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Periodic distributed approximating functionals are proposed and used to obtain a coordinate
representation for the adiabatically adjusting principal axis hyperspherical coordinate kinetic energy
operator. The approach is tested and accurate results for adiabatic surface functions for the reaction
F+H,—HF+H are calculated and compared to those of some existing method00® American
Institute of Physics.[DOI: 10.1063/1.1526835

I. INTRODUCTION the arrangement channels and analytic boundary conditions
are used to determine the scattering matrix. In the methods
(H?ing hyper-spherical coordinates that treat all particles
symmetrically?~1%3-1" one numerically obtains “surface
functions,” the basis functions of the two hyper-angles, by
A+BC— AB+C (1) numerically solving a two-dimensionaD) Schralinger
AC+B equation. This Schidinger equation, which is discussed in

and these now include cases in which four atfmare  More detail later in this papdsee Sec. I, depends para-
present(i.e., where C is replaced by CD in the above reac-metrically on the hyper-radius and must be solved at many
tions as well as the above three-atom reaction. Many ofvalues of the hyper-radius. In addition, a large number of
these methods use hyperspherical coordinates and are effurface functions must be obtained at each hyper-radius, and
cient; however, the accurate solution of the quantum Schrghence efficient computational procedures for numerically
dinger equation continues to be computationally intensivesolving this 2D Schrdinger equation are essential.
Hence, there is a real need to make the codes more efficient The first accurate fully three-dimension@D) reactive
and accurate, especially if one is interested in collisions inscattering calculations employing hyper-spherical coordi-
volving multiple electronic states or collision-induced disso-nates used finite element methd&&EMs)°~*+41"~1%0 solve
ciation. for the surface functions. Although these FEMs give fairly
In the hyperspherical coordinate formulation of triatomic accurate results, they are inefficient and not robust. Another
reactive scattering, composed of a hyper-radius and five arcommonly used method involves the use of the discrete vari-
gular coordinates, the total wave function is expanded in able representatioDVR),**1%20-22which is most efficient
complete set of products of Wigner D functions for the threeat small hyper-radii where the surface functions are delocal-
Euler angles “external angles” describing the spatial orien-ized. At larger values of the hyper-radius, where the surface
tation of the three-particle plane, times basis functions ofunctions are highly localized, the DVR points cover the
surface functions which depend on the remaining two “in-whole space, making the method much less efficient. In a
ternal” hyperspherical angles. The dependence of the expafew cases the DVR is even more expensive than the FEM
sion coefficients on the hyper-radius, which is a measure dhecause of the need for many grid points in a small, localized
the size of the three-particle system, is then determined byegion. Other methods such as the finite basis representation
propagating the solution of a set of coupled-chani@C)  (FBR)®'316of Launay and LeDourneuf, and the method of
differential equations from a small hyper-radius, where theypiniewicz and Hinz& are also efficient only at large
solutions must .be regular because the atoms cqalesce, tohdper-radii. The analytic basis meth6&BM) uses primitive
large hyper-radius where the wave function is projected ontQqyihrational basis functions centered in the arrangement
channels, and provides a very compact representation and
dElectronic mail: parker@phyast.nhn.ou.edu thus is quite efficient at large hyper-radii, but is inefficient

As is well known!™'! there has been tremendous
progress in recent years in accurate quantum calculations
exchangdrearrangementreactions of the form

rearrangement reactions,
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and the basis is overcomplete at small hyper-rédii. where
In this paper, we present the periodic distributed ap-
proximating functionalPDAF) method, an approach that is *
efficient at both small and large values of the hyper-radius.  S,(Xx—x')= >, 8(x—x'—2mm), (4)

m=—o

The PDAF method is similar to the symmetry-adapted-
Hermite distributed approximating functioné8A-HDAF)
approach of lyengaet al.?® but differs importantly by in-
volving only real symmetric matrices. In addition, in the
present approach only the surface functions are obtaine
while in the SA-HDAF approacf the full 3D wave function )
was obtained directly, by using an iterative procedure. The f(k)(x):f 75(k)(x_xr)f (x")dx'. (5)
symmetry adaptation of the PDAF is carried out here in a P o " P

similar, but simpler, fashion than in Ref. 25. Here we employ

the distributed approximating functionéDAF) concept, but  Expandingd,(x—x") in a Fourier series, we obtain

the PDAF differs from all previous DAFs. However, like

other DAFs it is both accurate and efficient as a computa- 1
tional tool. A more detailed exposition of the connections 5p(X—X’):;
between the PDAF and the Christoffel-Darbeaux formula

for DAFs based on orthogonal polynomials will follgf. - .
The sequential diagonalization-truncation technf§d@ is for the periodic delta function.

employed to project the large-size Hamiltonian matrix into a. b\elvtigce:gﬂzrfzguzartelﬁlozlijgn dios ftrﬁgﬁtggr:dIrcogier:glt::n?fjlﬁg-
smaller matrix using a projection matrix which is obtained P P 9

by solving a one-dimensional eigensystem, thus significantl)t/'on (PDAR)

reducing the memory requirements and the computation
time.

This paper is organized as follows: In Sec. Il we intro-
duce the PDAFs and derive their formulas. In Sec. Il the

is the periodic delta function. Sine¥x) is an even function,
it's easy to see thaf,(x) is even and is also periodic with a
(ﬁ)eriod of 27. Thekth derivative off (x) is then given by

%4—2 cosn(x—x’)), (6)
n=1

M

S I — 1+2 ’
pM(X—X )—; 2t cosn(x—x")

rovibrational triatomic Hamiltonian in the adiabatically ad- _ i[COi(M_1)(X_X’)]_C°5{M(X_X’)]]
justing principal axis hypersphericéAPH) coordinates sys- 2 1-cogx—x") ’
tem is presented and the symmetrization and reductions of )

the Hamiltonian are illustrated. The PDAF approach is then

tested in Sec. IV. Surface functions for the Fbcattering \yhich is the basic result used in this work. The last expres-
system are computed, and the eigenenergies and the matdygn is obtained by noting tha, (x—x") is the real part of
elements are calculated and compared to those of existing sym of exponentials which can be written as a geometric
methods(FEM, ABM, and DVR in Sec. V. In Sec. VIwe  gym and thus done analytically. By definition, & in-

present our conclusions. creases, the PDAF approaches the periodic delta function,
i.e., §p(Xx—x")=limy_.. 8y m(X—X").

Il. PERIODIC DISTRIBUTED APPROXIMATING One may obtain the fully discretized PDAF by approxi-

FUNCTIONAL (PDAF) mating the integral ovek’ in Eq. (5) using a trapezoidal
quadrature

Consider any continuous periodic functiofy,(x), for
convenience scaled to have periog Zrom the definition of N
the Dirac delta function, we know that fék,)M(X)ZJZl 5&)‘??\/'(X_Xj)fp(xj)AX' (8)

fp(x):f o(x—=x")fo(x")dx’ . ) )
—o whereN is the number of grid pointsAx= 27/N, andx;
o ” =(j— 3 Ax. This choice of quadrature points is particularly
_ 2 S(x—x' —2mm)f (X’ +2ma)dx’, usgful if we are solving differential equations W|.th smgular
m=-= Jo points at the two endx& 0 andx=21r). As the grid points
(2 are fixed, 50 (x) acts like the discretizedkth derivative

) ] ~_ operator. One can also discretiz@sing the same grid points
where we have expressed the integration range as an infinifgy ysed in the numerical quadrature. If we treat the dis-
sum of segments of lengtha2 Interchanging the integral and ¢retizedf,, ,(x) and its derivatives as a column vector, e.g.,

sum, and using the periodicity ¢f,(x), we have [f;=f(x;)], we have
2w Ex: N
f(x)= S(X—=x"=2mm)f (x")dx’
P =—00 p —
o m* (9=3 o, ©
2w
= Op(Xx—x")f(x")dx’, 3
jo X=X TR @ where
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1000 25. It is clear that both representations are Toeplitz; however,

— 508"

5 5(1)"'5 800 | 1 08“)&10 the expression in Ref. 25 has the additional characteristic of

being banded, which is not the case in the present formula-
tion. However, as we will see later in this paper, this does not
present any problems in the current implementation and in
fact helps to enhance the accuracy of the procedure intro-
duced here.

PDAFs

. SYMMETRIZATION AND REDUCTIONS OF THE
TRIATOMIC HAMILTONIAN IN APH COORDINATES

A. APH Hamiltonian

‘ * ] 1 The detailed reactive scattering theory formulated in
204 T r—————— -1000 — w adiabatically adjusting principle axis hyper-spheri¢aPH)
¢ coordinates has been presented previousigd we repeat
only the essentials here. In this approach, one needs sector
FIG. 1. 8§34(x) for different M, where the number of grid pointsN(  adiabatic basis function®P®, of the APH hyper-angles, and

=20) is used in both panels. In the left pafdk=5 and in the right panel in this work we choose surface functiorsP o defined by
M =N/2=10. Notes(, and 5{3, are symmetric about=0, while 53, is the equation T
antisymmetric. Increasiniyl makes the PDAFs sharply peaked and a better a

representation of the respective delta function and its derivatives. Hd A(a X: ,Dg) g A(Pf)q) (0 X'Pg) (11)
T 1 7 L

whereH is a portion of the full Hamiltonian omitting parts of

Di(jk): 5f3'f)M(Xi—Xj)AX the orbital angular momentum. Thus, we take

H i IS 20& + L7
=T 52| —sin20—+ —
(= 1)(k+1)/2 Z n“sinn[(x;—x;)]x kodd 2upz|sin20 36 96 ' Sir? 6 a2
- 2
+ —— +Ch2A%+V(p,,0, 12
X ot (- 1)"’2 E nkcosn[(x,—x;)] keven 8up’ (pg,0.x)- (12)

2
The first term in the Hamiltoniahkl is the “hyper-spherical”

(10 part of the kinetic energy operator, anﬁzll[,upé(l
is thekth derivative operator in matrix form. The differential —sin#)] is part of the centrifugal potential. The potential
operatorsP™, are periodic Toeplitz matrices which depend energyV used here is the complete potential energy surface
on only one parametekl. As M increases, the PDAF gives (PES of Brown et al,?° and theg® \ (p;) are the eigenener-
an increasingly accurate representation of the Dirac deltgies ofH at the hyper-radiup,. The variabled is the APH
function. However, it is for smalM that the integrand of Eq. bending angle; its range iss09< =/2, with 7/2 describing
(5) is smoothest and the trapezoidal rule is most accuratdinear configurations and 0 describing triangular symmetric
Hence, we seek an optimal compromise valuévof Since  top configurations. The variablg is the APH kinematic
the integrand involves a Fourier function, the theory ofangle measured from the “incident” arrangement channel; it
Gaussian quadrature suggests a relatiod 6fN/2. Through  measures motion between arrangement channels, and its
numerical experimentatiofsee Sec. IY we verify that this range is—7<y=<. The anglesd and y cover the upper
value gives the most accurate results. In this paper, we wilhalf of the surface of an internal coordinate sphere which we

use D@, DW, and D®); consequently, we need(®,, loosely call the “hypersphere.(More precisely, the surface
8. ands{?, . They can be obtained simply by differenti- of the hyper-sphere is the 5D space coverediby, and the
ating Eq.(7). three Euler angles which describe the orientation of the prin-

We see thatﬁ(k) (x) are evelodd) periodic functions cipal axes in space. In fact, the hyper-sphere may be decom-
whenk is evertjoda) The functions,s(%,(x), 8{(x), and  posed into two commuting subgroufd(2) andO(3), and
6(2,{,|(x) which are the ones used in thls paper are shown itthis aspect has been exploited in computing surface functions
F|g 1. In both panels of Fig. N=20, in the left paneM with fixed total angular momentuh.As one can see from
=5, and in the right pane¥l = N/2=10. One can readily see Eq. (11) the surface function®® , and eigenenergies® ,
the symmetry of each PDAF. Comparing the left and rightdepend parametrically on the hyper- rad|p|§ They are
panels in Fig. 1, we see that increasigmakes the PDAFs needed at a set gf values{p}, é=1,2,...,n,, and are
in the right panel sharply peaked and a better approximatased as adiabatic basis functions for expandmg the full wave
representation of the periodic Dirac delta function and itsfunction in each sector wherepf{+p._1)/2<p<(pg+1
derivatives. +pg)/2 for sectoré. As shown elsewhergethis diabatic-by-

The equations obtained in this section for the PDAF,sector(or sector-adiabatjcexpansion of the wave function
namely Eq.(7) and Eqg.(10) may be compared with those gives rise to a set of coupled second-order differential equa-
obtained using the SA-HDAF for functions with periodic  tions. The three quantum numbers,p, 7) labeling&® 1 and
symmetry, namely Eq5) and associated expressions in Ref.®" , are: A, the component of the total angular momentum
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along the APH body-framéBF) z axis (the axis of least R oo S———
inertia of the three-body systemp is the parity quantum e
number withp=0 or 1, the parity ofP? , under the parity
transformationy— y* = is (—=1)°, and r=1,2,...,ng,
which indexes the solutions in order of increasing energy. -
These coupled-channéCC) equations must be numerically [
integrated from a small value of the hyper-radiughere the I T I
full wave function is zero to a large value of the hyper-radius § $§ 4
where asymptotic boundary conditions are applied. The
quantity u is the three-body reduced mass of the system
arising from using mass-scaled coordinates.

Equation Eq.(12) differs from Eg. (164 of Ref. 9
slightly because it omits a rotational term of the fokA
+B)A?[J(J+1)—A?] as mentioned above. As pointed out
by Launay and LeDournedfthis gives surface functions o
®P? \ which are independent of the total angular momentum 0
J, so many fewer surface functions must be calculated. The
omitted term is easily included in the CC equations alongriG. 2. Grid mapping functiom(y). The uniform grid in@ corresponds to
with the remaining Coriolis and asymmetric top terms. Thisthe nonuniform grid fof which is dense near the singularitie8=k/2)
surface function basis is expected to produce rapid convefnd sparse otherwise.
gence of the CC expansion to the exact solution provided
triangular symmetric topd=0) configurations are unimpor- [7/2<6é=<m] ¢(6+km)=(6), [0< =] for any integer
tant, which is the case for many reactions. valuek. Now, ¢(6) is a periodic function with a periodicity

The full wave function must be continuous and regularof 7. Note that H,(6)=H(7—#0), and H,(0+km)
everywhere. This requires thdt® , must also be a continu- =H(6). One can see that the extendeft) satisfies
ous function ofy at — 7 and 7 and regular everywhere. For He#(8) =Ny (6) for any 6, i.e., the domain oH, is also
systems with two or three identical atoms, the surface funcextended to the full real space although it keeps its original
tions have other symmetries in addition to the panityal-  form.
ready defined and these symmetries will be exploited. The ~We comment that similar expressions fdi, were ob-

surface functions are real and normalized according to  tained in Ref. 25 by using a symmetry adaptation procedure,
whereinH , was projected on the right side onto a function

/.

T . - : :[
n 2r
Y

w 4 w/2q)p, QP _ ) q belonging to theA; irreducible representation of the point
x| PLa(0.x3p) Pra(B. X pe)sin 20 d6 groupC,, , and on the left side onto a function belonging to
the A, irreducible representation of the point groQp, . The
=8,1,8y1p- (13 choice of theA; irreducible representation conforms with the
_ o _ 6 periodic symmetry requirements. TAg irreducible repre-
The surface function Hamiltonian, E(L2) is sentation was chosen due to the fact that the first derivative
) of an A; function is anA, function in C,,. The resultant
h 1 representation foH , in Ref. 25 is, however, not symmetric
H=——=|Hy+ ==2-H,|+Hy, (14) P ! g IN Rel. , Ver, y -
2ppe sin‘ 6 To obtain a symmetric representation fdy, we trans-

) ] . form it in two steps. First, we introduce a continuous map-
whereH, ,_HX, andH,, are qbwogsly deflne_d by comparing ping function, 6(y) = w/4[1— cosly+2km)]—km, k=0,%1,
Eq. (12) with Eq. (14) The discretized Hamiltonian is ama- +5 e note that the first derivative of this mapping is
trix operator. In the rest of this paper, we use the term Hamily s continuous, but its second derivative is discontinuous at
tonian to refer to this matrix. 6=kar/2. This problem is handled by the mapping function
B. Symmetrization of APH Hamiltonian itself: if we use a uniform grid fow, it is equivalent to using
h iitoni . . Lbut it i a nonuniform grid foré which is dense near the singularities
The HamiltoniarH in Eq. (14) is real but it is not sym- (#=km/2) and sparse otherwise, as shown in Fig. 2. Since

mgtrlc, becausé ; is not symmetric. Therefore, 'If We USe ore grid points are used in thee=kar/2 region, high accu-
this form, we have to solve a nonsymmetric matrix eigensys-

- . "racy can be obtained despite the discontinuity.
tem requiring a Ia_rge amount of memory and CPU time. It is Substituting with y in H ,, we obtain
therefore critical in the computation of APH surface func-
tions to symmetrizéd. The matrixH , is the nonsymmetric 64 1 d sin26(y) d
part of H, and it is not periodic. We first extenid, to a HolY) == 2 Gnza(yisiny oy siny oy 0
periodic form and symmetrize it. Then, the result is extendeq_|
to symmetrizeH.

AlthoughH, is defined initially on G< < /2, we note . b B . .
that it is invariant under the transformatigh—7— 6, and id App_llmgr'lt; =T tOHH W(g)—?\lﬂ( 0) End. inserting the
hence we can expand the domainyg®), the eigenfunction Identity etweenH,; andy(¢), we obtain

of H,, to the full real space by definings(0) = ¢(7— 6), H,Ty(0)=ATy(0), (16)

o(y) is very similar toH ,(6) except that it has a period-
icity of 2.
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where
H,=THy(yT?*

64 1

7 \VSin 26(y)sinvy
d sin26(y) o 1
dy siny dy \sin26(y)siny

is a symmetric Hamiltonian. Note that the singularities in
T~ are avoided by our choice of quadratisee Sec. )l

The eigenfunction oH , is W(y)=T(y)¥(6(y)), which
is always zero aty=0,7, or 2. It is not hard to see that
extendingy(#) from 0< #<x/2 to 0< #< = introduces un-
desired degenerate eigenvalues. If we reduce mityifrom
0= 0=<2 to range G< #< 7 using the symmetry ofj, we

7
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_ H'+ ! H
_Z,upé Y sinf g X

and @, (y,x:p) =TPY\ (0, x:ps). POA(y.x;p) will be
written aS(I)EA(’y,)(;pg) in the rest of the paper if is the
first parameter. After discretization of the APH Hamiltonian,
H*® is symmetric, becauslelr7 is symmetric,Hy is diagonal,
andH, is obviously symmetric.

He +Hy (22)

C. Reduction of the H, using point group symmetry

If the Hamiltonian H® of a system commutes with a
point groupG, i.e., the potentiaH,, is symmetric under the
operations ofG, we can reduce the size of the Hamiltonian
matrix by transforming the Hamiltonian into the irreducible
representations db.

Let G={R}, where{R} is a set of symmetry operations

can eliminate those undesired degenerate eigenvalues. Wech as rotations and reflections. The orde6dt h. i.e. G

use a grid similar to the one used for PDAR;=(]
—3)Ay, with 1<j<2N,, where N, is the number of grid
points, andA y= /N, is the distance between two consecu-
tive grid points. For simplicity, we use a subscrjfb denote

a term evaluated ay;, and we also define the following
terms, tj=1/y/sin 20(y))siny; and s;=sin 26(y;)/sinvy;. Ap-
plying the derivative operatdd®) in Eq. (10) (substitutingx
with ), the eigenequation E@16) can be written as

N 2N
M :le 2 %tiDi(%)Sk(D(kPJr Do+ D)t
N
=2, HY 0 (18)
where
2N
b= 2~ DS DM . (19

In the above derivationy;="4on-j+1, tj=ton—j+1, i
=Syn—j+1, and the periodicity oD is employed. One
should note that in Eq18) 1<i<N, and 1I<j<N,,, which
means G y<r, SO Hr7 is reduced to the original domain.
Hr7 is the desired symmetric matrix form fét,. It is, how-
ever, interesting to note that the bracketed quantidy{
+D{HYy_+1) in Eq. (19 is not an antisymmetric matrix, in
contrast to Ref. 25. The fuIHry presented in Eq(19) is
symmetric by construction.

Similarly, we can transform and discretiketo obtain its

symmetric form. Using Eq(14), the Schrdinger equation
Eqg. (11) reads
h? 1
2up> S X
P
=E0\(p) PP\ (0, x:pg). (20)
We multiply by TT from the left on both sides of the
above equation, and insert the idenfity 1 T, to obtain
HSD, (7, x;0:) =E0A(p) PO (Y X3P2),
where

(21)

containsh symmetry operations}. SupposeH , satisfies the
following eigenequation:

H, o= (x)=xpl=(y), (23

where ¢!»*] transform according theth column of thezth
irreducible representation @, i.e., ¢[** is the xth basis
function for thezth irreducible representation, andis the
corresponding eigenvalue. We will discretize E23) using
a uniform grid

Xji=(j—12Ax, j=1hN,, (24

wherehN, is the number of grid point®) y= 2#/hN, is the
spacing between consecutive grid points, and cledirlyis
the number of grid points in the intervigd,2#/h]. Then, Eq.
(23) can be written as

hNX
;lHXoa X)AEI ) =N (xp), «k=1], (25

wherel, is the dimension of theth irreducible representa-
tion. The full range ofy can be generated by applying each
symmetry operatiorR on the rangd 1,Ny]. We can then
write Eq. (25) as

X
2 2 Hyx R ¢ IR = (x). - k=11,
(26)
From the well-known relation®
IR =2 20T (R), (27)

wherel”Lz,]‘K(R) is the (', k)-th element of thezth irreduc-
ible representation matrix d®, we have

IR =2 10T (R
=2 o2 rl (R

=2 ¢TI NR). (28)
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The following obvious properties dfff,]vk(R) are used in the
above derivation]'[4(R™1) =Td"(R)=Td~Y(R). Substi-
tuting Eq.(28) into Eq.(26) we obtain

NX ‘
121 2 Hx R Z I TN R)
=N t=(x,), 29

The expression Eq29) is a set of coupled equations which
can be written concisely in matrix form. For triatomic reac-

k=1],.

Zhang et al.

The derivation presented here may be contrasted with
the symmetry-adaptation procedure provided in Ref. 25 In
Ref. 25 the symmetry adaptation was carried out by projec-
tion of the Hamiltonianor the derivative operatponto two
different sets of projectors, one on each side of the Hamil-
tonian matrix. This is useful for cases where the Hamiltonian
(or the derivative operatprchanges the symmetry of the
function it acts on(for example, as in the case of tlédx
operatoy. In the present case, the symmetry adaptation intro-
duced in this section is only used to adapt ghpart of the

tions, the relevant irreducible representations are either onéfamiltonian, which is totally symmetric and hence does not
dimensional or two-dimensional. For the one-dimensionakhange the symmetry of the functions it acts (anlike the

case,x=«'=1, so we simply omit them. Hence, we have

NX
121 HY O ox) 6 () =1 o (x0), (30)

where

HLOxi) =2 Hy(x R T (R), (3D)
is the reduced , in a one-dimensional irreducible represen-
tation.

For the two-dimensional case, we have

N [21](x)) Hlz10)

121 Hy(xi 7Xj)( Hl2200) =7\( Hl2A00) | (32
where

H' (xi ,x1>=§ H, (xi .Ry)TE*(R) (33

is the reducedH , in a two-dimensional irreducible represen-
tation. It has the same form as in the one-dimensional cas
but it is a 2x2 matrix. H;{ is symmetric if the associated
irreducible representation matrices are i(sak Appendix A

There are three types of triatomic interactions: The first type

occurs when all atoms are distinfBC]. The point group
corresponding to this type §=C,. The second type occurs
when two atoms are identicehAB ]. The point group corre-
sponding to this type i&=C,, . The third type occurs when
all atoms are identica] AAA ]. The point group correspond-
ing to this type isG=Cg, . For all the above group$;, in

each type the irreducible representation matrices are all real,
SO H;( is symmetric. We provide the representation matrices

in Appendix B for convenience.

One should note that if we confing to [0,27/[ G]],
where[G] is the order of the group3, H' is a N, XN,
matrix in a one-dimensional irreducible representation and
2N, X 2N, matrix in a two-dimensional irreducible represen-
tation. When the eigensystem of E(O) or Eq. (32) is
solved, eigenfunctions in the ranp@27/[ G]] are obtained.
One can employ Eq27) to compute the eigenfunctions on
the full range ofy.

One can see that using;( instead ofH, doesn't affect
the symmetrization oH in Sec. IlIB. Hence, we shall use
the following definition ofH® in the rest of this paper:

n” H'+ ! H'
7 sif g X

HS: 2
2,U«P§

+Hy. (39

operator corresponding to thiepary.

D. Reduction of the Hamiltonian using projection

Suppose we discretizd® usingN,, grid points iny co-
ordinate andN, in y. The size of the Hamiltonian matrix
(N,N,XN,N,) to be diagonalized is very large for systems
of physical interest when highly accurate eigenvalues and
eigenfunctions are needed. Since we wish to obtain only a
few of the lowest eigenstates to high accuracy, we consider
here a projection technique to reduce the size of the Hamil-
tonian matrix, which leads to a reduction in the CPU time
and memory requirements. First, we find a nearly complete
basis for the desired lowest eigenvectors, and then we project
the Hamiltonian matrix onto this subspadd=PHSP,
whereP is the projection matrix an@ is the transpose d®.

The matrixH®is small. We solve the eigensystem laf!"
and map it back to the original basis to obtain the approxi-
mate eigensystem of the. Details are given below.

Noting thatH’7 depends only ony and ﬁ2/2,up§ is a
constant, and introducing the identity matridgsand|, in

e v and y spaces, respectively, we can rewrite the Hamil-

tonianH® in Eqg. (34) in the tensor product form

2 ﬁ2
S= g I B dc o+ :
2up§H7®|X 2up? s7g! 2 H T HUL® L,
(35
Now HS is divided into two terms
2
1 2,U«P§ YIXe
ﬁZ
S:_—
S22 S7g BH T HVLRL. (37)

The first term,H3, is independent of, while the second

éerm depends on both and y. Since we are only interested

in the lowest eigenvalues and eigenfunctionsi6f andH3

is independent of, one can expect to get accurate results
using only a subeigenspace bf; instead. We solve the
eigensystem of3 for each fixedy;, H3(y)) )=\ a),
where (=1N,) andN, is the number of the grid points
used inyand (\)',a,)) is thekth eigenpair for the givery; .
Then, we discard the eigenvectors with large eigenvalues.
The rest of the eigenvectors consist of a nearly complete
basis for the lowest eigenvectors ldf. In our implementa-
tion, we sort all the eigenvectors obtained above in ascend-

ing order of eigenvalues, and choose only a number of the
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eigenvectors corresponding to the smallest eigenvalues. Afte 35 4
normalization we construct the block-diagonal projection
B . . . [ B ]
matrix, P; j=Pi=(a]',a),....a)! ). 30 <\
Vi ] / \
BecauseP is an orthonormal, nearly complete basis for 25 4 _/' '\_
. 1 @
the lowest eigenvectors, @ (y,x;p;), we have 2 | /./ \.\
~— — L T >
PPOR\ (7, x:p) =P85 (7, X:pe)- §Ub5t'tUt'n9‘DEA(%X;P§) g 20 s Ny
in Eq. (21) and multiplying by P from the left, we get & o .
) . /
HEE (v, xip) ~E0 (P W oA(Y,Xipe),  Where  H™ 8 15 X \-\
=PHP and¥?,(y,x;pe) =PP2\ (7. x;ps). We can see that s s "
. . . | §
PisanN,N, X Nf(“t matrix, WhereNCU‘:EiNglmyi soH% s é 10 o a
an N N matrix. Its size is much smaller than the size of 2 /-/ \-\
H® if N°“is much smaller thaiN,N, , which is the case if > _/' "
we want only a few eigenvaluebl® should be taken to be ] '\_
as small as possible, consistent with the desired level of ° S sy
9] 5 10 15 20 25 30 35

convergence. Noting thatl® is symmetric, we haveH !t

=PHSP=PHSP=H. Thus,H%!is symmetric.
FIG. 3. The number of good eigenvalues reaches maximum wien
=N,/2 (N,=32), whereM is the parameter in PDAB},(x), andN, is
the number of grid points in range (072.

IV. NUMERICAL TESTS

Numerical tests are carried out to study three aspects of
the approach. First, we test the behavior with respect to peE"
rameterM in the PDAF 5% Next, we examine théd| Tests ofH' were done for all the aforementioned irre-
using different irreducible representations of various groupsducible representations of the relevant point groups. All of
Finally, the accuracy ol‘-lr7 is tested. them give good results. Here, we present only one typical
result computed using th€,, group, since onlyC,, is in-
volved in the FH reaction calculation. We chose the F

We tested PDAFs using different periodic functions, all + H, system, since we have published detailed convergence
of them showing similar results. Here, we present only thestudies using the DVR and the ABM methods.
test for the eigenvalues &, . Using the PDAF matrix de- Similar toH,, we can obtain the PDAF representation
fined in Eq.(10) we obtain the discrete representationbf  of H|,. Note thatC,, has only one-dimensional irreducible

N, representations, so we use Egl) for H;. We obtain the

NX
i H r
HXij =— kzl Di(jz): — kzl 5§;2,|)\/|(Xi —xi)Ax, (3g)  discrete representation 6f, as

.
Test of HX

A. Test of PDAFs

whereN,, is the number of grid points used in (Gr2, Ay (39
=27IN, and x;=(j— D Ax. We know that the correct ei-

genvalues o, should be 0,1,1,4,4, k% k?,..., so itseasy Note that the grid scheme is defined in E24). We set

to check the difference between the computed eigenvalued, =8, and the eigenvalues, for each of the irreducible
and the exact ones. We set the criterion of @s the maxi- representations are computed, and tf\g, are shown in
mum tolerable error and then count how many good eigenTable | for easy comparison. One can see that if we combine
values can be obtained. A typical result is shown in Fig. 3, inthe results from all the irreducible representations, we will
which we setN, =32 and variousV from 1 to 35. One can obtain the(approximatg eigenvalues 0,1,1,4,4, k% K?,...,

see that wherM =N, /2, almost all eigenvalues are good. which are obtained frorki, . We also note that the degener-
This suggests the optimal choice ldf. ate eigenvalues ifi, are no longer degenerateliﬂ(.

NX
Hy,= —gl ZR S (xi—Rx)TEAx.

TABLE I. Ay, square roots of eigenvalues if, in irreducible representations of groy, .

k A B, A, B,
1 0.000 00052456066  2.000 00000000009  0.999 99999999989  1.000 600 000 000 07
2 2.000 00000000007  3.99999999999997  3.000 00000000004  3.000 000 000 000 02
3 3.99999999999999  5.99999999999999  5.000 00000000000  5.000 000 000 000 00
4 5.999 99999999999  7.99999999999999  7.000 00000000000  7.000 000 000 000 00
5 7.999 99999999999  10.000 000 000 000 0 9.000 000 00000001 9.000 000 000 000 01
6 10.000 000 0000000  12.000 000 0000000  11.000 0000000000  11.000 000 000 000 0
7 12.000 000 0000000  14.000 000 0000000  13.000 000 0000000  13.000 000 000 000 0
8 14.000 0000000000  22.627 4169979695  15.000 0000000000  15.000 000 000 000 0
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8+ a4 N-16 and plots of the PES and surface functions showing their
+N:=32 appearance in APH coordinates have also been published.

6 \_:::v.,."_"_"_v’v‘ _ —=— N =48 Arrangement 1 or(initial) is t.aken to be FH, reactants.
\.\._:"--~-~.~.»-....ﬁ._:_:ﬁ:"*v-v-v-v- —v— N =64 Detailed convergence studies have been published for

0000eee F+H, using the DVR and ABM methods. For comparison
44 Shaa, of these methods with the current PDAF method, we use all
parameters and methods as outlined in those publica-
tions1424

The calculations are foA=0 and even parity g=0)

||
Ah AN, e SR ¥ LA ) i . . .
AL \ PP .\-!--'\ b and include all functions connecting to the evjerotational
A-

Number of Significant Digits
N
1

0+ ‘\ te-e states of the FH, arrangement. Because of the symmetry
] aa "\ due to the identical H atoms, this only requires including in
2] o the PDAF calculations thd, irreducible representation, in
which the surface functions are even under reflection about
o 5 10 15 2 25 30 x=0.
k A. Grid size and mapping
FIG. 4. Accuracy(number of significant digijsin eigenvalues oHry. For The grid sizes(the number of grid poin)s NX, Ny,

all N, the smallesN,/3 eigenvalues are of high accuracy. andN°“ are determined by the convergence test. We present

only the results here. To attain five significant digits in
C. Test of H' the lowest 100 eigenvalues for any,, we use
7 . N,=|25.852+5.851 19, —0.130 102@—0.004251%23],
H’, in Eq. (19) has the same eigenvaluestds. If we  NCU'=|1428.06+ 29.200p, — 6.377 552 —0.119 048 p?|,

rewriteH, as and N, =| 47 max(\,)J[G], where[G] is the order of the
8 g g associated symmetry group. To géf, we use the maxi-
Hy=— m@sm 20@, (40 mum of N, because it makehl, identical for allp,, thus

making it easy to compute the overlap matrices. Also, using
we can see that the eigenequationtbfyy(6) =N ¢(0) is a  the maximurrN,, doesn't significantly increase the computa-
Legendre differential equation if we write the eigenvalue agion time, because we reduce the matrix size according to
N=8I(1+1) 1=0,1,.... Thus,Hﬂ/ has eigenvalues of18l N°U as discussed in Sec. IlI D.
+1). To evaluate the accuracy of the computed eigenvalue, ~Although N, is chosen to be the same for @}, N, is
we define S(\)) as, S(\)=—Ig|[N\,—8I(I+1)]/[8I(I different. Hence, before we compute the overlap matrix, we
+1)]|, where\, is thelth computed eigenvalue, arBi(\,) have to map the wave functions to a uniform grid, to reduce
gives the approximate number of significant digits. Figure 4the computation time for the overlap matrix.
shows the results when we §t,=16,32,48, and 64. One Let N7 be the number of uniform grid points i N, is
can see that for eadW,, there are aboul,/3 eigenvalues of the original number of grid points. Applying E() to the
high accuracy. This is accurate enough for the, [Edllcula-  wave function
tion, because typically the order of the Hamiltonian matrix is
about 1000, but we require less than 300 eigenvalues.

It is worth mentioning that we also tested the nonsym-
metric form,H ,, using the PDAF presentation. Although we
can get as highly accurate results from eithigror H' , we
still choose the symmetric form, because the nonsymmetric
matrix costs more time and memory to diagonalize. More- 0
over, when we add the potential, the accuracy of the nonsym- XD (v x;pe) Ay, (41)

metric form will decrease to the accuracy of the symmetric , ,
TABLE Il. PDAF, ABM, DVR, and FEM surface function energi€s and

2N,y
P (v, xipe) = gl Som(¥i— 1P (Y. xip) Ay

NY
=k§l [Som(¥i— Y+ Sp (¥ =27+ )]

Hry' average energies in eV at=2.2a,.

V. CALCULATIONS FOR THE FH, SYSTEM T PDAF ABM DVR FEM
In this section we report the results of PDAF calcula- 1 6.9176 6.9177 6.9177 6.9177
tions of surface functions and the matrix elements, and com- 2 7.0341 7.0341 7.0341 7.0342
) 3 7.1299 7.1298 7.1296 7.1299
pare them with the results of the DVR and ABM methods. 4 73044 73042 73038 73043
The system chosen as a nontrivial example is theHE 5 7.4934 7.4932 7.4927 7.4933
—HF+H reaction; its treatment requires generation of a 6 7.7007 7.7007 7.7008 7.7009
large basis of surface functions. The potential energy surface 7 7.9227 7.9219 7.9202 7.9222
(PES used is that of Browret al?® commonly called the 8 8.0786 8.0789 8.0786 8.0791
9 8.1548 8.1524 8.1475 8.1529
T5A surface, and we choose the zero of energy to be at the 4, 8.2495 8.2502 8.2494 8.2503
bottom of the asymptotic HF potential wells. This PES has £(10) 7.5986 7.5983 7.5974 7.5985

been used in many calculatidr§2%2831-3%n this reaction,
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TABLE lll. PDAF, ABM, DVR, and FEM surface function energi€s and
average energies in eV at=3.037 582 &, .
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TABLE V. PDAF, ABM, DVR, and FEM surface function energi€s and
average energies in eV at=7.298 999 3, .

T PDAF ABM DVR FEM T PDAF ABM DVR FEM
11 1.9845 1.9845 1.9845 1.9849 91 2.0559 2.0564 2.0569 2.0679
12 1.9975 1.9975 1.9975 1.9979 92 2.0749 2.0754 2.0760 2.0928
13 2.0514 2.0515 2.0515 2.0519 93 2.0980 2.0981 2.0981 2.1023
14 2.1090 2.1090 2.1090 2.1093 94 2.0985 2.0990 2.0994 2.1141
15 2.1275 2.1275 2.1275 2.1281 95 2.1098 2.1098 2.1099 2.1148
16 2.1352 2.1352 2.1353 2.1357 96 2.1194 2.1196 2.1198 2.1278
17 2.1993 2.1994 2.1994 2.1998 97 2.1268 2.1273 2.1278 2.1443
18 2.2578 2.2578 2.2578 2.2584 98 2.1538 2.1542 2.1543 2.1537
19 2.2730 2.2730 2.2730 2.2737 99 2.1551 2.1551 2.1551 2.1608
20 2.3197 2.3197 2.3197 2.3204 100 2.1597 2.1602 2.1608 2.1621
?(20) 1.8551 1.8551 1.8551 1.8554 E(loo) 1.3788 1.3788 1.3790 1.3811

whereAy=m/N,, andy;, vy, represent the coordinates in
the above two grid schemes, respective;Py,z(j—%)Ay”,
and y,=(k—3)Ay, whereAy'=m/N}.

B. Eigenvalues

The atomic masses used are mass of F

=18.9984032 a.u., and mass ofH.007 82503 a.u. The
calculations were performed at five representapvealues

Thus, when the APH wave function is substituted into the
Schralinger equation, the resulting exact coupled channel or
close-coupling equations are of the form

9  2uE
£z+ e PR"(p)

2p A b AJ J
2?2 (ORDNUHI D7D v o, (42
T/A/

ranging from the smallest to the largest values that were The matrix elements are obtained in Ref. 9 as

needed in our reactive scattering calculatith€. The pre-

cise values op chosen have no particular significance, and@JR@JAr;\”qu)Jp BIP
T.

some were chosen simply because the convergence of the

DVR method had already been studied at these vaft#s.
The results are given in Tables 11-VI for the five values

7APAM
2
Pe

= 5 EN(Pg) 67r Oanr T+ Sppr

of p chosen. In each table, the energy eigenvalues of the

highest ten important or open surface function states are

2

p

Jp _ ¢ Jp
given in eV. The omitted lower eigenvalues always agree to X(PRIV(p,0,x) ?V(pf’a’)‘”q)f’/\
more significant figures than those shown. Also shown is

g(n), the average of the firat eigenvalues. This gives a

convenient measure of the overall agreement of the methods. 2

C. Matrix elements

The APH surface function@EA(y,X;pg) are “sector
adiabatic” or “diabatic-by-sector;” that is, they change from
sector to sector, but are independentpofvithin a sector.

TABLE IV. PDAF, ABM, DVR, and FEM surface function energi€s and
average energies in eV at=4.974 796 G, .

H(@RD 2 (234 T 0%, B, (43
wherep, denotes theth hyper-radius sampled from the in-
terval [pminpmad- The pg are given by p=[pmint(¢
—1)Ap;](1+Ap,)¢ L. This algorithm spaces the sector cen-
ters logarithmically. Given a sector with sector centgr we
evaluate matrix elements at the three rho values given by

p1=(pe—1rpeI2, p2=pe, andpz=(ps+per1)/2. All the

TABLE VI. PDAF, ABM, DVR, and FEM surface function energi€s and
average energies in eV at=9.0g,.

T PDAF ABM DVR FEM T PDAF ABM DVR FEM
91 2.0699 2.0701 2.0701 2.0720 91 2.0747 2.0747 2.0748 2.0805
92 2.0721 2.0734 2.0727 2.0760 92 2.0774 2.0779 2.0782 2.0863
93 2.0864 2.0896 2.0869 2.0916 93 2.0957 2.0964 2.0974 2.1051
94 2.0941 2.0941 2.0943 2.0961 94 2.1010 2.1010 2.1009 2.1065
95 2.1087 2.1107 2.1093 2.1132 95 2.1153 2.1153 2.1154 2.1233
96 2.1215 2.1232 2.1220 2.1267 96 2.1189 2.1194 2.1197 2.1284
97 2.1487 2.1509 2.1495 2.1549 97 2.1250 2.1252 2.1253 2.1315
98 2.1643 2.1650 2.1645 2.1672 98 2.1461 2.1470 2.1482 2.1541
99 2.1793 2.1806 2.1799 2.1833 99 2.1542 2.1545 2.1546 2.1562
100 2.1892 2.1892 2.1893 2.1918 100 2.1558 2.1559 2.1560 2.1564
3(100) 1.3974 1.3977 1.3975 1.3985 ?(100) 1.3791 1.3791 1.3792 1.3812
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matrix elements in Eq(43) are independent oE, so that cosf o
they can be calculated once, stored, and used at many scéfbnd—nz— 9 dx |D% )
tering energies.

The wave functionsb® \ (v, x;p,) should be normalized 1 x Ny Ny co 0(y,)
- 2 Yi
before computation of the matrix elements. The normaliza- = _-h#wAy Ayz E E siny; Sind(7)
tion factor N can be calculated in the desired irreducible =1j=1k= Yi
representation easily according to Efj3) as shown below X‘I’TA(YJ Xip )5E)l,r)\/|(Xi_Xk)q)EfA/(7j XiPe)-

(47)

It should be noted that the last term in the bracket in(Ea@)
2m T o is nonzero only wherh =0 or 1, and also that because {he
= Nf d)(f dyZsinysin 200%, *(y,x:p¢) dependence of the operator factors out, the matrix elements
0 0 over the®®, (y,x; ;pg) only need to be evaluated once on

2m /2
1=Nf d)(f d 6 sin 26002, %(6,x;p,)
0 0

x Ny - each sector. They are readily evaluated using the PDAF
N_Zl Zl AxAysiny;sin26(y;) P, (7,x;p¢) at the quadrature points since the PDAF code
=hE generates the derivatives &, (y,x;p;) directly.
X PP, 2 (%) Xi 1 Pe)- The asymmetric top terms of E¢43) can be explicitly
written as
Thus -
. (Al H(A-B)(32- 3] 7 A)
. X Y )
ihmdxAy2, 2, siny = L7, |A—B|®P, , )[(1+ 8,0)(1+ 5A'0)] 12
, S XN (B AN (J,A+L)Opr p42
X sin 26(y;)®P DX ) 44
(¥ P () xi5pe) (44) WA (AN (D A=1)8y 5,
After ®P,(y,x;p,) is normalized, we compute the matrix F(=1)TATPANL(JAN_(JA=D) 8y o-0], (48)

elements. The first term on the right-hand side of &§) is
just a local internal energy which, together with theerm
on the left-hand side of Eq42), determines a local wave (®P,|A—B|DP
number.

The second term of Eq42) is often called a potential Ny Ny
matrix element. It is small on the sector and can be evaluated = fhmAxAy>, >, siny;sin26(y))
with the same quadratures used in getting the surface func- s
tions. Similar to the evaluation of the normalization factor, XDP, (v, xi ;Pg)(A_B)(DsrA!(')’j XiiPe)-
we obtain for the potential matrix elements

whereA= 1/upZ(1+sir? §), B=1/2up} sir 6, and

!AI>

The third term in the bracket in E¢43) is always zero if

2 |[A—A’|>2, and thep dependence oA—B again factors

Jp
(DR (p)IV(p)— —zV(P§)|‘1’ A(Pe)) out, giving the same simplifications and allowing the evalu-
ation of the integrals by the same methods as for the Coriolis
—Eh AvA 2 =i in 20 terms.
T3 'TEX 7i=1 =1 siny; sin26(y;) At the boundaries between sectors, Bhenatrix is trans-

formed by an orthogonal transformation, which requires cal-

2
p¢ culation of the overlap matrix elements. The formula for the
Py v - _rs
XPoA(y) i ’pf)[v(p) pzv(pf)} overlap matrix elements is given by

XD\ (%) .Xi1Pe)- 45 (DR(pa)| PP\ (pe))

The Coriolis term can be simplified as 1 Ny N,
JpRJ Jp AJp :ZhWAXAVUE Z ZSII‘WJ- sin 26(y;)
<q)rRDA’?VI|TC|(D IAIDArM =l]=

_p2 cos0 XOR (v X1 PV (V) Xiper)- (49)
= P —__|HP
2,up2<q)”‘|sin20 &X|(I)T'A’>

X[(1+ 8p0)(1+S40)] Y2

D. Comparison of methods

We compare the computational efficiency of the PDAF,

FIN_(J,A)(—1)PHAPs, 0], (46) DVR, ABM, and FEM methods on the same computeH|
' 866 MH2z), by computing eigenvalues, potential matrix ele-
whereh . (J,A)=[(J=A+1)(JFA)] and ments, and overlap matrices at 14)G. p, starts from 2.@y,
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FIG. 5. CPU time of PDAF, DVR, and ABM. FIG. 7. Comparison of the sum of the overlap matrix elements using PDAF,
ABM, and DVR.

and ends at 9.8, and is evenly spaced in between. The
computation timegCPU time are shown in Fig. 5. radii. However, for the LiFH system the PDAF method is
The FEM method takes much more time than the othersmuch faster than the DVR at all hyper-radii. For thé
thus, we do not include it in Fig. 5. We see that the PDAF+H system(which has an attractive singularjtthe FEM
method is much faster than the DVR over most of the rang@nd ABM methods should be used to ensure correct behavior
of ps. If ps is very small(less than 2.2,), the DVR is the  of the surface functions near the singularities. The DVR is an
most efficient method. Although the ABM works slightly excellent method and should not be discounted. There are
faster than the PDAF method, it turns out that the ABM situations where the DVR method is definitely faster and
diverges wherp; is small. We have also made comparisonsmore accurate. We used a Legendre DVR and it is possible
of the three methods for different systems, namelOH that a Fourier DVR® would be more efficient. It should be
HeH,, LiFH, H;, HO,, ande®+H. In all cases we see nhoted that DVRs and DAFs are intrinsically different. The
results similar to Fig. 5. The distances where the PDAF iDVR uses a basis and transforms the basis to a grid which is
computationally faster than the DVR or ABM method vary closely related to that basis. The DAF is approximating
considerably from system to system. For the LiFH systenfunctionaland is not as likely to ring. Studies are being con-
the PDAF is more than an order of magnitude faster than théucted on simple one-dimensional potentials to determine
ABM method for distances less than @§ The DVR the circumstances for which each method excels.
method is generally faster than the PDAF at relatively short ~We compare only the potential matrix elements and the
hyper-radii where the wave functions become highly delocaloverlap matrix elements here, computed using the ABM,

ized and the PDAF becomes more efficient at larger hyperDVR, and PDAF. The comparison of the potential matrix
elements is shown in Fig. 6 and one can see that all three

methods agree with each other very well wher 3.3a,.
However, whenp<3.3, the ABM result diverges from the
PDAF and DVR significantly. The comparison of the overlap
matrix elements is shown in Fig. 7. One can see clearly from
the figure that the PDAF gives results very close to the DVR
at smallp (rho<3.4a,), and it also agrees with the ABM
very well at largep (rho>4.4a,). The ABM gives very dif-
ferent results from the PDAF and DVR at smajland DVR

1.4x107 -

1.2x107 -

1.0x10°2

8.0x10°

Sum of potential matrix elements (a.u.)

gives very different results from PDAF and ABM at large
6.0x10° We know that the ABM is very accurate at largeand the
. DVR at small p, and thus the comparisons show that the
o PDAF is accurate both for small and large
2.0x10°

0.0 VI. CONCLUSION

In this paper we have presented a periodic distributed
approximating functionalPDAF) method for calculating the
FIG. 6. Comparison of the sum of potential matrix elements using PDAFSUrface function basis needed in hyper-spherical formula-
ABM, and DVR. tions of reactive scattering theory. PDAF functions are intro-

p,(bohr)
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TABLE VII. Irreducible representations of group, . TABLE VIII. Irreducible representations of group,, .

C, E C, C,, E C, T, o,

Rx X T+ X p Rx X m+x 2m—x T=X p

A 1 1 0 A, 1 1 1 1 0

B 1 -1 1 A, 1 1 -1 1 0
B, 1 -1 1 -1 1
B, 1 -1 -1 1 1

duced and shown to be capable of providing an accurate,

efficient representation of the derivative operators. TheGrant No. E-0608. The Ames Laboratory is supported by the

PDAF is efficient for all values op small and large. U.S. Department of Energy under Contract No. 2-7405-
Test calculations on the 4FH, system with the T5A ENG82.

PES, comparing the PDAF, ABM, DVR, and FEM methods
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and the ABM is the most efficient method for largebut

is not accurate at smafl. On the other hand, the DVR is H(xi ’Xj):; H,(xi *RXJ')F[T]*(R)-

the most efficient method for smallbut is not accurate for

(A1)

To prove thalH; is symmetric, it is sufficient to show

large p.
H;K’K’(Xi er):H;K"K(XjaXi)- (A2)
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TABLE IX. Irreducible representations of grouQ, .

Ce Cg Cs c3
C E T 5 2 A C
Re  x 37X R R B mty .
A, 1 1 1 1 1 1 0
A, 1 1 1 1 1 1 0
B, 1 -1 -1 1 1 -1 1
B, 1 -1 -1 1 1 -1 1
E; 10 1 V3 1 V3 1 V3 1 V3 -1 0 1
(0 1) 2 2 2 2 2 2 2 2 (0 ,1)
Vi o1 i o1 V3 1 V3 1
2 2 2 2 2 2 22
E» (1 0 1 V3 1 V3 1 V3 1 V3 1 0 0
(o 1) 2 2 2 2 2 2 2 2 (0 1)
V3 1 V3 1 V3 1 V3 1
) 2 2 2 2 P
R o, o, oy oy o oy p
Ry 2m—x 2 4ar T T—X 5
37X 3 X 3X 37X
A, 1 1 1 1 1 1 0
A, -1 -1 -1 -1 -1 -1 0
B, 1 1 1 -1 -1 -1 1
B, -1 -1 -1 1 1 1 1
Er /1 o0 1 V3 1 V3 1 V3 -1 0 1 v\, 1
(o _1) 2 2 2 2 2 2 (o 1) 2 2
Vi o1 vi o1 V3 1 V3 1
2 2 T2 2 2 2 T2 2
E; /1 o0 1 V3 1 V3 1 V3 1 0 1 vi\ O
(o _1) 2 2 2 2 2 2 (o _1) 2 2
i o1 Vi o1 vi o1 Vi o1
T2 2 2 2 I T2 2
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