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Quantum reactive scattering in three dimensions using adiabatically
adjusting principal axis hyperspherical coordinates: Periodic distributed
approximating functional method for surface functions
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Periodic distributed approximating functionals are proposed and used to obtain a coordinate
representation for the adiabatically adjusting principal axis hyperspherical coordinate kinetic energy
operator. The approach is tested and accurate results for adiabatic surface functions for the reaction
F1H2→HF1H are calculated and compared to those of some existing methods. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1526835#
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I. INTRODUCTION

As is well known,1–11 there has been tremendou
progress in recent years in accurate quantum calculation
exchange~rearrangement! reactions of the form

A1BC
 HAB1C
AC1B rearrangement reactions, ~1!

and these now include cases in which four atoms12 are
present~i.e., where C is replaced by CD in the above rea
tions! as well as the above three-atom reaction. Many
these methods use hyperspherical coordinates and are
cient; however, the accurate solution of the quantum Sch¨-
dinger equation continues to be computationally intens
Hence, there is a real need to make the codes more effic
and accurate, especially if one is interested in collisions
volving multiple electronic states or collision-induced diss
ciation.

In the hyperspherical coordinate formulation of triatom
reactive scattering, composed of a hyper-radius and five
gular coordinates, the total wave function is expanded i
complete set of products of Wigner D functions for the thr
Euler angles ‘‘external angles’’ describing the spatial orie
tation of the three-particle plane, times basis functions
surface functions which depend on the remaining two ‘‘
ternal’’ hyperspherical angles. The dependence of the exp
sion coefficients on the hyper-radius, which is a measure
the size of the three-particle system, is then determined
propagating the solution of a set of coupled-channel~CC!
differential equations from a small hyper-radius, where
solutions must be regular because the atoms coalesce,
large hyper-radius where the wave function is projected o

a!Electronic mail: parker@phyast.nhn.ou.edu
5690021-9606/2003/118(2)/569/13/$20.00
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the arrangement channels and analytic boundary condit
are used to determine the scattering matrix. In the meth
using hyper-spherical coordinates that treat all partic
symmetrically,8–10,13–17 one numerically obtains ‘‘surface
functions,’’ the basis functions of the two hyper-angles,
numerically solving a two-dimensional~2D! Schrödinger
equation. This Schro¨dinger equation, which is discussed
more detail later in this paper~see Sec. III!, depends para-
metrically on the hyper-radius and must be solved at m
values of the hyper-radius. In addition, a large number
surface functions must be obtained at each hyper-radius,
hence efficient computational procedures for numerica
solving this 2D Schro¨dinger equation are essential.

The first accurate fully three-dimensional~3D! reactive
scattering calculations employing hyper-spherical coor
nates used finite element methods~FEMs!9–11,14,17–19to solve
for the surface functions. Although these FEMs give fai
accurate results, they are inefficient and not robust. Ano
commonly used method involves the use of the discrete v
able representation~DVR!,14,15,20–22which is most efficient
at small hyper-radii where the surface functions are delo
ized. At larger values of the hyper-radius, where the surf
functions are highly localized, the DVR points cover th
whole space, making the method much less efficient. I
few cases the DVR is even more expensive than the F
because of the need for many grid points in a small, locali
region. Other methods such as the finite basis representa
~FBR!8,13,16 of Launay and LeDourneuf, and the method
Wolniewicz and Hinze23 are also efficient only at large
hyper-radii. The analytic basis method~ABM ! uses primitive
rovibrational basis functions centered in the arrangem
channels, and provides a very compact representation
thus is quite efficient at large hyper-radii, but is inefficie
© 2003 American Institute of Physics
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and the basis is overcomplete at small hyper-radii.24

In this paper, we present the periodic distributed a
proximating functional~PDAF! method, an approach that
efficient at both small and large values of the hyper-rad
The PDAF method is similar to the symmetry-adapte
Hermite distributed approximating functional~SA-HDAF!
approach of Iyengaret al.,25 but differs importantly by in-
volving only real symmetric matrices. In addition, in th
present approach only the surface functions are obtai
while in the SA-HDAF approach25 the full 3D wave function
was obtained directly, by using an iterative procedure. T
symmetry adaptation of the PDAF is carried out here in
similar, but simpler, fashion than in Ref. 25. Here we emp
the distributed approximating functional~DAF! concept, but
the PDAF differs from all previous DAFs. However, lik
other DAFs it is both accurate and efficient as a compu
tional tool. A more detailed exposition of the connectio
between the PDAF and the Christoffel–Darbeaux form
for DAFs based on orthogonal polynomials will follow.26

The sequential diagonalization-truncation technique27,28 is
employed to project the large-size Hamiltonian matrix into
smaller matrix using a projection matrix which is obtain
by solving a one-dimensional eigensystem, thus significa
reducing the memory requirements and the computa
time.

This paper is organized as follows: In Sec. II we intr
duce the PDAFs and derive their formulas. In Sec. III t
rovibrational triatomic Hamiltonian in the adiabatically a
justing principal axis hyperspherical~APH! coordinates sys-
tem is presented and the symmetrization and reduction
the Hamiltonian are illustrated. The PDAF approach is th
tested in Sec. IV. Surface functions for the FH2 scattering
system are computed, and the eigenenergies and the m
elements are calculated and compared to those of exis
methods~FEM, ABM, and DVR! in Sec. V. In Sec. VI we
present our conclusions.

II. PERIODIC DISTRIBUTED APPROXIMATING
FUNCTIONAL „PDAF…

Consider any continuous periodic function,f p(x), for
convenience scaled to have period 2p. From the definition of
the Dirac delta function, we know that

f p~x!5E
2`

`

d~x2x8! f p~x8!dx8

5 (
m52`

` E
0

2p

d~x2x822mp! f p~x812mp!dx8,

~2!

where we have expressed the integration range as an in
sum of segments of length 2p. Interchanging the integral an
sum, and using the periodicity off p(x), we have

f p~x!5E
0

2p

(
m52`

`

d~x2x822mp! f p~x8!dx8

5E
0

2p

dp~x2x8! f p~x8!dx8, ~3!
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where

dp~x2x8!5 (
m52`

`

d~x2x822mp!, ~4!

is the periodic delta function. Sinced(x) is an even function,
it’s easy to see thatdp(x) is even and is also periodic with
period of 2p. Thekth derivative off p(x) is then given by

f p
(k)~x!5E

0

2p

dp
(k)~x2x8! f p~x8!dx8. ~5!

Expandingdp(x2x8) in a Fourier series, we obtain

dp~x2x8!5
1

p S 1

2
1 (

n51

`

cosn~x2x8!D , ~6!

for the periodic delta function.
We define the partial sum of the periodic delta functi

to be the continuous periodic distributed approximating fu
tion ~PDAF!

dp,M~x2x8![
1

p F1

2
1 (

n51

M

cosn~x2x8!G
5

1

2p Hcos@~M21!~x2x8!#2cos@M ~x2x8!#

12cos~x2x8! J ,

~7!

which is the basic result used in this work. The last expr
sion is obtained by noting thatdp,M(x2x8) is the real part of
a sum of exponentials which can be written as a geome
sum and thus done analytically. By definition, asM in-
creases, the PDAF approaches the periodic delta func
i.e., dp(x2x8)5 limM→`dp,M(x2x8).

One may obtain the fully discretized PDAF by approx
mating the integral overx8 in Eq. ~5! using a trapezoida
quadrature

f p,M
(k) ~x!5(

j 51

N

dp,M
(k) ~x2xj ! f p~xj !Dx, ~8!

whereN is the number of grid points,Dx5 2p/N, and xj

5( j 2 1
2)Dx. This choice of quadrature points is particular

useful if we are solving differential equations with singul
points at the two ends (x50 andx52p). As the grid points
are fixed,dp,M

(k) (x) acts like the discretizedkth derivative
operator. One can also discretizex using the same grid point
as used in the numerical quadrature. If we treat the d
cretizedf p,M(x) and its derivatives as a column vector, e.
@ f j5 f (xj )#, we have

f i
(k)5(

i 51

N

Di j
(k) f j , ~9!

where
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Di j
(k)5dp,M

(k) ~xi2xj !Dx

55 ~21!~k11!/2
Dx

p (
n51

M

nk sinn@~xi2xj !#x k odd

Dx

2p
d0,k1~21!k/2

1

p (
n51

M

nk cosn@~xi2xj !# k even

~10!

is thekth derivative operator in matrix form. The differentia
operators,D (k), are periodic Toeplitz matrices which depen
on only one parameter,M . As M increases, the PDAF give
an increasingly accurate representation of the Dirac d
function. However, it is for smallM that the integrand of Eq
~5! is smoothest and the trapezoidal rule is most accur
Hence, we seek an optimal compromise value ofM . Since
the integrand involves a Fourier function, the theory
Gaussian quadrature suggests a relation ofM5N/2. Through
numerical experimentation~see Sec. IV! we verify that this
value gives the most accurate results. In this paper, we
use D (0), D (1), and D (2); consequently, we needdp,M

(0) ,
dp,M

(1) , anddp,M
(2) . They can be obtained simply by different

ating Eq.~7!.
We see thatdp,M

(k) (x) are even~odd! periodic functions
whenk is even~odd!. The functions,dp,M

(0) (x), dp,M
(1) (x), and

dp,M
(2) (x), which are the ones used in this paper, are show

Fig. 1. In both panels of Fig. 1N520, in the left panelM
55, and in the right panelM5N/2510. One can readily se
the symmetry of each PDAF. Comparing the left and rig
panels in Fig. 1, we see that increasingM makes the PDAFs
in the right panel sharply peaked and a better approxim
representation of the periodic Dirac delta function and
derivatives.

The equations obtained in this section for the PDA
namely Eq.~7! and Eq.~10! may be compared with thos
obtained using the SA-HDAF25 for functions with periodic
symmetry, namely Eq.~5! and associated expressions in R

FIG. 1. dp,M
(k) (x) for different M , where the number of grid points (N

520) is used in both panels. In the left panelM55 and in the right panel
M5N/2510. Notedp,M

(0) anddp,M
(2) are symmetric aboutx50, while dp,M

(1) is
antisymmetric. IncreasingM makes the PDAFs sharply peaked and a be
representation of the respective delta function and its derivatives.
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25. It is clear that both representations are Toeplitz; howe
the expression in Ref. 25 has the additional characteristi
being banded, which is not the case in the present form
tion. However, as we will see later in this paper, this does
present any problems in the current implementation and
fact helps to enhance the accuracy of the procedure in
duced here.

III. SYMMETRIZATION AND REDUCTIONS OF THE
TRIATOMIC HAMILTONIAN IN APH COORDINATES

A. APH Hamiltonian

The detailed reactive scattering theory formulated
adiabatically adjusting principle axis hyper-spherical~APH!
coordinates has been presented previously,9 and we repeat
only the essentials here. In this approach, one needs s
adiabatic basis functionsFtL

p of the APH hyper-angles, and
in this work we choose surface functions,FtL

p , defined by
the equation

HFtL
p ~u,x;rj!5E tL

p ~rj!FtL
p ~u,x;rj!, ~11!

whereH is a portion of the full Hamiltonian omitting parts o
the orbital angular momentum. Thus, we take

H52
\2

2mrj
2 F 4

sin 2u

]

]u
sin 2u

]

]u
1

1

sin2 u

]2

]x2G
1

15\2

8mrj
2 1C\2L21V~rj ,u,x!. ~12!

The first term in the HamiltonianH is the ‘‘hyper-spherical’’
part of the kinetic energy operator, andC51/@mrj

2(1
2sinu)# is part of the centrifugal potential. The potenti
energyV used here is the complete potential energy surf
~PES! of Brown et al.,29 and theE t,L

p (rj) are the eigenener
gies ofH at the hyper-radiusrj . The variableu is the APH
bending angle; its range is 0<u<p/2, with p/2 describing
linear configurations and 0 describing triangular symme
top configurations. The variablex is the APH kinematic
angle measured from the ‘‘incident’’ arrangement channe
measures motion between arrangement channels, an
range is2p<x<p. The anglesu and x cover the upper
half of the surface of an internal coordinate sphere which
loosely call the ‘‘hypersphere.’’~More precisely, the surface
of the hyper-sphere is the 5D space covered byu, x, and the
three Euler angles which describe the orientation of the p
cipal axes in space. In fact, the hyper-sphere may be dec
posed into two commuting subgroups,O(2) andO(3), and
this aspect has been exploited in computing surface funct
with fixed total angular momentum.9! As one can see from
Eq. ~11! the surface functionsFt,L

p and eigenenergiesE t,L
p

depend parametrically on the hyper-radiusrj . They are
needed at a set ofr values $rj%, j51,2,. . . ,nr , and are
used as adiabatic basis functions for expanding the full w
function in each sector where (rj1rj21)/2<r<(rj11

1rj)/2 for sectorj. As shown elsewhere,9 this diabatic-by-
sector~or sector-adiabatic! expansion of the wave function
gives rise to a set of coupled second-order differential eq
tions. The three quantum numbers (L,p,t) labelingE t,L

p and
Ft,L

p are:L, the component of the total angular momentu

r

P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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along the APH body-frame~BF! z axis ~the axis of least
inertia of the three-body system!, p is the parity quantum
number withp50 or 1, the parity ofFt,L

p under the parity
transformationx→x6p is (21)p, and t51,2,. . . ,nF ,
which indexes the solutions in order of increasing ener
These coupled-channel~CC! equations must be numericall
integrated from a small value of the hyper-radiusr where the
full wave function is zero to a large value of the hyper-rad
where asymptotic boundary conditions are applied. T
quantity m is the three-body reduced mass of the syst
arising from using mass-scaled coordinates.

Equation Eq.~12! differs from Eq. ~164! of Ref. 9
slightly because it omits a rotational term of the form12(A
1B)\2@J(J11)2L2# as mentioned above. As pointed o
by Launay and LeDourneuf,8 this gives surface function
Ft,L

p which are independent of the total angular moment
J, so many fewer surface functions must be calculated.
omitted term is easily included in the CC equations alo
with the remaining Coriolis and asymmetric top terms. T
surface function basis is expected to produce rapid con
gence of the CC expansion to the exact solution provi
triangular symmetric top (u50) configurations are unimpor
tant, which is the case for many reactions.

The full wave function must be continuous and regu
everywhere. This requires thatFt,L

p must also be a continu
ous function ofx at 2p andp and regular everywhere. Fo
systems with two or three identical atoms, the surface fu
tions have other symmetries in addition to the parity,p, al-
ready defined and these symmetries will be exploited. T
surface functions are real and normalized according to

E
2p

p

dxE
0

p/2

Ft8L
p8 ~u,x;rj!FtL

p ~u,x;rj!sin 2u du

5dt8tdp8p . ~13!

The surface function Hamiltonian, Eq.~12! is

H5
\2

2mrj
2 FHu1

1

sin2 u
HxG1HV , ~14!

whereHu , Hx , andHV are obviously defined by comparin
Eq. ~12! with Eq. ~14! The discretized Hamiltonian is a ma
trix operator. In the rest of this paper, we use the term Ham
tonian to refer to this matrix.

B. Symmetrization of APH Hamiltonian

The HamiltonianH in Eq. ~14! is real but it is not sym-
metric, becauseHu is not symmetric. Therefore, if we us
this form, we have to solve a nonsymmetric matrix eigens
tem requiring a large amount of memory and CPU time. I
therefore critical in the computation of APH surface fun
tions to symmetrizeH. The matrixHu is the nonsymmetric
part of H, and it is not periodic. We first extendHu to a
periodic form and symmetrize it. Then, the result is extend
to symmetrizeH.

AlthoughHu is defined initially on 0<u< p/2, we note
that it is invariant under the transformationu→p2u, and
hence we can expand the domain ofc~u!, the eigenfunction
of Hu, to the full real space by defining,c(u)5c(p2u),
Downloaded 30 Dec 2002 to 129.15.30.29. Redistribution subject to AI
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@p/2<u<p# c(u1kp)5c(u), @0<u<p# for any integer
valuek. Now, c(u) is a periodic function with a periodicity
of p. Note that Hu(u)5H(p2u), and Hu(u1kp)
5H(u). One can see that the extendedc~u! satisfies
Huc(u)5lc(u) for any u, i.e., the domain ofHu is also
extended to the full real space although it keeps its origi
form.

We comment that similar expressions forHu were ob-
tained in Ref. 25 by using a symmetry adaptation proced
whereinHu was projected on the right side onto a functio
belonging to theA1 irreducible representation of the poin
groupC2v , and on the left side onto a function belonging
theA2 irreducible representation of the point groupC2v . The
choice of theA1 irreducible representation conforms with th
u periodic symmetry requirements. TheA2 irreducible repre-
sentation was chosen due to the fact that the first deriva
of an A1 function is anA2 function in C2v . The resultant
representation forHu in Ref. 25 is, however, not symmetric

To obtain a symmetric representation forHu , we trans-
form it in two steps. First, we introduce a continuous ma
ping function,u(g)5 p/4@12cos(g12kp)#2kp, k50,61,
62,... . We note that the first derivative of this mapping
also continuous, but its second derivative is discontinuou
u5kp/2. This problem is handled by the mapping functio
itself: if we use a uniform grid forg, it is equivalent to using
a nonuniform grid foru which is dense near the singularitie
(u5kp/2) and sparse otherwise, as shown in Fig. 2. Sin
more grid points are used in theu5kp/2 region, high accu-
racy can be obtained despite the discontinuity.

Substitutingu with g in Hu , we obtain

Hu~g!52
64

p2

1

sin 2u~g!sing

]

]g

sin 2u~g!

sing

]

]g
. ~15!

Hu(g) is very similar toHu(u) except that it has a period
icity of 2p.

Applying T†5T to Huc(u)5lc(u) and inserting the
identity T21T betweenHu andc~u!, we obtain

HgTc~u!5lTc~u!, ~16!

FIG. 2. Grid mapping functionu(g). The uniform grid inu corresponds to
the nonuniform grid foru which is dense near the singularities (u5kp/2)
and sparse otherwise.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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where

Hg5T†Hu~g!T21

52
64

p2

1

Asin 2u~g!sing

3
]

]g

sin 2u~g!

sing

]

]g

1

Asin 2u~g!sing
~17!

is a symmetric Hamiltonian. Note that the singularities
T21 are avoided by our choice of quadrature~see Sec. II!.

The eigenfunction ofHg is c̃(g)5T(g)c(u(g)), which
is always zero atg50,p, or 2p. It is not hard to see tha
extendingc~u! from 0<u<p/2 to 0<u<p introduces un-
desired degenerate eigenvalues. If we reduce matrixHg from
0<u<2p to range 0<u<p using the symmetry ofc, we
can eliminate those undesired degenerate eigenvalues
use a grid similar to the one used for PDAF;g j5( j
2 1

2)Dg, with 1< j <2Ng where 2Ng is the number of grid
points, andDg5p/Ng is the distance between two consec
tive grid points. For simplicity, we use a subscriptj to denote
a term evaluated atg j , and we also define the following
terms, t j51/Asin 2u(gj)singj and sj5sin 2u(gj)/singj . Ap-
plying the derivative operatorD (1) in Eq. ~10! ~substitutingx
with g!, the eigenequation Eq.~16! can be written as

lc̃ i5(
j 51

N

(
k51

2N

2
64

p2 t iDik
(1)sk~Dk j

(1)1Dk 2N2 j 11
(1) !t j c̃ j

5(
j 51

N

Hg i j

r c̃ j , ~18!

where

Hg i j

r 5 (
k51

2N

2
64

p2 t iDik
(1)sk~Dk j

(1)1Dk 2N2 j 11
(1) !t j . ~19!

In the above derivation,c̃ j5c̃2N2 j 11 , t j5t2N2 j 11 , sj

5s2N2 j 11 , and the periodicity ofD (1) is employed. One
should note that in Eq.~18! 1< i<Ng and 1< j <Ng , which
means 0<g<p, so Hg

r is reduced to the original domain
Hg

r is the desired symmetric matrix form forHu . It is, how-
ever, interesting to note that the bracketed quantity (Dk j

(1)

1Dk 2N2 j 11
(1) ) in Eq. ~19! is not an antisymmetric matrix, in

contrast to Ref. 25. The fullHg
r presented in Eq.~19! is

symmetric by construction.
Similarly, we can transform and discretizeH to obtain its

symmetric form. Using Eq.~14!, the Schro¨dinger equation
Eq. ~11! reads

H \2

2mrj
2 FHu1

1

sin2 u
HxG1HVJ FtL

p ~u,x;rj!

5E tL
p ~rj!FtL

p ~u,x;rj!. ~20!

We multiply by T† from the left on both sides of the
above equation, and insert the identityT21T, to obtain

HsF̄tL
p ~g,x;rj!5E tL

p ~rj!F̄tL
p ~g,x;rj!, ~21!

where
Downloaded 30 Dec 2002 to 129.15.30.29. Redistribution subject to AI
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Hs5
\2

2mrj
2 FHg

r 1
1

sin2 u
HxG1HV ~22!

and F̄tL
p (g,x;rj)5TFtL

p (u,x;rj). F̄tL
p (g,x;rj) will be

written asFtL
P (g,x;rj) in the rest of the paper ifg is the

first parameter. After discretization of the APH Hamiltonia
Hs is symmetric, becauseHg

r is symmetric,HV is diagonal,
andHx is obviously symmetric.

C. Reduction of the Hx using point group symmetry

If the Hamiltonian Hs of a system commutes with
point groupG, i.e., the potentialHV is symmetric under the
operations ofG, we can reduce the size of the Hamiltonia
matrix by transforming the Hamiltonian into the irreducib
representations ofG.

Let G5$R%, where$R% is a set of symmetry operation
such as rotations and reflections. The order ofG is h, i.e, G
containsh symmetry operations,R. SupposeHx satisfies the
following eigenequation:

Hxf [z,k]~x!5lf [z,k]~x!, ~23!

wheref [z,k] transform according thekth column of thezth
irreducible representation ofG, i.e., f [z,k] is the kth basis
function for thezth irreducible representation, andl is the
corresponding eigenvalue. We will discretize Eq.~23! using
a uniform grid

x j5~ j 21/2!Dx, j 51,hNx , ~24!

wherehNx is the number of grid points,Dx5 2p/hNx is the
spacing between consecutive grid points, and clearlyNx is
the number of grid points in the interval@0,2p/h#. Then, Eq.
~23! can be written as

(
j 51

hNx

Hx~x i ,x j !f
[z,k]~x j !5lf [z,k]~x i !, k51,l z, ~25!

where l z is the dimension of thezth irreducible representa
tion. The full range ofx can be generated by applying ea
symmetry operationR on the range@1,Nx#. We can then
write Eq. ~25! as

(
j 51

Nx

(
R

Hx~x i ,Rx j !f
[z,k]~Rx j !5lf [z,k]~x i !, k51,l z.

~26!

From the well-known relations,30

f [z,k]~R21x!5(
k8

f [z,k8]~x!Gk8,k
[ j ]

~R!, ~27!

whereGk8,k
[z] (R) is the (k8,k)-th element of thezth irreduc-

ible representation matrix ofR, we have

f [z,k]~Rx!5(
k8

f [z,k8]~x!Gk8,k
[z]

~R21!

5(
k8

f [z,k8]~x!Gk8,k
[z]†

~R!

5(
k8

f [z,k8]~x!Gk,k8
[z] * ~R!. ~28!
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The following obvious properties ofGk8,k
[z] (R) are used in the

above derivation,G [z] (R21)5G [z]†(R)5G [z] 21(R). Substi-
tuting Eq.~28! into Eq. ~26! we obtain

(
j 51

Nx

(
R

Hx~x i ,Rx j !(
k8

f [z,k8]~x j !Gk,k8
[ j ] * ~R!

5lf [z,k]~x i !, k51,l z. ~29!

The expression Eq.~29! is a set of coupled equations whic
can be written concisely in matrix form. For triatomic rea
tions, the relevant irreducible representations are either o
dimensional or two-dimensional. For the one-dimensio
case,k5k851, so we simply omit them. Hence, we have

(
j 51

Nx

Hx
r ~x i ,x j !f

[z]~x j !5lf [z]~x i !, ~30!

where

Hx
r ~x i ,x j !5(

R
Hx~x i ,Rx j !G

[z] * ~R!, ~31!

is the reducedHx in a one-dimensional irreducible represe
tation.

For the two-dimensional case, we have

(
j 51

Nx

Hx
r ~x i ,x j !S f [z,1](x j )

f [z,2](x j ) D5lS f [z,1](x i )

f [z,2](x i ) D , ~32!

where

Hx
r ~x i ,x j !5(

R
Hx~x i ,Rx j !G

[z] * ~R! ~33!

is the reducedHx in a two-dimensional irreducible represe
tation. It has the same form as in the one-dimensional c
but it is a 232 matrix. Hx

r is symmetric if the associate
irreducible representation matrices are real~see Appendix A!.
There are three types of triatomic interactions: The first ty
occurs when all atoms are distinct,@ABC#. The point group
corresponding to this type isG5C2 . The second type occur
when two atoms are identical,@AAB #. The point group corre-
sponding to this type isG5C2v . The third type occurs when
all atoms are identical,@AAA #. The point group correspond
ing to this type isG5C6v . For all the above groups,G, in
each type the irreducible representation matrices are all
so Hx

r is symmetric. We provide the representation matric
in Appendix B for convenience.

One should note that if we confinex to @0,2p/@G##,
where @G# is the order of the group,G, Hx

r is a Nx3Nx

matrix in a one-dimensional irreducible representation an
2Nx32Nx matrix in a two-dimensional irreducible represe
tation. When the eigensystem of Eq.~30! or Eq. ~32! is
solved, eigenfunctions in the range@0,2p/@G## are obtained.
One can employ Eq.~27! to compute the eigenfunctions o
the full range ofx.

One can see that usingHx
r instead ofHx doesn’t affect

the symmetrization ofH in Sec. III B. Hence, we shall us
the following definition ofHs in the rest of this paper:

Hs5
\2

2mrj
2 FHg

r 1
1

sin2 u
Hx

r G1HV . ~34!
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The derivation presented here may be contrasted w
the symmetry-adaptation procedure provided in Ref. 25
Ref. 25 the symmetry adaptation was carried out by proj
tion of the Hamiltonian~or the derivative operator! onto two
different sets of projectors, one on each side of the Ham
tonian matrix. This is useful for cases where the Hamilton
~or the derivative operator! changes the symmetry of th
function it acts on~for example, as in the case of thed/dx
operator!. In the present case, the symmetry adaptation in
duced in this section is only used to adapt thex part of the
Hamiltonian, which is totally symmetric and hence does n
change the symmetry of the functions it acts on~unlike the
operator corresponding to theu part!.

D. Reduction of the Hamiltonian using projection

Suppose we discretizeHs usingNx grid points inx co-
ordinate andNg in g. The size of the Hamiltonian matrix
(NgNx3NgNx) to be diagonalized is very large for system
of physical interest when highly accurate eigenvalues
eigenfunctions are needed. Since we wish to obtain on
few of the lowest eigenstates to high accuracy, we cons
here a projection technique to reduce the size of the Ha
tonian matrix, which leads to a reduction in the CPU tim
and memory requirements. First, we find a nearly comp
basis for the desired lowest eigenvectors, and then we pro
the Hamiltonian matrix onto this subspace:Hcut5 P̃HsP,
whereP is the projection matrix andP̃ is the transpose ofP.
The matrixHcut is small. We solve the eigensystem ofHcut

and map it back to the original basis to obtain the appro
mate eigensystem of theH. Details are given below.

Noting that Hg
r depends only ong and \2/2mrj

2 is a
constant, and introducing the identity matricesI g and I x in
the g andx spaces, respectively, we can rewrite the Ham
tonianHs in Eq. ~34! in the tensor product form

Hs5
\2

2mrj
2 Hg

r
^ I x1F \2

2mrj
2

1

sin2 u
I g ^ Hx

r 1HVI g ^ I xG .
~35!

Now Hs is divided into two terms

H1
s5

\2

2mrj
2 Hg ^ I x, ~36!

H2
s5

\2

2mrj
2

1

sin2 u
I g ^ Hx1HVI g ^ I x . ~37!

The first term,H1
s , is independent ofx, while the second

term depends on bothg andx. Since we are only intereste
in the lowest eigenvalues and eigenfunctions ofHs, andH1

s

is independent ofx, one can expect to get accurate resu
using only a subeigenspace ofH2

s instead. We solve the
eigensystem ofH2

s for each fixedg j , H2
s(g j )ak

g j5lk
g jak

g j ,
where (j 51,Ng) and Ng is the number of the grid points
used ing and (lk

g j ,ak
g j) is thekth eigenpair for the giveng j .

Then, we discard the eigenvectors with large eigenvalu
The rest of the eigenvectors consist of a nearly comp
basis for the lowest eigenvectors ofHs. In our implementa-
tion, we sort all the eigenvectors obtained above in asce
ing order of eigenvalues, and choose only a number of
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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eigenvectors corresponding to the smallest eigenvalues. A
normalization we construct the block-diagonal projecti
matrix, Pi ,i5Pi5(a1

g i ,a2
g i ,...,amg i

g i ).

BecauseP is an orthonormal, nearly complete basis f
the lowest eigenvectors, F̄tL

p (g,x;rj), we have
PP̃F̄tL

p (g,x;rj)'F̄tL
p (g,x;rj). SubstitutingF̄tL

p (g,x;rj)
in Eq. ~21! and multiplying by P̃ from the left, we get
HcutCtL

p (g,x;rj)'E tL
p (rj)CtL

p (g,x;rj), where Hcut

5 P̃HP andCtL
p (g,x;rj)5 P̃F̄tL

p (g,x;rj). We can see tha
P is anNgNx3Nx

cut matrix, whereNcut5( i 51
Ng mg i

so Hcut is
anNcut3Ncut matrix. Its size is much smaller than the size
Hs if Ncut is much smaller thanNgNx , which is the case if
we want only a few eigenvalues.Ncut should be taken to be
as small as possible, consistent with the desired leve
convergence. Noting thatHs is symmetric, we haveH̃cut

5 P̃H̃sP5 P̃HsP5Hcut. Thus,Hcut is symmetric.

IV. NUMERICAL TESTS

Numerical tests are carried out to study three aspect
the approach. First, we test the behavior with respect to
rameterM in the PDAF dp,M

(k) . Next, we examine theHx
r

using different irreducible representations of various grou
Finally, the accuracy ofHg

r is tested.

A. Test of PDAFs

We tested PDAFs using different periodic functions,
of them showing similar results. Here, we present only
test for the eigenvalues ofHx . Using the PDAF matrix de-
fined in Eq.~10! we obtain the discrete representation ofHx

Hx i j
52 (

k51

Nx

Di j
(2)52 (

k51

Nx

dp,M
(2) ~x i2x j !Dx, ~38!

whereNx is the number of grid points used in (0,2p), Dx
52p/Nx and x j5( j 2 1

2)Dx. We know that the correct ei
genvalues ofHx should be 0,1,1,4,4,...,k2,k2,..., so it’seasy
to check the difference between the computed eigenva
and the exact ones. We set the criterion of 1026 as the maxi-
mum tolerable error and then count how many good eig
values can be obtained. A typical result is shown in Fig. 3
which we setNx532 and variousM from 1 to 35. One can
see that whenM5Nx/2, almost all eigenvalues are goo
This suggests the optimal choice ofM .
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B. Test of Hx
r

Tests ofHx
r were done for all the aforementioned irre

ducible representations of the relevant point groups. All
them give good results. Here, we present only one typ
result computed using theC2v group, since onlyC2v is in-
volved in the FH2 reaction calculation. We chose the
1H2 system, since we have published detailed converge
studies using the DVR and the ABM methods.

Similar to Hx , we can obtain the PDAF representatio
of Hx

r . Note thatC2v has only one-dimensional irreducibl
representations, so we use Eq.~31! for Hx

r . We obtain the
discrete representation ofHx

r as

Hx i j
52 (

k51

Nx

(
R

dp,M
(2) ~x i2Rx j !G

[z]Dx. ~39!

Note that the grid scheme is defined in Eq.~24!. We set
Nx58, and the eigenvalueslk for each of the irreducible
representations are computed, and theAlk are shown in
Table I for easy comparison. One can see that if we comb
the results from all the irreducible representations, we w
obtain the~approximate! eigenvalues 0,1,1,4,4,...,k2,k2,...,
which are obtained fromHx . We also note that the degene
ate eigenvalues inHx are no longer degenerate inHx

r .

FIG. 3. The number of good eigenvalues reaches maximum whenM
5Nx/2 (Nx532), whereM is the parameter in PDAFdp,M

(k) (x), andNx is
the number of grid points in range (0,2p).
00 07
00 02
00 00
00 00
00 01
00 0
00 0
00 0
TABLE I. Alk, square roots of eigenvalues ofHx
r in irreducible representations of groupC2v .

k A1 B1 A2 B2

1 0.000 000 524 560 66 2.000 000 000 000 09 0.999 999 999 999 89 1.000 000 000 0
2 2.000 000 000 000 07 3.999 999 999 999 97 3.000 000 000 000 04 3.000 000 000 0
3 3.999 999 999 999 99 5.999 999 999 999 99 5.000 000 000 000 00 5.000 000 000 0
4 5.999 999 999 999 99 7.999 999 999 999 99 7.000 000 000 000 00 7.000 000 000 0
5 7.999 999 999 999 99 10.000 000 000 000 0 9.000 000 000 000 01 9.000 000 000 0
6 10.000 000 000 000 0 12.000 000 000 000 0 11.000 000 000 000 0 11.000 000 000 0
7 12.000 000 000 000 0 14.000 000 000 000 0 13.000 000 000 000 0 13.000 000 000 0
8 14.000 000 000 000 0 22.627 416 997 969 5 15.000 000 000 000 0 15.000 000 000 0
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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C. Test of Hg
r

Hg
r in Eq. ~19! has the same eigenvalues asHu . If we

rewrite Hu as

Hu52
8

sin 2u

]

]2u
sin 2u

]

]2u
, ~40!

we can see that the eigenequation ofHuc(u)5lc(u) is a
Legendre differential equation if we write the eigenvalue
l l58l ( l 11) l 50,1,... . Thus,Hg

r has eigenvalues of 8l ( l
11). To evaluate the accuracy of the computed eigenva
we define Sl(l l) as, Sl(l l)52 lgu@l l28l ( l 11)#/@8l ( l
11)#u, wherel l is the l th computed eigenvalue, andSl(l l)
gives the approximate number of significant digits. Figure
shows the results when we setNg516,32,48, and 64. One
can see that for eachNg there are aboutNg/3 eigenvalues of
high accuracy. This is accurate enough for the FH2 calcula-
tion, because typically the order of the Hamiltonian matrix
about 1000, but we require less than 300 eigenvalues.

It is worth mentioning that we also tested the nonsy
metric form,Hu , using the PDAF presentation. Although w
can get as highly accurate results from eitherHx or Hx

r , we
still choose the symmetric form, because the nonsymme
matrix costs more time and memory to diagonalize. Mo
over, when we add the potential, the accuracy of the nons
metric form will decrease to the accuracy of the symme
Hg

r .

V. CALCULATIONS FOR THE FH 2 SYSTEM

In this section we report the results of PDAF calcu
tions of surface functions and the matrix elements, and c
pare them with the results of the DVR and ABM method
The system chosen as a nontrivial example is the F1H2

→HF1H reaction; its treatment requires generation of
large basis of surface functions. The potential energy sur
~PES! used is that of Brownet al.29 commonly called the
T5A surface, and we choose the zero of energy to be at
bottom of the asymptotic HF potential wells. This PES h
been used in many calculations8,14,20,28,31–34on this reaction,

FIG. 4. Accuracy~number of significant digits! in eigenvalues ofHg
r . For

all Ng , the smallestNg/3 eigenvalues are of high accuracy.
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and plots of the PES and surface functions showing th
appearance in APH coordinates have also been publis
Arrangement 1 or i~initial! is taken to be F1H2 reactants.
Detailed convergence studies have been published
F1H2 using the DVR and ABM methods. For compariso
of these methods with the current PDAF method, we use
parameters and methods as outlined in those publ
tions.14,24

The calculations are forL50 and even parity (p50)
and include all functions connecting to the evenj rotational
states of the F1H2 arrangement. Because of the symme
due to the identical H atoms, this only requires including
the PDAF calculations theA1 irreducible representation, in
which the surface functions are even under reflection ab
x50.

A. Grid size and mapping

The grid sizes~the number of grid points!, Nx , Ng ,
andNcut are determined by the convergence test. We pres
only the results here. To attain five significant digits
the lowest 100 eigenvalues for anyrj , we use
Ng5 b25.85215.851 19rj 20.130 102rj

2 20.004 251 7*rj
3 c,

Ncut5 b1428.061 29.2007rj 2 6.377 55rj
2 20.119 048* rj

3 c,
and Nx5 b4p max(Ng)c/@G#, where @G# is the order of the
associated symmetry group. To getNx , we use the maxi-
mum of Ng because it makesNx identical for all rj , thus
making it easy to compute the overlap matrices. Also, us
the maximumNg doesn’t significantly increase the comput
tion time, because we reduce the matrix size according
Ncut, as discussed in Sec. III D.

Although Nx is chosen to be the same for allrj , Ng is
different. Hence, before we compute the overlap matrix,
have to map the wave functions to a uniform grid, to redu
the computation time for the overlap matrix.

Let Ng
u be the number of uniform grid points ing; Ng is

the original number of grid points. Applying Eq.~8! to the
wave function

FtL
p ~g j ,x;rj!5 (

k51

2Ng

dp,M~g j2gk!FtL
p ~gk ,x;rj!Dg

5 (
k51

Ng

@dp,M~g j2gk!1dp,M~g j22p1gk!#

3FtL
p ~gk ,x;rj!Dg, ~41!

TABLE II. PDAF, ABM, DVR, and FEM surface function energiesEt and
average energies in eV atr52.2a0 .

t PDAF ABM DVR FEM

1 6.9176 6.9177 6.9177 6.9177
2 7.0341 7.0341 7.0341 7.0342
3 7.1299 7.1298 7.1296 7.1299
4 7.3044 7.3042 7.3038 7.3043
5 7.4934 7.4932 7.4927 7.4933
6 7.7007 7.7007 7.7008 7.7009
7 7.9227 7.9219 7.9202 7.9222
8 8.0786 8.0789 8.0786 8.0791
9 8.1548 8.1524 8.1475 8.1529
10 8.2495 8.2502 8.2494 8.2503

Ē(10) 7.5986 7.5983 7.5974 7.5985
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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whereDg5p/Ng , andg j , gk represent the coordinates
the above two grid schemes, respectively,g j5( j 2 1

2)Dgu,
andgk5(k2 1

2)Dg, whereDgu5p/Ng
u .

B. Eigenvalues

The atomic masses used are mass of
518.998 403 2 a.u., and mass of H51.007 825 03 a.u. The
calculations were performed at five representativer values
ranging from the smallest to the largest values that w
needed in our reactive scattering calculations.14,20 The pre-
cise values ofr chosen have no particular significance, a
some were chosen simply because the convergence o
DVR method had already been studied at these values.14,24

The results are given in Tables II–VI for the five valu
of r chosen. In each table, the energy eigenvalues of
highest ten important or open surface function states
given in eV. The omitted lower eigenvalues always agree
more significant figures than those shown. Also shown
Ē(n), the average of the firstn eigenvalues. This gives
convenient measure of the overall agreement of the meth

C. Matrix elements

The APH surface functionsFtL
p (g,x;rj) are ‘‘sector

adiabatic’’ or ‘‘diabatic-by-sector;’’ that is, they change fro
sector to sector, but are independent ofr within a sector.

TABLE IV. PDAF, ABM, DVR, and FEM surface function energiesEt and
average energies in eV atr54.974 796 6a0 .

t PDAF ABM DVR FEM

91 2.0699 2.0701 2.0701 2.0720
92 2.0721 2.0734 2.0727 2.0760
93 2.0864 2.0896 2.0869 2.0916
94 2.0941 2.0941 2.0943 2.0961
95 2.1087 2.1107 2.1093 2.1132
96 2.1215 2.1232 2.1220 2.1267
97 2.1487 2.1509 2.1495 2.1549
98 2.1643 2.1650 2.1645 2.1672
99 2.1793 2.1806 2.1799 2.1833
100 2.1892 2.1892 2.1893 2.1918

Ē(100) 1.3974 1.3977 1.3975 1.3985

TABLE III. PDAF, ABM, DVR, and FEM surface function energiesEt and
average energies in eV atr53.037 582 8a0 .

t PDAF ABM DVR FEM

11 1.9845 1.9845 1.9845 1.9849
12 1.9975 1.9975 1.9975 1.9979
13 2.0514 2.0515 2.0515 2.0519
14 2.1090 2.1090 2.1090 2.1093
15 2.1275 2.1275 2.1275 2.1281
16 2.1352 2.1352 2.1353 2.1357
17 2.1993 2.1994 2.1994 2.1998
18 2.2578 2.2578 2.2578 2.2584
19 2.2730 2.2730 2.2730 2.2737
20 2.3197 2.3197 2.3197 2.3204

Ē(20) 1.8551 1.8551 1.8551 1.8554
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Thus, when the APH wave function is substituted into t
Schrödinger equation, the resulting exact coupled channe
close-coupling equations are of the form9

F ]2

]r2 1
2mE

\2 GctL
Jpn~r!

5
2m

\2 (
t8A8

^FtL
Jp D̂LM

Jp uHi uFt8L8
Jp D̂L8M

Jp &ct8L8
Jpn r. ~42!

The matrix elements are obtained in Ref. 9 as

^FtL
Jp D̂LM

Jp uHi uFt8L8
Jp D̂L8M

Jp &

5
rj

2

r2 EtL~rj!dtt8dLL81dLL8

3^FtL
Jp uV~r,u,x!2

rj
2

r2 V~rj ,u,x!uFt8L
Jp &

1^FtL
Jp D̂LM

Jp u
A2B

2
~Jx

22Jy
2!1TcuFt8L8

Jp D̂L8M
Jp &, ~43!

whererj denotes thejth hyper-radius sampled from the in
terval @rmin ,rmax#. The rj are given by rj5@rmin1(j
21)Dr1#(11Dr2)

j21. This algorithm spaces the sector ce
ters logarithmically. Given a sector with sector centerrj , we
evaluate matrix elements at the three rho values given
r15(rj211rj)/2, r25rj , and r35(rj1rj11)/2. All the

TABLE V. PDAF, ABM, DVR, and FEM surface function energiesEt and
average energies in eV atr57.298 999 3a0 .

t PDAF ABM DVR FEM

91 2.0559 2.0564 2.0569 2.0679
92 2.0749 2.0754 2.0760 2.0928
93 2.0980 2.0981 2.0981 2.1023
94 2.0985 2.0990 2.0994 2.1141
95 2.1098 2.1098 2.1099 2.1148
96 2.1194 2.1196 2.1198 2.1278
97 2.1268 2.1273 2.1278 2.1443
98 2.1538 2.1542 2.1543 2.1537
99 2.1551 2.1551 2.1551 2.1608
100 2.1597 2.1602 2.1608 2.1621

Ē(100) 1.3788 1.3788 1.3790 1.3811

TABLE VI. PDAF, ABM, DVR, and FEM surface function energiesEt and
average energies in eV atr59.0a0 .

t PDAF ABM DVR FEM

91 2.0747 2.0747 2.0748 2.0805
92 2.0774 2.0779 2.0782 2.0863
93 2.0957 2.0964 2.0974 2.1051
94 2.1010 2.1010 2.1009 2.1065
95 2.1153 2.1153 2.1154 2.1233
96 2.1189 2.1194 2.1197 2.1284
97 2.1250 2.1252 2.1253 2.1315
98 2.1461 2.1470 2.1482 2.1541
99 2.1542 2.1545 2.1546 2.1562
100 2.1558 2.1559 2.1560 2.1564

Ē(100) 1.3791 1.3791 1.3792 1.3812
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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matrix elements in Eq.~43! are independent ofE, so that
they can be calculated once, stored, and used at many
tering energies.

The wave functionsFt,L
p (g,x;rj) should be normalized

before computation of the matrix elements. The normali
tion factor N can be calculated in the desired irreducib
representation easily according to Eq.~13! as shown below

15NE
0

2p

dxE
0

p/2

du sin 2uFtL
p 2~u,x;rj!

5NE
0

2p

dxE
0

p

dg
p

4
sing sin 2uFtL

p 2~g,x;rj!

5hN(
i 51

Nx

(
j 51

Ng

DxDg
p

4
sing j sin 2u~g j !

3FtL
p 2~g j ,x i ;rj!.

Thus

N5H 1
4 hpDxDg(

i 51

Nx

(
j 51

Ng

sing j

3sin 2u~g j !FtL
p 2~g j ,x i ;rj!J 2 1/2

. ~44!

After FtL
p (g,x;rj) is normalized, we compute the matr

elements. The first term on the right-hand side of Eq.~43! is
just a local internal energy which, together with theE term
on the left-hand side of Eq.~42!, determines a local wave
number.

The second term of Eq.~42! is often called a potentia
matrix element. It is small on the sector and can be evalua
with the same quadratures used in getting the surface f
tions. Similar to the evaluation of the normalization fact
we obtain for the potential matrix elements

^FtL
Jp ~rj!uV~r!2

rj
2

r2 V~rj!uFt8L
Jp

~rj!&

5
1

4
hpDxDg(

i 51

Nx

(
j 51

Ng

sing j sin 2u~g j !

3FtL
p ~g j ,x i ;rj!FV~r!2

rj
2

r2 V~rj!G
3Ft8L

p
~g j ,x i ;rj!. ~45!

The Coriolis term can be simplified as

^FtL
Jp D̂LM

Jp uTcuFt8L8
Jp D̂L8M

Jp &

5
2\2

2mr2 ^FtL
p u

cosu

sin2 u

]

]x
uFt8L8

p &

3@~11dL0!~11dL80!#21/2

1@l2~J,L!~21!J1L1pdL8,12L#, ~46!

wherel6(J,L)5A@(J6L11)(J7L)# and
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^FtL
p u

cosu

sin2 u

]

]x
uFt8L8

p &

5
1

2
hpDx2Dg(

i 51

Nx

(
j 51

Ng

(
k51

Nx

sing j

cos2 u~g j !

sinu~g j !

3FtL
p ~g j ,x i ;rj!dp,M

(1) ~x i2xk!Ft8L8
p

~g j ,xk ;rj!.

~47!

It should be noted that the last term in the bracket in Eq.~47!
is nonzero only whenL50 or 1, and also that because ther
dependence of the operator factors out, the matrix elem
over theFtL

p (g,x;rj) only need to be evaluated once o
each sector. They are readily evaluated using the PD
FtL

p (g,x;rj) at the quadrature points since the PDAF co
generates the derivatives ofFtL

p (g,x;rj) directly.
The asymmetric top terms of Eq.~43! can be explicitly

written as

^tLu 1
2 ~A2B!~Jx

22Jy
2!ut8L8&

5 1
4 \2^FtL

p uA2BuFt8L8
p &@~11dL0!~11dL80!#21/2

3@l1~J,L!l1~J,L11!dL8,L12

3l2~J,L!l2~J,L21!dL8,L22

1~21!J1L1pl2~J,L!l2~J,L21!dL8,22L#, ~48!

whereA51/mrj
2(11sin2 u), B51/2mrj

2 sin2 u, and

^FtL
p uA2BuFt8L8

p &

5 1
4 hpDxDg(

i 51

Nx

(
j 51

Ng

sing j sin 2u~g j !

3FtL
p ~g j ,x i ;rj!~A2B!Ft8L8

p
~g j ,x i ;rj!.

The third term in the bracket in Eq.~43! is always zero if
uL2L8u.2, and ther dependence ofA2B again factors
out, giving the same simplifications and allowing the eva
ation of the integrals by the same methods as for the Cori
terms.

At the boundaries between sectors, theR matrix is trans-
formed by an orthogonal transformation, which requires c
culation of the overlap matrix elements. The formula for t
overlap matrix elements is given by

^FtL
Jp ~rj!uFt8L

Jp
~rj8!&

5
1

4
hpDxDgu(

i 51

Nx

(
j 51

Ng p

4
sing j sin 2u~g j !

3FtL
Jp ~g j ,x i ;rj!Ft8L

Jp
~g j ,x irj8!. ~49!

D. Comparison of methods

We compare the computational efficiency of the PDA
DVR, ABM, and FEM methods on the same computer~PIII
866 MHz!, by computing eigenvalues, potential matrix el
ments, and overlap matrices at 100rj’s. rj starts from 2.0a0
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



he

er
AF
ng

y
M
n

i
ry
em
th

o
a
e

is

vior
an
are
nd
ible

e
h is

n-
ine

the
M,

rix
ree

ap
om
VR

he

ted

la-
ro-

AF

AF,

579J. Chem. Phys., Vol. 118, No. 2, 8 January 2003 Quantum reactive scattering: PDAF method
and ends at 9.0a0 and is evenly spaced in between. T
computation times~CPU time! are shown in Fig. 5.

The FEM method takes much more time than the oth
thus, we do not include it in Fig. 5. We see that the PD
method is much faster than the DVR over most of the ra
of rj . If rj is very small~less than 2.2a0), the DVR is the
most efficient method. Although the ABM works slightl
faster than the PDAF method, it turns out that the AB
diverges whenrj is small. We have also made compariso
of the three methods for different systems, namely H2O,
HeH2, LiFH, H3 , HO2, and e11H. In all cases we see
results similar to Fig. 5. The distances where the PDAF
computationally faster than the DVR or ABM method va
considerably from system to system. For the LiFH syst
the PDAF is more than an order of magnitude faster than
ABM method for distances less than 6.0a0 . The DVR
method is generally faster than the PDAF at relatively sh
hyper-radii where the wave functions become highly deloc
ized and the PDAF becomes more efficient at larger hyp

FIG. 5. CPU time of PDAF, DVR, and ABM.

FIG. 6. Comparison of the sum of potential matrix elements using PD
ABM, and DVR.
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radii. However, for the LiFH system the PDAF method
much faster than the DVR at all hyper-radii. For thee1

1H system~which has an attractive singularity! the FEM
and ABM methods should be used to ensure correct beha
of the surface functions near the singularities. The DVR is
excellent method and should not be discounted. There
situations where the DVR method is definitely faster a
more accurate. We used a Legendre DVR and it is poss
that a Fourier DVR34 would be more efficient. It should be
noted that DVRs and DAFs are intrinsically different. Th
DVR uses a basis and transforms the basis to a grid whic
closely related to that basis. The DAF is anapproximating
functionaland is not as likely to ring. Studies are being co
ducted on simple one-dimensional potentials to determ
the circumstances for which each method excels.

We compare only the potential matrix elements and
overlap matrix elements here, computed using the AB
DVR, and PDAF. The comparison of the potential mat
elements is shown in Fig. 6 and one can see that all th
methods agree with each other very well whenr.3.3a0 .
However, whenr,3.3, the ABM result diverges from the
PDAF and DVR significantly. The comparison of the overl
matrix elements is shown in Fig. 7. One can see clearly fr
the figure that the PDAF gives results very close to the D
at small r (rho,3.4a0), and it also agrees with the ABM
very well at larger (rho.4.4a0). The ABM gives very dif-
ferent results from the PDAF and DVR at smallr, and DVR
gives very different results from PDAF and ABM at larger.
We know that the ABM is very accurate at larger and the
DVR at small r, and thus the comparisons show that t
PDAF is accurate both for small and larger.

VI. CONCLUSION

In this paper we have presented a periodic distribu
approximating functional~PDAF! method for calculating the
surface function basis needed in hyper-spherical formu
tions of reactive scattering theory. PDAF functions are int
,

FIG. 7. Comparison of the sum of the overlap matrix elements using PD
ABM, and DVR.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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duced and shown to be capable of providing an accur
efficient representation of the derivative operators. T
PDAF is efficient for all values ofr small and large.

Test calculations on the F1H2 system with the T5A
PES, comparing the PDAF, ABM, DVR, and FEM metho
showed that the FEM is always the least efficient of the fo
and the ABM is the most efficient method for larger but
is not accurate at smallr. On the other hand, the DVR i
the most efficient method for smallr but is not accurate for
larger.
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APPENDIX A: Hx
r IS SYMMETRIC

Hx
r ~x i ,x j !5(

R
Hx~x i ,Rx j !G

[ t] * ~R!. ~A1!

To prove thatHx
r is symmetric, it is sufficient to show

Hx
r k,k8~x i ,x j !5Hx

r k8,k~x j ,x i !, ~A2!

where

Hx
r k,k8~x i ,x j !5(

R
Hx~x i ,Rx j !Gk,k8

[z] * ~R!. ~A3!

We know thatHx is symmetric, so

TABLE VIII. Irreducible representations of groupC2v .

C2v

Rx
E
x

C2

p1x
sv

2p2x
sv8

p2x p

A1 1 1 1 1 0
A2 1 1 21 1 0
B1 1 21 1 21 1
B2 1 21 21 1 1
0
0

0

1

TABLE IX. Irreducible representations of groupC6v .

C6v

Rx
E
x

C6

p

3
1x

C6
5

5p

3
1x

C3

2p

3
1x

C3
2

4p

3
1x

C2

p1x p

A1 1 1 1 1 1 1
A2 1 1 1 1 1 1
B1 1 21 21 1 1 21 1
B2 1 21 21 1 1 21 1
E1 S1 0

0 1
D S 1

2
2
)

2

)

2

1

2

D S 1

2

)

2

2
)

2

1

2

D S2
1

2
2
)

2

)

2
2

1

2

D S 2
1

2

)

2

2
)

2
2

1

2

D S21 0

0 21
D 1

E2 S1 0

0 1
D S2

1

2
2
)

2

)

2
2

1

2

D S 2
1

2

)

2

2
)

2
2

1

2

D S 2
1

2

)

2

2
)

2
2

1

2

D S2
1

2
2
)

2

)

2
2

1

2

D S1 0

0 1
D 0

R sv sv8 sv9 sd sd8 sd9 p
Rx 2p2x 2p

3
2x

4p

3
2x

p

3
2x

p2x 5p

3
2x

A1 1 1 1 1 1 1
A2 21 21 21 21 21 21 0
B1 1 1 1 21 21 21 1
B2 21 21 21 1 1 1
E1 S1 0

0 21
D S2

1

2

)

2

)

2

1

2

D S 2
1

2
2
)

2

2
)

2

1

2

D S 1

2

)

2

)

2
2

1

2

D S21 0

0 1
D S 1

2
2
)

2

2
)

2
2

1

2

D 1

E2 S1 0

0 21
D S 2

1

2
2
)

2

2
)

2

1

2

D S2
1

2

)

2

)

2

1

2

D S2
1

2

)

2

)

2

1

2

D S1 0

0 21
D S 2

1

2
2
)

2

2
)

2

1

2

D 0
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Hx
r k8,k~x j ,x i !5(

R
Hx~x j ,Rx i !Gk8,k

[z] * ~R!

5(
R

Hx~Rx i ,x j !Gk8,k
[z] * ~R!

5(
R

Hx~R21x i ,x j !Gk8,k
[z] * ~R21!

5(
R

Hx~R21x i ,x j !Gk8,k
[z] * 21

~R!

5(
R

Hx~R21x i ,x j !Gk8,k
[z] * †

~R!

5(
R

Hx~R21x i ,x j !Gk,k8
[z]

~R!. ~A4!

Because Hx(x i ,x j ) (DAF(2)(x i2x j )) depends on
ux i2x j u, andR is a length-preserving operation, we have

Hx~R21x j ,x i !5Hx~R21x j ,x i !

5Hx~RR21x j ,Rx i !5Hx~x j ,Rx i !.

~A5!

Combining Eq.~A4! and Eq.~A5! gives

Hx
r

k,k8~x i ,x j !5(
R

Hx~x i ,Rx j !Gk,k8
[z]

~R!. ~A6!

Therefore, ifG [z] is real, Eq.~A2! is true, andHx
r is sym-

metric.

APPENDIX B: IRREDUCIBLE REPRESENTATIONS
OF GROUP C2 , C2v AND C6v

The irreducible representation matrices for some po
groups frequently used in APH surface function compu
tions are given in Tables VII, VIII, and IX. The first colum
in each table gives the names of the irreducible represe
tions. The second row gives the transformation when a s
metry operationR acts onx. The parityp is also given in
each table.
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