
0



















. (E.14)
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Here, T̃ (χτ ) = T−1(χτ ) is a kinematic rotation matrix, and R̃(αQ, βQ, γQ) =
R−1(αQ, βQ, γQ) is the spatial rotation matrix. We define the T (χτ) matrix as

T (χτ ) =

(

cos χτI sin χτI

− sin χτ I cos χτI

)

, (E.15)

where I is a 3× 3 identity matrix. And we define R(αQ, βQ, γQ) as

R(αQ, βQ, γQ) =

(

R 0

0 R

)

(E.16)

where 0 is a 3× 3 null matrix and R is a 3× 3 matrix of Euler angles

R =





cos α cos β cos γ − sin α sin γ
cos α cos β sin γ − sin α cos γ

cos α sin β

sin α cos β cos γ + cos α sin γ − sin β cos γ
− sin α cos β sin γ + cos α cos γ + sinβ sin γ

sin α sin β cos β



 . (E.17)

More details of the APH coordinates can be found in Ref.(108).
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Appendix F

Potential Construction

Potential energy surfaces for the 14A′, 24A′ 14A′′ and 24A′′ States of Li3
by X. Li, D. A. Brue and G. A. Parker

J. Chem. Phys. Volume 129, Page 124305 (2008)
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Potential energy surfaces for the 1 4
A!, 2 4

A! 1 4
A" and 2 4

A" states of Li3
Xuan Li,a! Daniel A. Brue, and Gregory A. Parker
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma,
Norman, Oklahoma 73072, USA

!Received 9 July 2008; accepted 28 August 2008; published online 24 September 2008"

Global potential energy surfaces for the 1 4A!, 2 4A!, 1 4A", and 2 4A" spin-aligned states of Li3 are

constructed as sums of a diatomics-in-molecules !DIM" term plus a three-body term. The DIM

model, using a large basis set of 15 4A" and 22 4A! states, is used to obtain a “mixed-pairwise

additive” contribution to the potential. A global fit of the three-body terms conserves the accuracy

of the ab initio points of a full configuration-interaction calculation. The resulting fit accurately

describes conical intersections for both the 1 4A! and 2 4A! surfaces with a root-mean-square !rms"

deviation of 5.4!10−5 hartree in D"h geometries and 1.2!10−4 hartree in C"v
geometries. The

global fit appears to be quantitatively correct with a rms deviation of 1.8!10−4hartree for 1 4A!,

9.2!10−4 hartree for 2 4A!, 2.5!10−4 hartree for 1 4A", and 5.1!10−4 hartree for 2 4A". A

possible diabolic conical intersection, also called an accidental degeneracy, in C2v
geometries,

indicating a seam of conical intersections in Cs geometries, is also found in ab initio calculations for

A2 states. As shown in this example, the DIM procedure can be optimized to describe the geometric

phase and nonadiabatic effects in multisurface potentials. © 2008 American Institute of Physics.

#DOI: 10.1063/1.2985857$

I. INTRODUCTION

Potential energy surfaces !PESs" play a fundamental role

in understanding collisions and field-induced interactions be-

tween cold and ultracold atoms and molecules. Some of the

simplest systems are alkali metal trimers, whose ground-state

atoms have only one valence electron in an s orbital. Spin-

aligned alkali-trimer systems have received considerable at-

tention since the discovery of Bose–Einstein condensation in

ultracold hydrogen,
1

lithium,
2

sodium,
3

rubidium,
4

and

cesium.
5

For lithium, the lightest of the alkalies, understand-

ing the lowest PESs is important for dynamics of elastic and

inelastic collisions as well as field-induced interactions. Sev-

eral global surfaces for low-lying 1 4A! have been reported
6,7

with a seam of conical intersections !CIs" between the 4
#

and 4
$ surfaces in C"v

geometries.
8–10

To the best of our

knowledge, the present work is the first on all four low-lying

global PESs, 1 4A!, 2 4A!, 1 4A", and 2 4A", of the spin-

aligned lithium trimer.

Intuitively, the pairwise-additive two-body interactions

should contribute more than the three-body interaction to the

PES of spin-aligned trimers. However, the three-body contri-

bution is not generally negligible for these alkali metal trim-

ers. Theoretical and experimental work on sodium
11

has

shown that the pairwise-additive potential !PAP" accounts for

only 62% of the well depth 849.37 cm−1 of the Na3 poten-

tial, and the diatomic bond distance at the true minimum of

the full PES is 1.5 bohr smaller than the value predicted from

the PAP. For Li3, the PAP predicts only 25% of the well

depth of the absolute minimum in D3h geometry, and a bond

distance nearly 2 bohr larger than the correct value.
6

What is

more, assignment of the contribution from diatomic poten-

tials to the PAPs for excited PESs is complicated because

diatomic potentials mix. Take the 2 4A" PES. A sum of three

diatomic potentials is no longer accurate because the PAP

can have contributions from 3
#u

+, 3
#g

+, 3
$u, and 3

$g states.

Moreover, the three-body term should die off in the

asymptotic region, but a sum of three diatomic potentials

does not give the correct dissociation limit unless the sym-

metry of the system is broken. A diatomics-in-molecules

!DIM" model,
12–16

which can couple all the relevant diatomic

potentials and give the correct dissociation limit, can thus

represent the mixed-pairwise-additive terms. The DIM terms

obtained by diagonalizing the electronic Hamiltonian repre-

sent the ground and first few excited PESs. To construct the

three-body terms, we perform ab initio calculations for the

1 4A!, 2 4A!, 1 4A", and 2 4A" PESs using full configuration

interaction for the three valence electrons with an augmented

Gaussian basis and the effective core potential of Stevens

et al.
17

for the other electrons. We then use a global-fit

method of Aguado et al.
18

to fit the result of Vtotal−VDIM at

the points where the ab initio calculations are performed to

obtain the three-body terms. The DIM method is quantita-

tively correct in the CI regions !in C"v
geometries". There-

fore, the DIM method gives the electronic eigenvectors in

these regions, and from these, the geometric phase and nona-

diabatic effects can be computed.

We begin in Sec. II with a review of the DIM method

and the global three-body-fit theory. In Sec. III, we present

the basis set and the fitting procedure for each PES. A brief

description of how to compute the nonadiabatic coupling

terms is included. One possible seam of diabolic intersec-

tions in Cs geometries is also reported.a"
Electronic mail: li@nhn.ou.edu.
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II. THEORY

A. The DIM method

We begin with a brief review of the DIM method for

triatomic molecules. Detailed explanations can be found in

the works of Tully
13

and Steiner et al.
14

The DIM method

computes adiabatic solutions of the electronic Hamiltonian in

the nonrelativistic Born–Oppenheimer method. The nuclei of

a triatomic system have nine degrees of freedom: three for

the center-of-mass motion, three for the angular orientation

of the body-fixed reference frame with respect to the space-

fixed frame, and three for internal motions of the nuclei in

the body-fixed frame. We ignore spin-orbit interactions and

only consider Coulomb interactions. Our potential, obtained

from eigenenergies of the electronic Hamiltonian, depends

only on three internal coordinates, e.g., three diatomic dis-

tances. Thus, the electronic Hamiltonian defines the eigen-

value problem

ĥ!r!;R! "#!t!r!;R! "$ = Et!R! "#!t!r!;R! "$ , !1"

where ĥ is the electronic Hamiltonian and #!t!r! ;R! "$ is the tth

eigenvector, and both of which depend parametrically on the

three internal coordinates R! , and Et!R! " is the associated lth

electronic energy. An arbitrary nuclear configuration has a Cs

symmetry, and the electronic PESs are labeled by the irre-

ducible representations A! !even under reflection of the elec-

tronic wave function" and A" !odd under reflection of the

electronic wave function". The electronic Hamiltonian opera-

tor for the triatomic system ABC can be partitioned as

ĥ = ĥAB + ĥBC + ĥAC
− ĥA

− ĥB
− ĥC, !2"

where ĥAB, ĥBC, and ĥAC are diatomic Hamiltonians and ĥA,

ĥB, and ĥC are atomic Hamiltonians. Equation !2" is an exact

expression,
12

and it is used as the fundamental principal of

the DIM method.

The eigenvectors #!t$ can be expanded in a complete

basis as #"m$,

#!t$ = %
m

#"m$#mt, !3"

where #mt!R! " are expansion coefficients and the basis vectors

#"m$ are independent of R! . Substituting Eq. !3" into Eq. !1",
we obtain the matrix equation

h# = S#E , !4"

where the matrix E is the diagonal eigenvalue matrix, the

matrix h is defined by its elements as

hmm!
& '"m#ĥ#"m!

$ , !5"

and the overlap matrix S is

Smm!
& '"m#"m!

$ . !6"

Equation !4" depends only on the three internal nuclear co-

ordinates and does not depend on the electronic coordinate r!.

Each #"m$ is an antisymmetrized product of atomic basis

vectors,

#"m$ = An#Ai$#B j$#Ck$ & A3#"m
0 $ , !7"

where An is the n-electron antisymmetrizer, #Ai$, #B j$, and

#Ck$ are atomic eigenvectors with quantum numbers i, j, and

k, e.g., i&!E , l ,ml ,S ,ms", and m denotes the composite

quantum number !i , j ,k". Using the fact that An commutes

with ĥ, we can substitute Eq. !7" into Eq. !5" to get

hmm!
= '"m#Anĥ#"

m!

0 $ . !8"

The diatomic and atomic elements of the matrix are

h
mm!

KL
= '"m#AnĥKL#"

m!

0 $ !9"

and

h
mm!

K
= '"m#AnĥK#"m!

0 $ , !10"

where K and L represent atomic indices A, B, and C. Insert-

ing the identity operator

Î = %
m"

#"
m"

0 $'"
m"

0 # !11"

into Eqs. !9" and !10", we obtain

h
KL = Sh!

KL !12"

and

h
K = Sh!

K, !13"

where h
KL and h

K are

h
mm!
!

KL & '"m
0 #ĥKL#"

m!

0 $ !14"

and

h
mm!
!

K & '"m
0 #ĥK#"

m!

0 $ . !15"

The atomic Hamiltonian matrix h!
K can be easily evalu-

ated because the basis #"
m!

0 $ is a direct product of atomic

states that are eigenvectors of ĥK. Therefore h
mm!
!

K
can be

expressed as

h
mm!
!

K
= '"m

0 #"
m!

0 $Ei
K, !16"

where K specifies the atom, i represents atomic quantum

numbers, and Ei
K is the measured atomic energy.

To evaluate diatomic Hamiltonian matrix h!
KL, we insert

the identity operator

Î = %
$

#KL$!RKL"$'KL$!RKL"# !17"

into Eq. !14", where #KL$$ is the diatomic eigenvector of

ĥKL, $ denotes the diatomic quantum number, and RKL is the

bond length between atoms K and L. We then obtain

124305-2 Li, Brue, and Parker J. Chem. Phys. 129, 124305 !2008"
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h
mm!
!

KL !RKL" = #
!

$"m
0 %KL!!RKL"&$KL!!RKL"%ĥKL!RKL"%"

m!

0 &

= #
!

$"m
0 %KL!!RKL"&E!

KL!RKL"$KL!!RKL"%"
m!

0 & .

!18"

We can expand the diatomic eigenvectors in a complete set

of atomic eigenvectors. For KL=AB,

%AB!& = #
i,j

AAB%Ai&%B j&Uij,!
AB !RAB" , !19"

where AAB is the nA+nB electron antisymmetrizer and

Uij,!
AB !RAB" = $B j%$Ai%AAB

T %AB!& . !20"

Substituting this expansion into Eq. !18", we find

h
mm!
!

AB !RAB" = #
!,st,s!t!

Oij,st
AB Ust,!

AB !RAB"E!
AB!RAB"

# U
s!t!,!
AB T!RAB"O

s!t!,i!j!

AB T$Ck%Ck!
& , !21"

where the diatomic overlap matrix O
ij,i!j!

AB !RAB" is

O
ij,i!j!

AB !RAB" ' $B j%$Ai%AAB%Ai!
&%B j!

& . !22"

We now make two simplifying approximations.

!1" We use a large but finite basis set in Eqs. !7" and !19"
for the solution of the Hamiltonian in Eq. !4" so as to

minimize effects from highly excited, less relevant

states.

!2" All overlap matrices S, $"m
0 %"

m!

0 &, and O are approxi-

mated to be identity matrices. The off-diagonal cou-

plings are indicated to have little effect on the results

by previous calculations.
13,14,16

We can rewrite Eqs. !12" and !13" for K=A and KL

=AB as

h
mm!

A ( h
mm!
!

A ( E
A$ii!

$ j j!
$kk!

!23"

and

h
mm!

AB !RAB" ( h
mm!
!

AB !RAB"

( #
!

Uijt,!
AB !RAB"E!

AB!RAB"U
i!j!,!
AB T!RAB"$kk!

. !24"

The matrix elements h
mm!

B
, h

mm!

C
, h

mm!

BC
, and h

mm!

AC
, which are

generated in a similar fashion, are used to construct the total

DIM Hamiltonian hmm!. Ignoring the overlap matrix S, the

Uijt,!
AB !RAB" transformation matrix is real and orthogonal, and

the Hamiltonian h is real and symmetric. We write the gen-

eral eigenvalue equation )Eq. !4"* as

h% = %E , !25"

and diagonalize h to obtain the DIM terms of the potential.

The transformation matrix, Uij,!
KL !RKL"= $L j%$Ki%AKL

T %KL!&, is

the form of Kenderick and Pack.
16

B. Three-body fit

After obtaining the DIM term of the potential, which

accounts for the mixed-pairwise-additive interaction, we sub-

tract VDIM from Vtotal at the points where the ab initio calcu-

lations are performed to get the three-body terms. We also

incorporate the Axilrod–Teller–Muto term
19,20

for the 1 4A!

surface for the long-range interaction region. Further descrip-

tion of this term can be found in Ref. 6. We then use a

global-fit procedure of Aguado et al.
18

to obtain an analytic

form for the three-body terms. For triatomic systems com-

posed of atoms of the same species, the three-body term has

the form

V3b = #
i,j,k

M

Cijk&AB
i &BC

j &AC
k , !26"

where &AB
i is defined as

&AB
i ' RAB exp!− 'RAB" . !27"

In Eq. !26", M is the largest power of the polynomials and

Cijk are expansion coefficients. These coefficients satisfy the

required symmetry of the trimer. The global fit obtained then

preserves all the symmetry properties of the system, includ-

ing permutational symmetry.

III. RESULTS AND DISCUSSION

A. DIM basis set and ab initio basis set

We require PESs of 1 4A!, 2 4A!, 1 4A", and 2 4A" of Li3.

We first consider 2 2S, 2 2P atomic states of Li and from

which states we form all possible states of Li3. Though the

total number of these possible states is )!1+3"#2*3=512,

the DIM Hamiltonian matrix can be partitioned into sub-

blocks via certain approximations. We ignore contributions

to the low-lying PESs from highly excited states !PPP

'%A , 2P&%B , 2P&%C , 2P&" which do not affect the computa-

tional results for the low-lying PESs appreciably. Since we

neglect the spin-orbit interaction, we consider only the spin-

aligned states !Ms=msA
+msB

+msC
=3 /2". This reduces the

total number of states to 37, which includes 1 SSS state,

9 SSP states, and 27 SPP states. Among these, there are

15 4A" and 22 4A! states.

We take the Li3 molecule to lie in the XZ plane with two

atoms on the Z axis. The Cs symmetry has a reflection op-

erator through the XZ plane !y→−y". We construct the total

Hamiltonian from Eq. !2", using the expressions for h
mm!

K
and

h
mm!

KL
in Eqs. !23" and !24", as do Kenderick and Pack.

16

Using the symmetries of the basis, we can partition the DIM

Hamiltonian into A! !22#22" and A" !15#15" subblocks.

Diagonalizing each subblock, we obtain the lowest few elec-

tronic PESs in A! and A" irreducible representations at each

internuclear configuration.

The ab initio PESs for all four states of Li3 were gener-

ated via three-electron full configuration interaction calcula-

tions, using the effective core potentials of Stevens, Basch,

and Krauss !SBK" !Ref. 17" and an augmented Gaussian

basis with the MOLPRO software package.
21

The SBK basis

set is augmented with three d-type and one f-type polariza-

tion functions. The basis is shown in Table I. Further descrip-
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tion of this basis set can be found in Refs. 6 and 17. Each Li3
PES is calculated at 2958 internuclear configurations in the

C2v
, D3h, D!h, and C!v

geometries.

We calculate an additional 38 !39" points in A! !A""
symmetry for arbitrary Cs geometries. These points are not

included in the fitting procedure, but are used to assess the

accuracy of the fitted potential in these regions, as discussed

in the next subsection. We also calculated 51 ab initio points,

with the same basis set, for each of the 15 diatomic poten-

tials, except for the 1 3"u
+ state, to be used in the construction

of the DIM term. We use the 1 3"u
+ diatomic potential from

the work of Colavecchia et al.
6

This diatomic potential com-

bines the most recent Rydberg–Klein–Rees potential

available
22

with the well known short and long range expan-

sions and accurately reproduces all known experimental

data, further description of which can be found in Ref. 6.

B. Fitting

Using the transformation matrix from Ref. 16, we now

diagonalize each subblock of the DIM Hamiltonian and take

the lowest two eigenenergies of each subblock to be fitted to

the ab initio calculations.

For the 1 4A! and 2 4A! surfaces, the potential is decom-

posed into two potentials

V = VCI!#,R1,R2"S!#" + #1 − S!#"$VELSE!#,R1,R2" ,

!28"

where # is the angle between the two diatomic bond R1 and

R2 and S!#" is a switching function. The switching function

is

S!#" = 0.5 ! %1 + tanh#!# − #o"/!#o ! d#"$& !29"

and has two adjustable parameters #o and d#, which are

optimized in the fitting. This switching function is 1 when

#=180° !C!v
geometries" but switches smoothly to zero in

Cs geometries. The potential VCI describes the C!v
geom-

etries and VELSE describes other geometries. For VCI, we op-

timize the coupling parameters between diatomic potentials

corresponding to the same irreducible representation so that

the surface is quantitatively correct in D!h and C!v
geom-

etries and qualitatively correct elsewhere. This gives the PES

the quantitatively correct behavior in D!h and C!v
geom-

etries where the CIs occur. The CIs are very sensitive to

mixing of the 1 3"u and 2 3"u states, the 1 3$u and 1 3$u

states, and the 1 3$g and 2 3$g states. Each mixing matrix,

MAB!RAB", between the states with the same irreducible rep-

resentations is defined by

MAB!RAB" = ' cos % sin %

− sin % cos %
( !30"

and the mixing angle % has a functional form of

cos2 % =
#2

1 + #2
, sin2 % =

1

1 + #2
,

!31"

cos % sin % =
#

1 + #2
,

where

#−1!RAB" = aRAB
2 exp!− bRAB" !32"

with a and b adjustable parameters. Other variations of these

mixing functions were tried and the resulting fits were not as

good. We vary these 16 mixing parameters !eight pairs of

diatomic states" to fit the ab initio points, and this many

degrees of freedom give quantitatively correct descriptions

of the PES in collinear geometries while also minimizing the

rms deviation of the global potential. Take the 1 4A! surface.

After optimization of the mixing parameters, we obtain an

rms deviation of 5.0&10−5 hartree for 155 D!h points, and

an rms deviation of 1.2&10−4 hartree for 320 C!v
points.

For VELSE, the couplings between diatomic potentials corre-

sponding to the same irreducible representation are necessary

to avoid incorrect CIs in the D3h geometries. Therefore, the

coupling parameters are optimized so those false CIs do not

occur and the rms error is minimized as well. Though a

numerical fitting can be done for the 1 4A" and 2 4A" sur-

faces as well, one has to sometimes manually tune the pa-

rameters to give the correct behavior. Often the higher PES

interferes with the lower PES, resulting in a qualitatively

poor fit. Other people tend to have similar problems in DIM

studies of triatomic systems.
16

In our case, for the 4A" sur-

faces, we need to tune these mixing parameters by hand to

force the excited PESs to stay above the lower PES and

behave reasonably. Once this condition is satisfied, varying

these mixing parameters does not appreciably change the fit-

ting results of the 4A" surfaces.

We fit only 2640 points out of 2958 ab initio points. We

TABLE I. Lithium atom Gaussian basis set used with the effective core

potentials of SBK !Ref. 17".

Orbital type Exponents Contraction coefficients

S 0.6177 1.0

S 0.1434 0.126 43

0.050 48 0.761 79

S 0.0192 3 1.0

P 0.6177 1.0

P 0.1434 0.247 19

0.050 48 0.521 40

P 0.019 23 1.0

D 0.06 1.0

D 0.02 1.0

D 0.01 1.0

D 0.007 1.0

TABLE II. rms deviation of all four PESs in different geometries. Set 1

stands for rms error of global potential !E'0.01 hartree for the 1A! surface

and E'0.08 hartree for the 2A!, 1A" and 2A" surfaces", Set 2 stands for

rms error in C!v
geometries, and Set 3 stands for rms error only of unfitted

Cs points.

PES type Set 1 Set 2 Set 3

1A! 1.8&10−4 hartree 1.2&10−4 hartree 5.3&10−4 hartree

2A! 9.1&10−4 hartree 3.4&10−4 hartree 1.6&10−3 hartree

1A" 2.5&10−4 hartree 0.8&10−4 hartree 1.5&10−4 hartree

2A" 5.1&10−4 hartree 1.0&10−3 hartree 2.1&10−4 hartree
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excluded the highly repulsive parts !E!0.01 Ha." for the

1 4
A! surface and highly repulsive parts !E!0.08 hartree"

for the 2 4
A!, 1 4

A", and 2 4
A" surfaces. The first fitting step

shows that the mixed-pairwise-additive term from the DIM

model for the 1 4
A! surface has complicated, configuration-

dependent contributions from different diatomic potential en-

ergy curves. It helps explain the large deviation of the simple

PAP, in the form !3
"

u

++ 3
"

u

++ 3
"

u

+", from the global potential.

The DIM model also gives the correct two-body and three-

body breakup dissociation limits for these excited PESs.

These coupling parameters can be used to construct the

nonadiabatic coupling terms between the 1 4
A! and 2 4

A!

FIG. 1. The 4
A! surfaces in D#h geometries. Solid curves are fitted potential, VFULL, and dark circles are ab initio data for 4

A! surfaces. !a" 1A! surface, !b"

2A! surface, !c" 1A" surface. and !d" 2A" surface.

FIG. 2. The 4
A! surfaces in D3h geometries. Solid curves are fitted potential, VFULL, and dark circles are ab initio data for 4

A! surfaces. !a" 1A! surface, !b"

2A! surface, !c" 1A" surface, and !d" 2A" surface.
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surfaces. We use an approximation in calculating these nona-

diabatic couplings, which assumes the eigenvectors of the

DIM potential represent the true eigenvectors of the elec-

tronic Hamiltonian. This approximation is valid in the CI

region because DIM terms can very accurately describe the

potential and the three-body terms are negligible. This ap-

proximation is questionable in other geometries, but the

nonadiabatic couplings at other geometries are several orders

of magnitude smaller than those in the CI region and thus

this approximation should not deteriorate the results. The

nonadiabatic coupling matrix W
12

!1"ad!R! " between two sur-

faces is defined as

W12
!1"ad!R! " # $!1

ad!r!;R! "%!R
! %!2

ad!r!;R! "& , !33"

where !
t

ad!r! ;R! " are eigenvectors of the electronic

Hamiltonian in Eq. !1". By using Eq. !3" and ignoring

$"m!r!" %"m!
!r!"&, we obtain

W12
!1"ad!R! " = '

M

#m1!R! "!R
!#m2!R! " . !34"

We then construct the nonadiabatic coupling terms to study

the CIs.

We subtract the optimized DIM term from the full

ab initio potential to get the three-body term. We use the

global fit for the three-body term described in the previous

section. We vary the maximum power of the polynomials M

from 3 to 10. Our results indicate that M =9 is big enough to

minimize the rms deviation of the global potential from the

ab initio points.

C. Results

Our global potential very accurately describes the CI re-

gions and is also quantitatively correct elsewhere. Table II

shows the rms deviation of our global fitting for the four

PESs at different regions. Set 3 tests our global potential at

unfitted ab initio points for arbitrary Cs geometries. Figure 1

shows the behavior of our PESs in D$h geometries, where

the solid circles are the ab initio points, and the solid curves

are our fitted PESs with R=R1=R2=0.5R3. Figure 2 shows

the behavior of our PESs in D3h geometries, where the solid

circles are the ab initio points, and the solid curves are our

fitted PESs with R=R1=R2=R3.

Contour plots of the final potential for two different in-

terbond angles ! are shown in Figs. 3 and 4. The sharp

angles in Fig. 3 panels !c" and !d" are due to the energy

splittings of two degenerate states in D3h geometries to non-

FIG. 3. The fitted 4
A! surfaces of lithium trimer for a bond angle of 60°. !a" 1A! surface, !b" 2A! surface, !c" 1A" surface, and !d" 2A" surface. Contours are

labeled in hartree.
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degenerate states in Cs geometries. Contour plots of the

three-body contribution of the 1 4
A! for two different inter-

bond angles ! are shown in Fig. 5.

Plots of the nonadiabatic coupling in Eq. !33" in C2v

geometries are shown in Fig. 6, where " is defined to de-

scribe the enclosed loop around the CI in D#h geometries,

$ = 11 + sin!""#a.u.$, % = 90 + cos!""#o$ . !35"

Because the ground and excited electronic wave functions

both change signs as they follow an enclosed loop around the

CIs, the nonadiabatic coupling terms are still single valued.

The Fortran routines to construct all four electronic

PESs, 1 4
A!, 2 4

A!, 1 4
A", and 2 4

A", and ab initio data can

be downloaded at http://nhn.ou.edu/~li/research.html.

D. Diabolic conical intersections

In the ab initio calculation, we noticed one possible dia-

bolic CI in C2v
geometries. The other known symmetry-

allowed CIs have been observed and discussed elsewhere.
7

The diabolic intersections, often referred as accidental de-

generacies, are two PESs of the same irreducible representa-

tion that cross, though in general the symmetry arguments

require avoided crossings. These diabolic intersections are

not predicted by group theory. They occur only if the cou-

pling between two degenerate PESs are zero. These unex-

pected diabolic intersections can clarify confusing branching

ratios.
23,24

Figure 7 shows a possible diabolic CI of the A2 states in

C2v
geometries when !=99.175 25°, where ! is the angle

between two diatomic separations, and R=R1=R2

=5.952 103 bohr, at 0.041 9418 hartree above the !2S+2S

+2S" three-body dissociation limit. We calculated more than

100 ab initio points in the neighborhood of this diabolic

CI region. The two PESs are shown to be separated by

1&10−8 hartree. To verify the true existence of this diabolic

CI, we trace the sign of the electronic wave function along a

path in the nuclear configuration space, which encircles this

diabolic CI in C2v
geometries. Figure 8 shows the coeffi-

cients of the configuration interaction vectors of two elec-

tronic wave functions at C2v
geometries in a loop defined as

R = 5.952103 + 0.0001 sin!""#a.u.$ ,

!36"
! = 99.17525 + 0.001 cos!""#o$ .

This diabolic intersection, which indicates a seam of dia-

bolic CIs in Cs geometries, may cause unexpected behavior

in calculations using these excited PESs.

FIG. 4. The fitted 4
A! surfaces of lithium trimer for a bond angle of 120°. !a" 1A! surface, !b" 2A! surface, !c" 1A" surface, and !d" 2A" surface. Contours are

labeled in hartree.
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IV. CONCLUSIONS

We have constructed all four low-lying spin-aligned

electronic PESs, 1 4
A!, 2 4

A!, 1 4
A", and 2 4

A", for Li3. The

resulting fit accurately describes D!h CI for both the 1 4
A!

and 2 4
A! surfaces. It is a global fit with an rms deviation of

1.8"10−4 hartree for 1 4
A!, 9.2"10−4 hartree for 2 4

A!,

2.5"10−4 hartree for 1 4
A", and 5.1"10−4 hartree for

2 4
A". The DIM terms can be used to compute the

nonadiabatic terms to describe the CI beyond the Born–

Oppenheimer approximation. We have found a possible dia-

bolic CI A2 ab initio calculations in C2v
geometries, which

indicates a seam of CIs in Cs geometries.
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In this paper, we present a calculation for the bound states of A1 symmetry on the spin-aligned

Li3!1 4A!" potential energy surface. We apply a mixture of discrete variable representation and

distributed approximating functional methods to discretize the Hamiltonian. We also introduce a

new method that significantly reduces the computational effort needed to determine the lowest

eigenvalues and eigenvectors !bound state energies and wave functions of the full Hamiltonian". In

our study, we have found the lowest 150 energy bound states converged to less than 0.005% error,

and most of the excited energy bound states converged to less than 2.0% error. Furthermore, we

have estimated the total number of the A1 bound states of Li3 on the spin-aligned Li3!1 4A!"

potential surface to be 601. © 2007 American Institute of Physics. #DOI: 10.1063/1.2753157$

I. INTRODUCTION

In this paper, we present the most comprehensive calcu-

lation of the bound states of the spin-aligned lithium trimer

to date. We also present a new method for calculating these

bound states, which is noteworthy because of a tremendous

increase in efficiency of these normally very expensive cal-

culations.

The impetus to calculate accurate bound states for the

Li3 system is motivated by several applications. One of the

most prominent is the Bose-Einstein condensation, which

has driven ultracold reactive molecular collisions to become

one of the key interests in chemical reaction dynamics. The

simplest, nontrivial systems to study are the alkali metals,

and as such many physicists and chemists are interested in

ultracold chemical reactions of Li3. The formation of ultra-

cold molecules !T!100 "K" from laser-cooled alkali atoms

has been observed by several groups.
1–4

Photoassociation

and radiative stabilization processes are necessary in the for-

mation of ultracold molecules, and both require knowledge

of the quartet bound states. Also, the spin-aligned states are

of particular interest for such ultracold studies because the

large magnetic moment of the quartet states makes the mol-

ecules easier to contain in a magneto-optical trap. Studies of

three-body recombination, a primary vehicle of trap loss, are

also performed on the quartet potential surface because of

the relatively shallow energy wells.

Another reason why the bound states of this specific sys-

tem are interesting is the opportunity to study the effects of

nonadiabatic couplings. This system exhibits a conical inter-

section between the two lowest spin-aligned !4A!" states

when the atoms are collinear !C#v
geometries". Our group

5

and others
6–8

have made reference to this conical intersection

before. The effect of the conical intersection is to couple the

states of these two surfaces, as well as introduce geometric

or Berry phase effects. This conical intersection is an inter-

esting example because of its proximity to the three-body

dissociation limit. Geometric phase effects are introduced to

the system if the evolution of the nuclear motion of the mol-

ecule traces a path around the conical intersection. In this

system, it is possible to circumscribe the conical intersection

at energies below the three-body dissociation limit! The low-

est point of intersection is at the symmetric-stretch collinear

!D#h" geometry at an energy of 0.0952 eV above the disso-

ciation limit. However, in order to transverse a path around

the conical intersection, the maximum energy needed is

−0.057 eV, below the dissociation limit. More information

about this structure can be found in Ref. 5. Because of its

proximity to the ranges of energies studied in ultracold col-

lisions, many are interested to see what effects the conical

intersection will have on both bound state and scattering cal-

culations. This present study will provide a comparison of

the bound states with a future calculation including the nona-

diabatic effects of the conical intersection.

Yet another application of accurate bound states is the

study of floppy molecules, that is, those with large amplitude

vibrational motions. Bačić and Light
9

have noted these states

and their importance: “The large amplitude motion !LAM"

vibrational states, because of the delocalized nature of their

wave functions, contain detailed information about large re-

gions of the potential surface beyond the global minimum.

Moreover, while executing LAM vibrations, molecules can

populate high-energy local minima inaccessible at lower en-

ergies, thus permitting detection of new isomers with strange

structures and dynamics.”

The study of LAM states is very difficult as it requires

knowledge of large regions of the potential energy surfaces,

and also the coupling between the LAM vibrational states

and the other vibrational modes. These calculations are dif-

ficult and become increasingly more so for the highly excited

vibrational states. Successful calculations of LAM states

have been performed by Bačic and co-workers,
10–16

Hender-

son and Tennyson,
17

Shirin et al.,
18

Kostin,
19

and other

groups.
20–34

The calculation for many-bound-states system is

extremely difficult especially for the most highly excited

states, and no comprehensive study on Li3 bound states has

been published. Rather than using a Lanczos-type method to
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find the eigenvalue of the Hamiltonian, our new subspace

method utilizes the ray diagonalization of Bačić et al.
35

to

generate adiabatic potential energy surfaces and the associ-

ated surface functions in the one dimensional !1D" hyper-

radius. We then obtain reasonable subspace vectors by solv-

ing the 1D Schrödinger equation on each adiabatic surface

without nonadiabatic couplings. Finally, we include the

nonadiabatic couplings and use the subspace vectors to form

the Hamiltonian matrix to solve for the eigenvalues and

eigenvectors. We estimate the number of Li3 bound states at

601 for the A1 symmetry. It is our hope that the new, more

efficient calculation method described herein will enable

studies of the LAM states of more complicated systems.

Potential energy surfaces for the lithium trimer are very

hard to calculate, even though each lithium atom has only

one valence electron. However, several groups have pro-

duced reasonably accurate potential surfaces for some of the

lower states of the Li3 system,
6–8,36

and a full calculation of

the bound states is now possible. We perform our calculation

on the surface provided by Colavecchia et al.
36

with new

parameters updated at Ref. 37.

The details of the calculation are presented in the adia-

batically adjusting principle axes hyperspherical !APH" co-

ordinates of T Pack and Parker,
38

so in Sec. II A we review

the formation of the APH Hamiltonian. In Sec. II B we in-

troduce a new calculation method to numerically solve for

the eigenvalues and eigenfunctions of the APH Hamiltonian.

In Sec. III we present the results for the bound state calcula-

tion of the 4A! potential energy surface. Also in Sec. III we

present the convergence study of these results. The accuracy

of the states is determined by the study of their convergence.

II. METHODS OF CALCULATION

A. APH wave function and Hamiltonian

In this study, we use the hyperspherical coordinates and

the total wave function !JMpn formulated in work of T Pack

and Parker,
38

!JMpn = 4#
t,"

#−5/2$t"
Jpn!#"%t"

Jp!&,'i;#("D̂"M
Jp !)Q,*Q,+Q"

$ 4#
"

#−5/2,"
Jpn!#,&,'i"D̂"M

Jp !)Q,*Q,+Q" , !1"

where J is the total angular momentum quantum number, M

is the quantum number for the projection of J along the space

frame z axis, " is the quantum number for the projection of

J along the body frame z axis, p is the parity, t indicates the

tth solution for surface function %t"
Jp!& ,'i ;#(" in terms of &

and ' coordinates, and n indicates the nth solution for !JMpn

functions. Further, # is the APH hyper-radius, & and ' are the

APH hyperangles, and #( is the center of a # sector in which

the nonadiabatic surface basis %t"
Jp is expanded. The hyper-

radius # is related to the Jacobi coordinates by #=%S2+s2,

where S and s are the corresponding mass-scaled radial dis-

tances in Jacobi coordinates. The angle & is a bending angle

of the trimer, where &=- /2 corresponds to the collinear ar-

rangements, and &=0 to equilateral arrangements. The angle

' is a kinematic rotation angle related to the permutation of

three lithium atoms. Adjacent chemical arrangement chan-

nels are separated by '=- /3 for three identical atoms. More

details and several figures of APH coordinates can be found

in the work of T Pack and Parker.
38

The D̂"M
Jp !)Q ,*Q ,+Q",

normalized Wigner rotation matrix elements of good parity

p,
38

are functions of the APH Euler angles )Q ,*Q ,+Q. The

expansion coefficients $t"
Jpn!#" are functions of # labeled by

the good quantum numbers J and p. The wave functions

,"
Jpn!# ,& ,'i" are defined as

,"
Jpn!#,&,'i" = #

t

$t"
Jpn!#"%t"

Jp!&,'i;#(" , !2"

and D̂"M
Jp !)Q ,*Q ,+Q" constitute the basis set we use to ex-

pand the total Hamiltonian for each " value, in Eq. !5" more

information would be offered.

The total Hamiltonian for the three APH coordinates is

given by

Ĥ!#,&,'" = −

.2

2/
& !2

!#2
−

15

4#2
+

4

#2 sin 2&

!

!&
sin 2&

!

!&

+
1

#2 sin2 &

!2

!'2' +
Jx

2

/#2!1 + sin &"

+
Jy

2

/#2 sin2 &
+

Jx
2

/#2!1 − sin &"

−

i. cos &

/#2 sin2 &
Jy

!

!'
+ V̂!#,&,'" , !3"

where / is the triatomic reduced mass

%!mAmBmC /mA+mB+mC", and V̂ is the Born-Oppenheimer

TABLE I. Time comparison of different methods with different number of points.

Method Number of points Number of eigenvalues CPU time !hour"

IRAM 4003006 100 0.30

IRAM 4003006 600 5.58

Direct diagonalization 4003006 600 0.24

New method !NG=2000" 4003006 600 0.18

IRAM 5004008 600 18.52

Direct diagonalization 5004008 600 2.37

New method !NG=2000" 5004008 600 0.42

IRAM 60040011 600 1150

Direct diagonalization 60040011 600 9.96

New method !NG=2000" 60040011 600 0.73

014108-2 Li, Brue, and Parker J. Chem. Phys. 127, 014108 "2007#

Downloaded 15 Oct 2007 to 129.15.31.36. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



interaction potential. It is convenient to write Eq. !3" as

Ĥ!J" = Ĥo + Ĥr + Ĥc, !4"

where Ĥo stands for Ĥ!J=0", r stands for rotational, and c

for Coriolis. Here, Ĥr is the asymmetric top coupling term,

Jx
2

!"2!1 + sin #"
+

Jy
2

!"2 sin2 #
+

Jx
2

!"2!1 − sin #"
,

and Ĥc is the Coriolis coupling term,

−

ih cos #

!"2 sin2 #
Jy

!

!$
.

Therefore the Hamiltonian matrix has a banded structure

when total J%1:

H!J" =#
Ho + Hr Hc Hr 0 ¯ 0

Hc Ho + Hr Hc Hr ¯ 0

Hr Hc Ho + Hr Hc ¯ 0

0 Hr Hc Ho + Hr ¯ Hr

¯ ¯ ¯ ¯ ¯ Hc

0 0 0 Hr Hc Ho + Hr

$ , !5"

where each block matrix will be labeled as %& ,&!&, where &

corresponds to quantum number of the wave function 't&
Jpn!""

in Eq. !1". More discussion about asymmetric top coupling

term and the Coriolis coupling term can be found in the work

of T Pack and Parker.
38

We are interested only in ultracold temperature reac-

tions, for which J=0 is the most relevant angular momen-

tum. Therefore, the total J is set to zero, so p=0, &=0,

though the theory and our code are applicable to the nonzero

total J case. Matrix H!J" reduces to Ho when J=0. A short

explanation will be offered in Sec. II B 3 on how to calculate

eigenfunctions and eigenenergies for nonzero total J cases.

Note that our body-frame !BF" z axis is defined as the axis

with the smallest moment of inertia. Johnson
44,45

defined his

BF z axis perpendicular to the triatomic plane, which would

have the largest moment of inertia. Either body frame can be

used, and a unitary transformation using Clebsch-Gordan co-

efficients transforms the Hamiltonian in APH coordinates

into Johnson’s BF Hamiltonian. If no further approximations

are used, the two coordinate systems must give identical en-

ergy levels. For J=0, there is not much difference between

these two definitions.

B. Solution of the APH Hamiltonian

In the present work, the Hamiltonian matrix is formu-

lated as a discretized direct product of different bases for

three coordinates !" ,# ,$". In a discrete variable representa-

tion !DVR" or distributed approximating functional !DAF"
formalism, elements of the eigenvectors of Eq. !5" are values

of the wave function at the quadrature points, and

(&
Jpn!") ,#* ,$+" are not expansion coefficients of a basis set,

though a DVR-to-FBR !FBR denotes finite basis representa-

tion" transformation exists for the DVR method.
39

More de-

tails on how to discretize a Hamiltonian using DVR can be

found in Ref. 40. See Ref. 41 for a description of the DAF

method as applied to an inelastic scattering problem. We

choose to use the DAF method
42

for the hyper-radius ", be-

cause the DAF method is not basis dependent. Therefore, the

convergence for the highly excited states is very efficient for

the DAF method to achieve in the " direction.

Because # is not periodic and it has a finite range where

the basis functions do not have compact support, it is diffi-

cult to use the DAF method unless one uses it with extreme

care.
46

The best local approximation for the bounded angle #

appears to be the DVR method, which offers the simple

evaluation of the matrix element. Therefore we choose to use

DVR method
43

which is easy to implement and does not

require compact support. Bačić and co-workers have pub-

lished successful DVR calculations for APH surface

functions.
13–16,35

For $ both DVR and DAF methods are efficient !be-

cause $ is periodic", and work almost equally well. We

choose the DAF method because the kinetic energy matrix of

the $ coordinate has a banded, Toeplitz structure that reduces

the computation time spent in matrix operations; whereas for

DVR method it is full matrix. In the $ coordinate, we also

apply the symmetry projection operator.
46,47

In APH coordi-

nates, the Li3 potential has C6v
symmetry instead of C3v

symmetry, and the $ coordinate runs through the three reac-

tive channels twice. The C6v
group has four nondegenerate

irreducible representations, A1, A2, B1, and B2, and two two-

fold degenerate irreducible representations, E1 and E2. Here

we study the J=0, p=0 cases; so the B1, B2, and E1 repre-

sentations are not included in the calculation because they

have the wrong parity. We apply the symmetry-adapted

transformation to the $ coordinates to block diagonalize the

kinetic energy matrix of the $ coordinate. There are six ver-

tical mirror planes for the C6v
group. The A1 symmetry vi-

brational states are totally symmetric, and the A2 symmetry

vibrational states are antisymmetric with respect to these
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planes. Because of this symmetry, only a portion of the range

of ! is needed: A1 and A2 vibrational states must be calcu-

lated only for !! !0," /6". The E2 symmetry vibrational

states must be calculated for !! !0," /3", which doubles the

dimension of the matrix of !. We have calculated the bound

states for A2 and E2 symmetries but, for simplicity, we only

present the A1 vibrational states in this paper.

The total Hamiltonian matrix H̄## ,$ ,!$ for J=0 can be

partitioned as

H̄##,$,!$ = H̄###$ + H̄2d##,$,!$ , #6$

where H̄###$ is defined in terms of a direct product of matri-

ces,

H̄###$ = h̄#
DAF

! Ī$!, #7$

and

H̄2d##,$,!$ = f̄# ! h̄$
DVR

! Ī! + H̄0D

= f̄# ! h̄$
DVR

! Ī! + f̄# ! f̄$ ! h̄!
DAF

+ V̄##,$,!$ . #8$

A bar over the operator indicates a matrix. Thus h̄#
DAF is the

Hamiltonian matrix for the −#%2 /2&$#!2 /!#2$− #15/4#2$ op-

erator in the DAF basis in #, and f̄#= #1/#2$ and f̄$

=1/sin2 $. Likewise, h̄$
DVR is the Hamiltonian matrix for

−#%2 /2&$#4/sin 2$$#! /!$$sin 2$#! /!$$ in the DVR basis in

$, and the h̄!
DAF is the Hamiltonian matrix for −#%2 /2&$

'#!2 /!!2$ in the DAF basis in !. The Ī terms are identity

matrices, and the subscripts indicate the dimensions of these

matrices #e.g., Ī! is an N!'N! matrix$. Likewise, f̄ are all

diagonal, and subscripts indicate their dimensions. Note that

the J=0 Hamiltonian corresponds to the !(=0, (=0" block

in Eq. #5$.

The Hamiltonian is diagonalized in a novel way so that

the calculation can be performed on a small computer. This

approach significantly reduces the required memory and

time. This diagonalization consists of two steps: surface ray

diagonalization, and a subspace basis method which will be

introduced in Sec. II B 2. We use the ray diagonalization

technique to generate the adiabatic surface functions and po-

tential energy curves in the # coordinate, and then solve the

1D Schrödinger equation to form the physically reasonable

subspace basis set. The subspace basis is then used to con-

struct the full Hamiltonian matrix with the nonadiabatic cou-

plings between the surface functions to solve for the eigenen-

ergies and associated eigenvectors.

1. Surface ray diagonalization

The first step is a sequential diagonalization-truncation

technique as discussed by Bačić et al.
35

Here we review this

two dimensional #2D$ ray diagonalization used in the first

step of the diagonalization.

The H̄1D matrix is block diagonal, with each block cor-

responding to a particular value of # and $. We first diago-

nalize H̄1D at each #) and $*,

H̄1D##),$*$ = f#)
! f$*

! h̄!
DAF + V̄##),$*,!$ . #9$

Prior to diagonalization, the 1D ray Hamiltonian is truncated

by retaining only those DAF points that satisfy

V̄##),$*,!+$ , Vcut, #10$

where the parameter Vcut is chosen according to convergence

study. Diagonalization of the truncated 1D ray Hamiltonian,

d̄
TĤ1D

d̄ = E
1D, #11$

yields the 1D ray eigenvectors d̄ and the ray eigenvalues

E
1D. Because the set of eigenvectors %d̄#) ,*$& diagonalizes

Ĥ1D, it is a good basis set for expanding the full solution of

-JMpn, as it enables Ĥ1D in the Hamiltonian matrix to be

replaced with the corresponding eigenvalues E
1D at each #)

and $*. Then we use Ecut
1D to truncate the d̄ matrix,

E
1D , Ecut

1D. #12$

Here, for $* #*=1,2 , . . . ,N$$ at #), the d̄#*$ submatrix has

dimension N! by n*, where n*,N! due to truncation, with

N! the number of DAF points in !.

After obtaining the truncated eigenvalues E
1D and the

associated eigenvectors d̄ at each #) and $*, the 2D Hamil-

tonian matrix H̄2d## ,$ ,!$ is transformed as

H̃2d##,$,!$ = d̄
TĤ2d##,$,!$d̄

= d̄
T! f̄# ! h̄$

DVR
! Ī!"d̄ + d̄

TĤ1D
d̄

= d̄
T! f̄# ! h̄$

DVR
! Ī!"d̄ + E

1D. #13$

Diagonalization of the 2D transformed Hamiltonian,

C̄
T#)$H̃2d##),$,!$C̄#)$ = E

2D##)$ , #14$

gives the 2D ray eigenvectors C̄ and the 2D eigenvalues E
2D.

These eigenvalues are the adiabatic surface energies. They

depend only on #. The adiabatic surface energy curves #en-

ergy correlation diagram$ will be presented in the next sec-

tion. The eigenvectors C̄ are a good basis set for diagonaliz-

ing the 2D transformed Hamiltonian. The total

diagonalization of the 2D Hamiltonian is

C̄
T
d̄

TĤ2dd̄C̄ = E
2D. #15$

Further details of the 2D ray diagonalization can be found in

the work of Bačić et al.
35

2. Subspace basis method

Instead of diagonalizing the full Hamiltonian via ray di-

agonalization, we diagonalize the Hamiltonian on each adia-

batic surface curve to reduce the memory required. The ith

adiabatic surface curve is defined in terms of the ith value of

E
2D at each #. We then obtain the subspace basis which

ignores the nonadiabatic couplings between different surface

curves, and we use this subspace basis set to construct the

full Hamiltonian matrix including the nonadiabatic couplings

to solve for the associated eigenenergies.
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Before applying the subspace basis method to be de-

scribed here, we use Ecut
2D to truncate the matrix d̄C̄. We keep

eigenvectors that correspond to E
2D such that

E
2D ! Ecut

2D, !16"

where the parameter Ecut
2D is chosen from the convergence

study. On the ith adiabatic surface in ", we use the adiabatic

surface eigenvector #!i" and surface energy E
2D!i" to con-

struct the Hamiltonian matrix. The expansion of #!i" is

#m
$!i" = #

p=1

n$

dmp
$

Cpi
$ , !17"

where i denotes the ith surface eigenvector, $ denotes the

$th value in %, n$ denotes the number of functions in the

truncated basis in &, $=1,2 , . . . ,N%, m=1,2 , . . . ,N&, and p

=1,2 , . . . ,n$. The truncated surface basis matrix D̄ that di-

agonalizes the 2D Hamiltonian is

D̄ = d̄C̄ . !18"

Therefore, the new H̃i on the ith surface after the D̄!i"!$N"

'N%'N& ,N"%" transformation is

H̃i = $D̄T%iH̄$D̄%i

= $D̄T%iH̄"$D̄%i + $D̄T%iH̄2d$D̄%i

= $D̄T%i$h̄"
DAF

! Ī%&%$D̄%i + E
2D!i" . !19"

Note that H̃i is not the exact Hamiltonian, because we are

using adiabatic surface bases for expansion and ignoring the

couplings between these adiabatic surfaces. By diagonalizing

H̃i !dimension of N"'N"", we get the 1D eigenvectors T̄!i"

and the associated eigenvalues E
G!i". Subsequently we can

obtain a subspace basis set G!i" on the ith adiabatic surface,

Ḡ!i" = D̄!i"T̄!i" . !20"

The subspace matrix Ḡ does not correspond to the eigenvec-

tors of the exact Hamiltonian, and the eigenvalues E
G are not

the exact energies. However, the G subspace bases are physi-

cally motivated and constitute an efficient subspace for com-

putation. For the ith column vector of the G!i" matrix, there

is an associated subspace energy Ei
G!i". To eliminate the un-

necessary high-energy states and to save sorting time for

subspace energies, we truncate the number of the bases so

that

Et
G!i" ! Ecut

2D. !21"

After we sort all the subspace energies E
G for each adia-

batic surface, we pick out the lowest NG states to construct

the Hamiltonian matrix. The G subspace bases are related to

the adiabatic surface functions, which ignore couplings be-

tween the surfaces. These nonadiabatic couplings are then

included to give accurate bound state energies of the full

Hamiltonian. By diagonalizing this NG by NG Hamiltonian

H̃G,

H̃G = $ḠT%H̄$Ḡ% , !22"

we get both the energies and the eigenvectors for the bound

states. The eigenvectors are used to calculate the wave func-

tions of the bound states, which we use to investigate the

features of each bound state and the possible effects of the

conical intersection in the next section.

3. Novelty of the subspace method and theory
extension

The subspace basis method is necessary to reduce com-

putational effort. The full construction and direct diagonal-

ization of the Hamiltonian would require the storage for an

Npoints'Npoints matrix, where Npoints=N"'N%'N&. The sub-

space basis method requires only memory for an Npoints

'NG matrix. In this study, the memory required for the larg-

est calculation was reduced from 14 Tbytes to 30 Gbytes,

and the time from months to days. !Calculations were per-

formed on a single computer with 32 Gbytes of random ac-

cess memory and Xeon Intel EM64T processors."

We also compared implicitly restarted Arnoldi method

!IRAM" and the subspace method on the same computer.

When the matrix to be diagonalized is symmetric, IRAM

reduces to a variant of the Lanczos process called the implic-

itly restarted lanczos method !IRLM". Many groups have

used IRLM method with parallel processing and obtained

excellent results.
17–19,22,27

But most aspects of the subspace

method can be parallelized as well. We performed calcula-

tions using both methods to illustrate their time difference.

Table I lists the CPU time for each method with different

numbers of points. “Direct diagonalization” means directly

diagonalizing the fully constructed Hamiltonian matrix H̄. As

the number of points increases, the time difference between

IRAM and the subspace method increases greatly.

The present theory is for J=0. When J=1, for instance,

the Hamiltonian matrix corresponding to Eq. !5" doubles in

size with respect to the J=0 case. The treatment of the J

=1 Hamiltonian would be similar to that for J=0. First diag-

onalize the subblock matrices Ho+Hr to form a subspace

basis. Then use a carefully truncated subspace basis to con-

struct the Hamiltonian matrix. This matrix will have dimen-

sions of NG!(=0"+NG! !(=1" by NG!(=0"+NG! !(=1" for

J=1. The memory required is the same as for J=0, because

we construct each subblock one at a time. However, the time

required is four times larger than for J=0, because there are

four nonzero submatrices for J=1. Other J!0 cases can be

treated similarly. The time required for matrix operations

TABLE II. Converged parameters of the first group.

Parameter Result Definition

N" 1200 Number of " points

N% 40 Number of % points

N& 29 Number of & points

Vcut 8 eV Potential cutoff

Ecut
1D 5 eV 1D energy cutoff

Ecut
2D 0.008 eV 2D energy cutoff

"min 4 bohr Minimum " value

"max 52 bohr Maximum " value
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compared to the time T for J=0 is estimated to be !14+ !J

−3"!5"!T, because of the banded structure of the total

Hamiltonian.

III. RESULTS AND DISCUSSION

A. Parameters convergence

We use the two-body dissociation limit !an atom and a

diatom in the ground vibrational state" to determine the

bound states for each irreducible representation. Colavecchia

et al. calculated this limit to be −0.037 42 eV.
36

We restrain

"! #0,# /2$, $! #0,# /6$ for the A1 irreducible representa-

tion, and %! #%min ,%max$. The main parameters in this study,

N%, N", N$, Vcut, Ecut
1D, Ecut

2D, %min, %max, and NG are defined in

Table II.

We study convergence by splitting the parameters into

two groups:

• convergence of N%, N", N$, Vcut, Ecut
1D, Ecut

2D, %min, and

%max;

• convergence of NG.

We converge the parameters in the first group by initially

converging each parameter sequentially, and then repeating

until convergence for the whole group is obtained. Then we

converge NG. Finally, we study both groups together to en-

sure that all the bound states are converged within 0.05%

error. In Table II, we present converged parameters of the

first group. Converging %max parameter is fairly hard, because

the flat tail of adiabatic 1D energy curve at large % makes it

hard for the most excited energy states to converge. With

these converged parameters in the first group, we perform the

convergence study of the NG parameter alone.

B. Convergence of the results

In Table III, we show convergence of the A1 bound state

energies with respect to NG. We list the extrapolated energies

from the data in the last column. We perform the extrapola-

tion for the ith bound state in the form of

Ei!NG" = Ei!&" +
A

!NG"B
, !23"

where A and B are constants and Ei!&" is the extrapolated

energy. The lowest 150 energies are converged to be less

than 0.005%, those between the 200th and 350th energies are

obtained to 0.05%–1%, while most of the excited energy

states are converged with less than 2.0% error. Some of the

extrapolated energies are not available, because the extrapo-

lation failed. !See Sec. III C." The minimum energy needed

to circumscribe the conical intersection is −0.0574 eV. Any

state with an energy greater than −0.0574 eV may be af-

fected by the conical intersection.

In the present convergence study, the lowest states are

converged very well according to the extrapolated energy.

The energies of the lowest 150 states are accurate to at least

five significant figures. In Fig. 1 we show the spectrum of

states around the 100th !bold line" with respect to NG. Most

of the energy lines remain almost straight as we increase NG.

In Figs. 2 and 3, we show the spectrum of states around

the 200th and 300th !bold lines" with respect to NG. The

energies start to decrease as we increase the NG parameter

and approach the extrapolated energy lines quickly. The en-

ergies of states between the 200th and 350th states have an

error of 0.05%–1%.

In Figs. 4 and 5, we show the spectrum of states around

the 400th and 500th !bold lines" with respect to NG. These

energies converge slowly. Most are converged to within 2%.

However, some of the most highly excited states are con-

verged to within 3%–6% of the extrapolated energies. We

will discuss a procedure to enhance convergence in the next

section.

In Table IV, we list integrated probabilities for bound

states in D&h and C&v
geometries as follow:

TABLE III. Convergence of the A1 bound state energies in eV.

State NG=800 NG=900 ¯ NG=2800 NG=2900 Ei!&"

E1 −0.472 165 583 3 −0.472 165 583 4 ¯ −0.472 165 583 9 −0.472 165 583 9 −0.472 165 583 9

E50 −0.265 229 7 −0.265 229 7 ¯ −0.265 234 3 −0.265 234 3 −0.265 234 3

E100 −0.203 511 7 −0.203 511 8 ¯ −0.203 515 5 −0.203 515 5 −0.203 516 3

E150 −0.168 091 −0.168 092 ¯ −0.168 119 −0.168 120 −0.168 126

E200 −0.139 570 −0.139 581 ¯ −0.139 776 −0.139 777 −0.139 847

E300 −0.0997 −0.0998 ¯ −0.1009 −0.1009 −0.1018

E400 −0.068 40 −0.068 70 ¯ −0.071 64 −0.072 07 Failed

E500 −0.043 40 −0.044 24 ¯ −0.048 99 −0.049 39 −0.512 39

E600 −0.034 30 −0.034 76 ¯ −0.036 78 −0.036 80 −0.037 54

FIG. 1. The spectrum of the vibrational states around the 100th A1 state vs

NG. The 100th state is indicated in bold.
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P!D!h" = #
"=0

"=! #
#=88.3°

#=90.0° #
$=29.5°

$=30.0°

%*%d& , !24"

P!C!v
" = #

"=0

"=! #
#=88.3°

#=90.0° #
$=0.0°

$=30.0°

%*%d& . !25"

As the energy increases, the probability in the two collinear

symmetries increases. The conical intersection occurs in the

D!h geometry, so states with large D!h probabilities may be

significantly affected by the conical intersection. In Table V,

we list probabilities for larger than 1% in D!h geometry and

the converging energies. Convergences of the energies for

some of these important states are obtained up to 1%, which

assures us that these well converged states are ready for fu-

ture comparison with nonadiabatic calculations.

C. Analysis and discussion

As expected, convergences of the most highly excited

states are not as good as that of low-lying states. The highly

excited states are notoriously difficult to obtain accurately

and our stated accuracies are as good as those of other re-

searchers on similar systems. Lack of better convergence

may be due to the strong nonadiabatic coupling between sur-

face energy curves. We are using subspace bases associated

with the ith adiabatic surface energy curve. Strong nonadia-

batic couplings between curves would make the adiabatic

surface energy curves rough at high energy. Figure 6, which

plots 1D energy correlation diagrams as a function of the

hyper-radius ", shows the upper region of the adiabatic 1D

energy curves from the 2D ray diagonalization. Conver-

gences in N# and N$ for the 100 highest bound states are

better than 0.05%, but the rough feature for "

! $10ao ,13ao% is troublesome for the calculation of the sub-

space basis. This rough feature has been confirmed by our

independent DVR study in # and $ without a symmetry-

adapted transformation. One possible explanation for this

rough behavior is the influence from the seam of the conical

intersection for "! $11ao ,15ao% bohr that is accessible by the

bound states.
5

The potential is not differentiable at the coni-

cal intersection, which may cause strong nonadiabatic cou-

plings between surface energy curves here.

To improve the convergence without using a larger basis,

one can use diabatic surface energy curves instead of the

adiabatic curves. Though it is difficult to construct accurate

diabatic surface energy curves, one can minimize nonzero

couplings to improve the accuracy of subspace bases. We

FIG. 4. The spectrum of the vibrational states around the 400th A1 state vs

NG. The 400th state is indicated in bold.

FIG. 5. The spectrum of the vibrational states around the 500th A1 state vs

NG. The 500th state is indicated in bold.

FIG. 2. The spectrum of the vibrational states around the 200th A1 state vs

NG. The 200th state is indicated in bold.

FIG. 3. The spectrum of the vibrational states around the 300th A1 state vs

NG. The 300th state is indicated in bold.
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believe that convergence will be greatly improved with a

better described adiabatic-to-diabatic transformation of the

surface energy curves.

Despite the imperfect convergence of some of the most

highly excited energies, states with less than 1%–2% error

would provide us a good comparison when we move on to

the nonadiabatic case to investigate the effect of the conical

intersection. Moreover, based on the convergence of the A1

bound states, the extrapolated energy for the 600th state is

−0.037 64 eV, that of the 601th state is −0.037 46 eV, and

that of the 602th state is −0.037 81 eV. The dissociation limit

for Li and ground state Li2 is at −0.037 42 eV. So the num-

ber of the A1 bound states should be no larger than 601. We

also calculated energies for Li3 without the three-body po-

tential term, where we assume that the interaction potential is

a sum of pairwise additive potential and three-body potential.

Excluding the three-body potential term makes the potential

much shallower and we estimate the number of A1 bound

states to be no larger than 183.

IV. CONCLUSION

Here we have presented the results of our calculation of

the Li3 bound states for the 1 4
A! potential energy surface,

and we estimate the number of bound states at 601. Our

calculation shows that the most highly excited vibrational

states are within the energy range of the conical intersection

and are likely to be affected by it. We believe this calculation

to be the most comprehensive and most accurate results for

this system to date. This data will be very useful in any study

of the Li3 system.

We also present a new method of calculating these

states. It is only by this method that this calculation was

possible. Other methods can produce similar or perhaps bet-

ter results, but only with much greater computing power or

much more time. A comparison of the expended CPU time

used by our subspace calculation method with the time used

by the IRAM method shows the subspace method to be sig-

nificantly faster: up to 200 times faster when a large number

of points are needed for the calculation.
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