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We continue development of the theory of reactive (rearrangement) scattering using 
adiabatically adjusting principal axes hyperspherical (APH) coordinates. The surface 
functions, functions of the APH hyperangles covering the surface of the internal coordinate 
sphere, are expanded in analytic basis functions centered in each of the arrangement 
channels. The rotational functions are associated Legendre polynomials, and the vibrational 
functions are harmonic functions of an “anharmonic” variable which covers an infinite 
range, allows accurate Gauss-Hermite quadrature, and includes effects of anharmonicity. 
Example calculations show that these functions provide an efficient basis which can 
markedly decrease the computational effort required to generate accurate surface functions. 

1. INTRODUCTION 

Recent years have seen very rapid development of new 
quantum methods for treating reactive molecular collisions 
(rearrangement scattering) in the full three-dimensional 
(3D) physical space.’ These methods, together with ad- 
vances in computers, now allow accurate calculations on 
many reactions of real chemical interest. Rapid advances 
are being made both in time-dependent and time- 
independent methods; however, we limit discussion here to 
time-independent methods. The two most popular such ap- 
proaches are ( 1) coupled channel (CC) expansions using 
hyperspherical coordinates and (2) “variational” arrange- 
ment channels expansions using Jacobi coordinates, and 
there are several methods differing in detail within each 
approach. Both approaches have had remarkable successes 
on many systems’ and have often leapfrogged each other in 
the diihculty of system they could handle. At the moment, 
the two most d&cult systems for which complete differ- 
ential or integral cross sections have been reported are the 
F + Hz -, HF + H reaction2’3 and the He + Hz + HeH + + H 
reaction,4 and, on both, the most extensive results over the 
widest energy range have been obtained by the hyperspher- 
ical method of Launay and co-workers2’4 which differs only 
in minor ways from the method we have presented in the 
papers in this series.‘-’ In the present paper we show how 
to further improve the efficiency of these hyperspherical 
methods. 

In hyperspherical coordinate formulations of reactive 
scattering, the total wave function is expanded in Wigner 
rotation functions of three Euler angles describing the spa- 
tial orientation of the plane formed by the three particles 
and basis functions of two internal hyperspherical angles, 
and then the dependence on the hyperradius, p, is deter- 
mined by propagating the set of coupled channel (CC) 
differential equations from small p, where the solutions 
must be regular, to large p where they can be projected 
onto the arrangement channels to determine the scattering 
matrix. The various hyperspherical methods differ mostly 

in which of the many sets of hyperangles are used and how 
the basis functions are chosen. Most of those methods 
which use Delves-type’o~11 hyperspherical coordinates ex- 
pand the wave function simultaneously in three sets of 
hyperangles, one set centered in each arrangement channel. 
The basis functions in each arrangement usually consist of 
products of diatomic rotational functions of the internal 
rotational angle 0, between the Jacobi vectors of the 7th 
arrangement and numerically determined “vibrational” ba- 
sis functions of some multiple of the Delves hyperangle 8, 
of that arrangement. The basis functions in one arrange- 
ment are only orthogonal to those in the other arrange- 
ments at large p; at small p they overlap to couple the 
arrangements. 

In the methods using those hyperspherical coordinates 
which treat all of the particles symmetrically,2~4g~‘2Y13 one 
obtains “surface functions,” the basis functions of the two 
hyperangles which cover the surface of the internal coor- 
dinate sphere or “hypersphere,” by solving a two- 
dimensional (2D) Schriidinger equation. This equation, 
which is discussed in more detail later in this paper, de- 
pends parametrically on p and must be solved at many 
values of p. In addition, a large number of these surface 
functions must be obtained at each p, so that it is impor- 
tant to have an efficient method for finding them. 

The first accurate 3D reactive scattering calculations 
using hyperspherical coordinates by both others”(a)113 and 
ourselves5-7r14*15 used finite element methods (FEMs) to 
solve the surface function equation. These FEMs work rea- 
sonably well at small p where the surface functions are 
delocalized over much of the surface of the “hypersphere.” 
However, at large p, where the arrangement channels are 
localized in small regions of the surface, it requires very 
fine grids to make the FEMs give accurate surface func- 
tions. Even with algorithms which make the grid coarse in 
classically forbidden regions, the regions of fme grid lead to 
rather large square matrices (typically of order N- 4.000), 
and the subspace iteration16 (SI) method we initially used 
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to diagonalize those matrices proved to be computationally 
slower than desired. Initial attempts17 to speed up the cal- 
culations with a block Lanczo~‘~ (BL) diagonalizer proved 
disappointing. However, in more recent work we” have 
implemented a spectral transform Lanczos method2’ 
(STLM) which is much more encouraging. In practice, the 
STLM is at least an order of magnitude faster than the SI 
or BL methods, and it makes FEM calculations feasible for 
many systems, especially at small p. Its one drawback is 
that, in production work, while running calculations for a 
series of p values, the STLM algorithm occasionally fails to 
converge, and the program stops and must be restarted. 

lieve that this FBR is not as efficient as the DVR because, 
for the F+H, reaction with J=O, this FBR required diag- 
onalizing matrices of order as large as2 N= 1460 to obtain 
functions of the same accuracy as those obtained with the 
DVR with8,22 N<940, and the computational costs of both 
methods scale as N3. 

Before leaving this discussion of the FEM method, we 
note that reactive scattering problems, whose potentials are 
nonseparable in a way that requires subdividing regions of 
an initially coarse finite-element grid, are not very well 
conditioned for use of the FEM. The FEM is capable of 
much higher efficiency and accuracy in problems where the 
grid can smoothly change from coarse to flne.21 

A second method which we have implemented83g122 and 
used23-25 in calculations on several reactions is the discrete 
variable representation26 (DVR) . Like the FEM, the DVR 
is most efficient at small p where the surface functions are 
delocalized. At large p, where the surface functions are 
highly localized but the DVR points still cover the whole 
space, it becomes much less efficient. However, with the 
sequential diagonalization-truncation technique27 the final 
matrix which must be diagonalized is usually of order 
n < lCO0, which is significantly smaller than encountered in 
the FEM, and the diagonalization can be performed di- 
rectly. Thus, on most systems, it is faster than the STLM- 
FEM, and its eigenfunctions and eigenvalues are smoother 
and more accurate. The code also runs very reliably. How- 
ever, in a few cases where one diatomic molecule has a 
much shorter bond length than another, such as the HF 
molecule in the Li+HF+ LiF+H reaction’4y’5128 and the 
tpD molecule (where t is a tritium nucleus and p a nega- 
tive muon) in the tp +D2etpDz ++D +D reactionlg of 
muon-catalyzed fusion, the DVR is more expensive than 
the FEM because of the need for many grid points in a 
small, localized region. Furthermore, in systems such as 
e+ +H, the DVR does not give the proper Coulomb cusp 
in the wave functions. 

A fourth surface function method is that of Wol- 
niewicz and Hinze2’ who construct the J-dependent hyper- 
spherical harmonics and use them as a primitive basis in 
solving for surface functions that cover the whole 5D sur- 
face of the hypersphere. These basis functions are also best 
at small p, and a contraction is necessary to keep the size 
of the basis manageable at large p. The hyperharmonics 
have the advantage that they exactly handle the Eckart 
singularities3’ in the rotational part of the Hamiltonian, 
but they have the disadvantage that they are a large, inef- 
ficient basis for many problems, and the surface function 
problem must then also be solved again for every J. Thus, 
for a great many problems, this approach is much more 
expensive than the DVR and the FBR methods already 
discussed. 

A third method for obtaining the surface functions is 
the finite basis representation (FBR) of Launay and 
LeDourneuf 2r4*12 who expand in simple trigonometric 
functions closely related to the hyperspherical harmonics 
that are the solutions of the problem when the total angu- 
lar momentum J=O and the potential ‘v=O. Thus, their 
primitive basis functions are equivalent to the FBR on 
which our DVR method is based, and, like the FEM and 
DVR methods, this FBR is efficient at small p but gets 
inefficient at large p. To keep the basis size manageable at 
large p, Launay and LeDourneuf 2*4 performed a basis con- 
traction by a prediagonalization that produces a new basis 
concentrated near linear and away from the symmetric top 
configurations that become classically forbidden at large p. 
That enabled them to generate complete cross sections for 
the difficult reactions already discussed. However, we be- 

In this paper we present a tifth method, herein denoted 
the analytic basis method (ABM), for obtaining surface 
functions. It has some similarity to the Delves hyperspher- 
ical methods of Schatz” and Kuppermann and co- 
workers’r in that it uses functions centered in the arrange- 
ment channels and diatomic rotational functions of 0, 
However, our overall formulation of the problem is kept in 
the symmetric adiabatically adjusting principal axes hyper- 
spherical (APH) coordinates, and Schatz and Kupper- 
mann use numerical vibrational functions of the Delves 
angles 6, while we use analytic, simple harmonic functions 
of an “anharmonic” variable, z, z, is a trigonometric func- 
tion of 8, which covers an infinite range, allows accurate 
Gauss-Hermite quadrature, and allows one to include ef- 
fects of anharmonicity in simple harmonic oscillator func- 
tions. Because this ABM uses primitive basis functions 
centered in the arrangement channels, it gives a very com- 
pact representation at large p and, unlike the four other 
methods discussed, is more efficient at large p than at small 
p. Our calculations to date,‘g228 on systems as diverse as 
FH,, tpD2, LiFH, and HO,, indicate that, for all atom- 
molecule systems, it is much more efficient than the previ- 
ous four methods at large p and that, for systems such as28 
LiFH, it is more efficient than any of the other methods at 
all p. 

We have mentioned this ABM in publications,‘4(b)715 
used it in calculations, 1g,28 and talked about it at meetings, 
and that has inspired other work and a publication31 along 
this line, but this paper contains the first detailed descrip- 
tion of the method. In the next section we describe the 
method in detail including the boundary conditions, basis 
functions, matrix elements, and future refinements. Section 
III contains some example calculations to show how well 
the method works and to compare speed, convergence, 
etc., with other methods for surface function determina- 
tion. Section IV contains discussion and conclusions. 
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II. THEORY. ANALYTIC BASIS METHOD 

A. Surface function equation in APH coordinates 

We have elsewhere6 presented a detailed reactive scat- 
tering theory formulated in adiabatically adjusting princi- 
pal axes hyperspherical (APH) coordinates and will at- 
tempt here to only repeat essentials. In this approach, one 
needs adiabatic basis functions @ of the APH hyperangles, 
and in this work we choose the @ to satisfy the equation 

15+i2 
T/z+ @+cfi2A2+ v(p,e,xi) - QJP) 1 

XQw%xi;p) =o, 
where 

(1) 

a la2 
--sin28-+~ 

ae ~1l1 e@ 1 (2) 

is the “hyperspherical” part of the kinetic energy operator, 
and 

1 
c= 

pp2( l-sin e> (3) 

is part of the centrifugal potential. V is the whole potential 
energy surface (PES), and the Z?? are the eigenenergies. 
The variable 8 is the APH bending angle; its range is 
0<8<7r/2, with r/2 describing linear configurations and 0 
describing triangular symmetric top configurations. xi is 
the APH kinematic angle measured from the “incident” 
arrangement channel; it measures motion between arrange- 
ment channels, and its range is --“<xi<rr. The angles 8 
and xi cover the upper half of the surface of an internal 
coordinate sphere which we loosely call the “hypersphere.” 
(Strictly, the surface of the hypersphere is the 5D space 
covered by 8, Xi, and the three Euler angles which describe 
the orientation of the principal axes in space.) 

As one can see from Eq. ( 1)) the surface functions Q 
and eigenenergies 8? depend parametrically on the hyper- 
radius p. They are needed at a set of p values {p6}, 
c=1,2;** n,,, which span the range of p values needed. pg 
deiines the center of the sector on which the functions 
<a( t!3,xi;pg) are used as basis functions. The 15fi2/8pp2 
term in Eq. ( 1) comes from removal of first derivative 
terms from the coupled channel (CC) equations; it is a 
constant in this equation and can be folded into the $ if 
desired. 3 (Planck’s constant divided by 2~) is unity in 
atomic units, and p is the three-body reduced mass of the 
system arising from mass-scaled coordinates.6 The three 
quantum numbers labeling the %’ and @ are A, which is the 
component of the total angular momentum along the APH 
body-frame (BF) z axis (the axis of least inertia of the 
three-body system), the parity ( - l>p, withp=O or 1, of @ 
under Xi-*Xihr, and t= 1,2,...,n@, which just indexes the 
solutions in energy order. 

We note that Eq. ( 1) differs from Eq. ( 164) of Ref. 6 
slightly because it omits a rotational term of the form ;(A 
+ B)fi2[J(J+ 1) - A2]. As pointed out by Launay and 
LeDoumeuf,21’2 this omission gives surface functions Q? 
which are independent of the total angular momentum J, 

so that many fewer surface functions must be calculated. 
The omitted term is easily included in the CC equations 
along with the related Coriolis and asymmetric top terms6 
This surface function basis is expected7 to produce rapid 
convergence of the CC expansion to the exact solution 
provided triangular symmetric top (8 =O> configurations 
are unimportant, and this is the case in many reactions. 

The boundary conditions on the @ are that they be 
continuous functions of xi at --7~ and 7r and regular every- 
where.6 For systems with two or three identical atoms, the 
surface functions have other symmetries in addition to the 
parity p already defined. 

The surface functions are real and normalized accord- 
ing to6 

j-1, dXi s,” sin 26 de Q$~(f%xi;p)@f~(&xsp) 

=Stt&‘p. 
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B. Surface function equation in Delves coordinates 

We wish to express the surface functions as a basis set 
expansion of the form 

a$*= c ~pe,xi;p>Aft, 
f 

(5) 

where the coefficients A,-* are to be determined by the vari- 
ational principle. We center the functions in the arrange- 
ment channels, so that f = (rf,vf, j,) is a composite index 
labeling the arrangement channel 7, vibrational quantum 
number V, and rotational quantum number j, respectively. 
For notational brevity, f will be used to represent any or 
all of these indices. 

The simplest way we know to get functions 9 cen- 
tered in the arrangement channels is to express them in the 
Delves hyperspherical coordinates,32 af and ef, where af 
relates the lengths of the two scaled Jacobi vectors in the 
rfth arrangement and ef is the angle between the two 
Jacobi vectors of the rfth arrangement channel. However, 
Delves coordinates cover configuration space only once, 
and the functions FTA must have good parity p under 
Xi+Xifr, which makes use of the fact that the APH CO- 
ordinates cover configuration space twice. To obtain this 
parity simply, we take 

3y*mxi;p) =cOspxf F$(8f9ef;p), (6) 

where F is a function only of the Delves angles of arrange- 
ment rf, and xf is given by6 

Xf=Xi-Xf i f (7) 

where Xfi, the kinematic angle between arrangements rf 
and r, is a known constant that depends only on the 
masses of the particles.6 If the parity is even (p=O), the 
cosine factor in Eq. (6) is simply unity; if the parity is odd 
(p= 1 ), the cosine assures the correct parity but is still 
near unity near arrangement channel rY 

To see what functions to use for the F in Eq. (6), we 
express the operator Th of Eq. (2) in the Delves angles of 
the rfth arrangement. This can be done in several ways; a 
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straightforward but tedious way is to use the chain rule 
and the expressions for the Delves angles in terms of the 
APH angles,6 

tan 8f= 
1 

1 -sin 8 cos 2x f ‘I2 1 l+sinec0s2xf 9 

sin 8 sin 
cos 0 

2xf 
f = [ 1 -sin2 8 cos2 2xf] l/2 ’ 

and their inverses, 

tan e= [cos223f $-sin2 2*fcos20f]1'2 
sin 2af sin ef , 

COS2Xf' 
COS28f 

[cos228f+sin~2.4fcos2ef]"2‘ 

The result is 

1 -fi2 a a 
Th=- 2clp sinz 2af ai3, -ssin224fKf 

1 1 
+ af Sf + 1 sf2 1 3 

where Y2 given by 

Y2=-&f&sinC3f&. 
f 

(8) 

(9) 

(10) 

(11) 

Equation ( 10) can be checked simply30133 [cf. Eq. (27) of 
Ref. 61 by noting that it is the J=O limit of the square of 
Smith’s grand angular momentum34 operator. 

It should be noted that the sum in Eq. (5) runs over all 
three arrangement channels in general, and when Eq. ( 10) 
is substituted for Th in Eq. ( 1) to act on functions centered 
in a particular arrangement rf, the remainder of Eq. ( 1) 
remains unchanged; i.e., the BF axes are still the APH 
axes. 

In choosing the basis functions F, we only need require 
that they have the important features of the exact solu- 
tions, so that we can proceed by a series of approximations. 
For example, we want the primitive basis to be compact at 
large p and well behaved at all p, and that requires con- 
sideration of the boundary conditions. At large p, in the 
region localized near arrangement channel rf, the potential 
V becomes, to within an additive constant, the diatomic 
vibrational potential uf(sf) =vf(p sin 6/), which is inde- 
pendent of 0f and dependent only on the mass-scaled in- 
ternuclear distance sf of the diatomic molecule of the rfth 
arrangement. Because three-body terms in the potential are 
very system dependent, we only attempt to make the basis 
functions in arrangement f depend directly on the two- 
body potential of of that arrangement. Thus, we consider 
Eq. (1) with V replaced by uf and T, given by Eqs. ( 10) 
and (11). WethennotethattheCofEqs. (1) and (3) is 
singular at all linear configurations and use Eq. (9a) to 
write 

sin 8 = [ cos2 2af+sin2 2af cos2 0, ] *” 

= [ 1 - sin2 26 f sin2 0,] 1’2. (12) 
At very large p, 6, becomes small for all configurations 
near the minimum of of ( p sin 6 f > . For such configura- 
tions and also when Sf is near its other extreme of ?r/2, or 
whenever ef is near its extremes of 0 or 7r, Eq. ( 12) can be 
expanded to give C of Eq. (3) as 

4 
cz 2pp2 sin2 2Bf sin2 ef ’ 

Noting that _~~~ _-.. _ 
1 

zTf+&= 
4 

f sin2 2af’ 

(13) 

one sees that the factor multiplying the Z2 in Eq. (10) 
also occurs in Eq. ( 13). Thus, some simple basis functions 
which will remove all the singularities in 8, are the asso- 
ciated Legendre polynomialsj i.e., the familiar body-frame 
(BF) diatomic rotational functions. 

To see the behavior that the vibrational functions need 
to have, we let 

Y,@,;p> .+ 
F$(Sf>ef;P)= sin 28 

f 
J'jfA(ef)j (15) 

where the circumflex on the associated Legendre polyno- 
mial P implies normalization to unity, and we substitute 
one term of Eq. ( 5) into Eq. ( 1 ), ignoring the co&’ xf term 
since it is near unity in arrangement f at large p. The 
resulting equation is 

-+?a2 f.2 f? Yf(jf+l) 
m sf - 

-- 
8pp 2+ 2jLp2 sin2 26 f 

+vf(psinaf)-ef(p) Yf(*f;p)=O, I (16) 

where E should approximate one of the Z? at large p to 
within an additive constant stemming from the choice of 
the zero of V. 

Because 9 and F, like @, must be regular everywhere, 
it is clear from the denominator in Eq. ( 15) that ‘Y is 
required to vanish at least as fast as sin 2af at both ends of 
the range of ?p If jf is nonzero in Eq. ( 16), it must vanish 
as fast as sinJ + ’ 2+lp 

Clearly, there are many possible choices for the Y ba- 
sis. Here we elect to use the simple analytic functions de- 
scribed in the next subsection. 

C. Harmonic functions of an anharmonic variable 

For molecular systems the variable 6f describes what 
is basically a vibrational motion, and one might think to 
use common vibrational functions such as simple harmonic 
oscillators or Morse oscillators, centered about the equilib- 
rium angle of uf, as an analytic basis for Eq. ( 16). How- 
ever, af runs over the jinite range 0 to 77/2. At large p, 
of (p sin af) becomes essentially asymptotic by 8f=r/2, 
and such oscillator functions essentially vanish by ?r/2; 
however, at small p, vf is far from asymptotic at af =?r/2, 
and they do not satisfy the boundary condition at ?r/2. 
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Furthermore, neither harmonic nor Morse oscillators ex- 
actly vanish at af =0 (sf=O). For some molecules this is 
not a problem in practice, but for many molecules, large 
order Gauss-Hermite quadratures then use points that 
reach or even go beyond the singularity in vf at sf=O into 
the unphysical region where sf < 0 and 3f < 0 and produce 
divergences. To avoid these problems, we choose the fol- 
lowing basis: 

Tf (8fiP) 
sin 2+3f =A 4vf(zf)’ 

This choice of functions and factors to make the primitive 
basis orthonormal at large p is not necessary, but it is 

(17) 
helpful in debugging programs. 

where 4 is a simple harmonic oscillator function of zf, 

1 
h&zf) = [T1/22vf(vf!) I 112 Kf(zf )e-Z~‘29 (18) 

HVf is a Hermite polynomial, and Bf is a factor to simplify 
the Jacobian for (p normalized on Z~ zf is chosen to be 

bf zf=af tan6f-s+cf. 
f 

This choice assures that, so long as af > 0 and bf > 0, zf 
runs from -CO to 00 as af runs from 0 to ?r/2, and $,,f 
vanishes exactly at both ends of the range at all p. Fur- 
thermore, because it vanishes exponentially rather than 
simply as a power of sin 2af, it removes the singularities 
for all j, and this allows the simplification of taking the 4 
basis independent of j, With the three coefficients in Eq. 
(19) one has enough freedom to match the equilibrium 
position, fundamental frequency, and anharmonicity de- 
sired for ‘Y as will be shown. That is why we call zf an 
“anharmonic” variable. Also, we note that inversion of Eq. 
(19) simply requires solution of a quadratic equation in 
tan 6f 

To determine the factor Bf, we note that, in any given 
calculation, all the basis functions used have the same par- 
ity (p' =p>, and one can show6 that the two halves of the 
integration over xi in Eq. (4) add constructively. Thus, the 
integral over a pair of the basis functions of Eq. (5)) 

I= I_:, dxi JoT’2 sin 28 de 2$T”;‘, (20) 

becomes6 

I=4 
s 

T/2 

0 sin2 2af dS, 
s 

1 
--1 d cos of 

x co.+’ xft cod’ xfF;,F$. (21) 

At large p, for two functions in the same arrangement 
channel (rfr=rf), the parity factor stays unity over the 
range where the basis functions are nonzero. Using Eqs. 
(15) and (17) one obtains 

s r/2 
I=Sj>jf4 0 sin2 2af dSf 

(22) 

Changing to zf as the variable of integration and choosing 
Bf to be 

sin2 26 f 
(23) 

one obtains 

s m I=Sj;;‘, dzf +Y;(‘f )#Vf(zf) =Sj)jfSvpf. (24) 
-co 

D. Choice of parameters 

The 4 basis just introduced can be no better than its 
parameters, af, bf, and cP If they are well chosen, the basis 
is expected to be compact and efficient; if not, it will be a 
poor basis. One could determine these parameters by direct 
nonlinear least squares minimization of the surface func- 
tion eigenvalues at a number of values of p, but these pa- 
rameters vary over a wide range as p varies over its range, 
so that such an approach is expected to be tedious and 
expensive. In the Appendix we show how to simply get 
good initial estimates for the values of the parameters af, 
bf, and cf of zf by choosing the functions # to behave 
approximately like Morse eigenfunctions. Then, final val- 
ues of the parameters can be determined by variational 
scaling of the model Morse potential parameters to make 
the basis set used as accurate as possible. 
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E. Matrix elements and secular equation 

Let us now consider use of this analytic basis to deter- 
mine the surface functions Q. The basis is in the form 

F~*(&xi;p)=COSpx f & hf(zf)ijJ*(ef). 
” I I  

(25) 
As noted already, this set of basis functions is orthonormal 
at large p. As p shrinks and the functions centered in 
different arrangement channels begin to overlap, the func- 
tions with even parity (p=O) remain normalized and or- 
thogonal to the other functions in the same arrangement 
but not orthogonal to the basis functions in the other ar- 
rangement channels. Basis functions with odd parity 
(p = 1) slowly become unnormalized and nonorthogonal 
within the same arrangement as well as nonorthogonal to 
the functions in the other arrangements. 

The matrix elements of the Hamiltonian of Eq. ( 1) 
needed to construct the secular equation can be calculated 
in several ways. At moderately large and large p it is con- 
venient to use Delves coordinates and equations analogous 
to Eqs. (21) through (24) and evaluate the integrals using 
Gauss-Legendre quadrature in cos Gf and Gauss-Hermite 
quadrature in zP Each basis function F is constructed at 
the points of the quadratures centered in all three arrange- 
ments, and the quadrature then quickly runs over the 
points needed. When both basis functions are in the same 
arrangement channel, this provides a highly optimized and 
efficient quadrature. If the two functions are in different 
arrangement channels ( rf f#rf >, the quadratures are car- 
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ried out separately in the two arrangements and the results 
compared to check for convergence. In this case the Jaco- 
bian Bf factors do not all cancel, and the quadratures are 
clearly not optimum, but they converge well in practice 
when the overlaps between different arrangements are not 
too large. 

At small and moderate values of p the overlaps be- 
tween functions in different arrangements become large, 
and it becomes more efficient to use APH coordinates and 
to quadrature integrals analogous to Eq. (20). We have 
used a Gauss-Legendre quadrature in cos 26’ and have bro- 
ken the xi integration up into as many as 7 Gauss- 
Legendre quadratures to allow concentration of the points 
in regions desired. In this process, the parities of the func- 
tions are invoked, and one only need integrate over half of 
the xi range. 

In evaluating the kinetic energy integrals, particularly 
when the two basis functions are centered in different ar- 
rangements, we have found it convenient to start with Th 
in APH coordinates as in Eq. (2), integrate by parts so 
that only first derivatives are involved, and then use Eq. 
(8) and the chain rule to express those first derivatives in 
terms of derivatives with respect to the coordinates of the 
basis function on which they act. 

Because the APH coordinates treat all the particles 
equivalently, the symmetries are simple and apparent when 
two or more of the particles are identical. In such a case 
linear combinations of the primitive basis which transform 
as the irreducible representations of the symmetry group 
are used, and this markedly reduces the total number of 
basis functions needed. It also markedly reduces the num- 
ber of quadrature points needed in performing the integrals 
as the quadratures then need cover only a small part of the 
x space. 

Because the basis is not orthogonal in general, it is 
necessary to solve a generalized eigenvalue problem. We 
use symmetric orthogonalization to diagonalize the overlap 
matrix. Then, to avoid linear dependence problems, any of 
the new (transformed) basis functions that have overlap 
eigenvalues less than low6 are discarded. The Hamiltonian 
matrix is then transformed to the new basis and diagonal- 
ized to give the surface functions and their eigenvalues. 
Thus far, the basis has proved so efficient that the matrices 
have been small enough to be directly diagonalized by ef- 
ficient system subroutines; however, iterative diagonaliza- 
tion methods could be used whenever needed. 

The other matrix elements discussed in Ref. 6 that are 
needed to carry out reactive scattering calculations, such as 
the rotational, asymmetric top, and Coriolis coupling 
terms as well as the sector to sector overlaps, are assembled 
from integrals over the primitive basis functions, and these 
are evaluated in the same way as the matrix elements just 
discussed. 

F. Future improvements 

The above analysis immediately suggests several possi- 
ble improvements which we have not yet implemented but 
which might make this analytic basis method (ABM) even 
more accurate and efficient. The first is basis set contrac- 

tion. One could use the asymptotic vibrational functions 
resulting from the present calculations at large p to con- 
tract the vibrational basis. Further, the current P rotational 
basis could be replaced by hindered rotor functions. One 
could also use the surface functions determined at some 
finite p as a contracted basis for neighboring values of p. 
Thus far, we have kept the full basis for completeness. 

A second improvement, noted in the Appendix, would 
be to actually use odd-v oscillators centered at ?r/2 at small 
p. This would probably speed convergence for insertion 
reactions where 6, near ?r/2 plays a very important role. 
Such oscillators could vanish there at the precise rate 
needed (as sin j+’ 231f) whereas the present basis functions 
vanish more rapidly. 

A third improvement, which should speed convergence 
for extremely anharmonic molecules such as tpD, would 
be to replace the Z~ of Eq. (19) by 

zf =af tan”2 6f - bf 
tan”2 6/ +Cf ’ 
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This choice corresponds closely to one of Schwenke;31 it 
should give functions which behave more like Morse func- 
tions at large ilf when p is large than do the present basis 
functions. 

A fourth variation that might lead to improvement is 
the following: The surface functions are presently used as a 
“sector-adiabatic” basis in the scattering calculations; i.e., 
they are calculated at the center of each propagation center 
and then taken to be independent of p on that sector. 
Because of the simplicity of the present basis and its essen- 
tially analytic dependence on p, it should be possible to 
treat it as a truly adiabatic basis. Then, as p grows, the 
shrinkage of the arrangement channels in hyperspherical 
coordinates would be automatically included in the basis, 
overlaps between sectors would be unnecessary, and the 
surface functions would need to be evaluated at fewer val- 
ues of p. However, first derivatives with respect to p would 
then appear in the coupled equations which would slow the 
propagation. It might be possible to remove them via an 
adiabatic to diabatic transformation;35 however, it is not 
yet clear whether this approach would work well enough to 
produce a real increase in efficiency. 

The final variation that we mention concerns Coulom- 
bit systems. The present basis is appropriate for atom- 
diatom systems. For a system composed of charged parti- 
cles, such as e+ +H, a basis that behaves more like 
Coulomb or Sturmian wave functions will produce more 
rapid convergence than the present oscillator basis. 

III. EXAMPLE CALCULATIONS AND RESULTS 

In this section we report the results of ABM calcula- 
tions of surface functions and compare them with the re- 
sults of the DVR and FEM methods. The system chosen as 
a nontrivial example is the F+H2-+ HF+H reaction; its 
treatment requires generation of a large basis of surface 
functions. The potential energy surface (PES) used is the 
one of Brown et aZ.36 commonly called the T5A surface, 
and we choose the zero of energy to be at the bottom of the 
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TABLE I. Input parameters for the F+H, ABM calculations. 

Arrangement 1 2and3 

Atomic mass (amu) 
Scale factor d 
me (a.u.) 
az;c b.u.1 
r, b0) 

18.998 403 2 1.007 825 03 
1.379 008 1 l.CMlO 635 4 
2.005 34( -2)” 1.885 557( -2) 
5.528 47( -4) 4.095 2( -4) 
1.401 12 1.732 517 

Y2U.X 3 7 
Jmu 12 31 
nhermt 14 (ll)b 18 (15) 
n&w 38 (16) 45 (35) 

‘This notation implies 2.005 34x lo-*. 
bQuadrature size at small and large p. 

asymptotic HF potential wells. This PES has been used in 
many calculations2’3’8*22~37-3g on this reaction, and plots of 
the PES and surface functions showing their appearance in 
APH coordinates have also been published.15”7(b) Ar- 
rangement 1 or i (initial) is that of the F+H, reactants. 

The calculations are for A =0 and even parity (p=O) 
and include all functions connecting to the even j rota- 
tional states of the F+H2 arrangement. Because of the 
symmetry due to the identical H atoms, this only requires 
including in the ABM calculations the even j rotational 
functions of H2 and the linear combinations of HF func- 
tions that are even under reflection about xi=O. 

Table I gives the values of some input parameters. The 
mass of the atom in each arrangement is given in atomic 
mass units, and the dimensionless mass-scaling factors are 
also given. The spectroscopic parameters are those of Hu- 
ber and Herzbergm expressed in hartree atomic units. The 
ABM harmonic oscillator basis included vibrational quan- 
tum numbers from zero up through the vmax shown, and 
the rotational basis functions with j running from zero up 
through the j,, shown were included with each v. With 
symmetry, this gives a total of 284 primitive vibration- 
rotation basis functions; without symmetry, this number 
would double. 

The calculations were performed at five representative 
p values ranging from the smallest to the largest values 
needed in our reactive scattering calculations.8’22 The pre- 
cise values of p chosen have no particular meaning, and 
some were chosen simply because the convergence of the 
DVR method had already been studied there.’ 

The quadratures at the two shortest p values were per- 
formed in the APH space. The 8 quadrature was broken up 
into two segments, with 14 points between 0 and 0.65 rad 
and 32 points between 0.65 and rr/2 radians. With symme- 
try, integration over only one fourth of the xi range is 
required, and this quadrature was broken up into four seg- 
ments, with the 11 positive points of a 22 point quadrature 
between 0 and 0.2, 16 points between there and 0.49, 44 
points between there and 1.18, and 18 points between there 
and rr/2 radians. This gives a total of 4094 quadrature 
points. 

At the third value of p the calculations were performed 
both with this APH quadrature and also with quadratures 
in the arrangement channel Delves’ angles using the larger 
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TABLE II. Variational parameters for the F+H, ABM calculations. 

Arrangement 1 2 and 3 

rx 1.086 1.036 
=Cl 0.923 0.917 
a” 0.85 1.14 
s 0.1 1.0 
6 0.01 0.01 
s,,, = rgy+/d 1.103 41 1.793 748 

numbers of Hermite and Legendre quadrature points 
shown in the lower part of Table I; with symmetry that 
produces a total of 1076 quadrature points. At the largest 
two p values arrangement channel quadratures with the 
smaller numbers of points shown in parentheses in the 
lower part of Table I were used; with symmetry that pro- 
duces a total of 613 points. 

All these quadratures are chosen to give convergence 
with respect to quadrature that is at least one and often 
two significant figures more accurate than the convergence 
expected of the energies. This assures that the parameters 
can be varied and optimized to minimize the energies. If 
poorly converged quadratures are used, the calculated en- 
ergies often lie below their converged values, and any non- 
linear variation of parameters simply moves in the direc- 
tion that makes the quadrature diverge and give spurious 
energy eigenvalues. For production work, one could prob- 
ably use fewer quadrature points and gain some speed; 
however, that was not done here, and all the ABM energies 
presented are true variational upper bounds. 

To optimize this basis for the actual PES used, we 
proceeded as follows: The scaling factors shown in Table II 
were introduced into the calculation, with r, scaling the 
equilibrium internuclear distance used to determine the ba- 
sis, c, scaling the right-hand sides of Eqs. (Al 1) and 
(A12), and a,, scaling the second term in the parentheses 
on the right-hand sides of Eqs. (Al 1) and (A12). With 
this choice c, essentially scales the frequency of the oscil- 
lators, and a, essentially scales the anharmonicity. The 
values of these three parameters listed in Table II were 
determined by nonlinear least squares minimization of the 
average of the first nine vibrational energies at a large value 
of p ( 100 a,). This assures good asymptotic energies for all 
the open and at least one closed vibrational state in each 
arrangement channel at the highest energies used in the 
scattering calculations.8922 

These variational calculations are easily carried out 
because the rotational basis is exact at large p, and the 
calculations need only be done with the vibrational basis, 
that is, with jmax= 0 in all arrangements. With symmetry, 
that is a basis of only 12 functions, 4 in the H2 arrangement 
and 8 in the HF arrangements. The asymptotic energies of 
the seven-vibrational states that are ever open in our cal- 
culations are listed in Table III and compared there with 
the results of calculations in Jacobi coordinates that used a 
large harmonic oscillator basis with 30 oscillators in each 
arrangement channel. One sees there that the harmonic 
functions of an anharmonic variable are forming an excel- 
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TABLE III. Asymptotic energies I in eV for the rotationless (j=O) 
vibrational states v. See the text for discussion. 

TABLE V. ABM, DVR, and FEM surface function energies S’:t in eV, 
average energies, dimension of eigenvalue equations, and cpu times at 
p=2.2 a,,. See the text for discussion. 

Fragment Y ABM Large basis 

HF 0 0.253 87 0.253 87 
HF 1 0.745 50 0.745 50 
HF 2 1.215 62 1.215 62 
H2 0 1.645 33 1.645 26 
HF 3 1.664 30 1.664 24 
HF 4 2.091 63 2.091 36 
H2 1 2.159 37 2.158 92 

lent but very compact basis. The lower vibrational states all 
have energies accurate to 0.01 meV, and the highest states 
are accurate to within 0.5 meV. We note that the values 
shown are actually those at p= 1000 ao; at smaller but still 
asymptotic values of p, the hyperspherical vibrational en- 
ergies are slightly lower than the Jacobi energies due to the 
curvature of the surface of the hypersphere. 

t ABM DVR FEM 

1 6.9177 6.9177 6.9177 
2 7.0341 7.0341 7.0342 
3 7.1298 7.1296 7.1299 
4 7.3042 7.3038 7.3043 
5 7.4932 7.4927 7.4933 
6 7.7007 7.7008 7.7009 
7 7.9219 7.9202 7.9222 
8 8.0789 8.0786 8.0791 
9 8.1524 8.1475 8.1529 
10 8.2502 8.2494 8.2503 

G?(lO) 7.5983 7.5974 7.5985 
N 271 617 3047 

cpu(min) 22.8 10.4 12.6 

The calculations at large p are not sensitive to the 
values of the variational parameters g and 6 of Eqs. (A8) 
and (A9). These were determined by nonlinear least 
squares variation of the average energy at the smallest 
value of p needed (2.2 ao). Because this value is signifi- 
cantly larger than the larger of the scaled equilibrium dis- 
tances shown in Table II, this system never encounters the 
p <smf range of discussed in the Appendix, the results are 
never very sensitive to these two parameters, and a few 
calculations with the full basis suffices to give the values 
shown in Table II. 

ters were chosen to give eigenvalues of approximately the 
same quality as those given by the current ABM and DVR 
calculations, and five point Gaussian quadratures were 
used to assure that the results were variational upper 
bounds to the true energies. 

The method and code used for the symmetry-adapted 
DVR calculations were described in detail in an earlier 
publication.8 The parameters used are given in Table IV. 
The parameters I,, and mmax give the number of DVR 
points in the 8 and x directions, respectively. V,, and Ecut 
are the potential and eigenvalue cutoffs used in the sequen- 
tial diagonalization-truncation procedure. 

The FEM code used the same meshing technique as 
described before67’5 to produce a highly nonuniform grid 
that is coarse where the wave functions are small and tine 
where they are large. However, the Hamiltonian matrix 
was diagonalized with the spectral transform Lanczos 
method’y’20 (STLM). As we noted in Sec. I, the STLM is 
a full order of magnitude faster than the subspace iteration 
and block Lanczos diagonalization methods tried ear- 
lier *‘*18 and that allows the present FEM calculations to be 
pe;ormed on a SUN Spare 2 workstation in about the 
same time as the earlier methods would have required on a 
CRAY-XMP. In these calculations the tolerance parame- 

The results are given in Tables V through IX for the 
five values of p chosen. In each the energy eigenvalues of 
the highest ten important or open surface function states 
are given in eV. The omitted lower eigenvalues always 
agree even better than those shown. Also shown is g (n), 
the average of the first n eigenvalues. This gives a conve- 
nient measure of the overall agreement of the methods. 
The quantity N is the dimension of the eigenvalue problem 
actually solved. In the ABM and DVR calculations the 
diagonalization was done directly using standard routines, 
so that all N eigenvalues and eigenfunctions were gener- 
ated. In the FEM calculations the STLM routine was re- 
quired to generate 150 eigenvalues and eigenfunctions be- 
cause this number of coupled equations was propagated in 
the scattering calculations8 The cpu times for a SUN 
Spare 2 workstation to perform the complete calculation 
(setup, integrals, transformations, and diagonalization) 
are shown as the last line of each table. 

TABLE IV. Parameters used in the DVR calculations. 

P (a0) I max 

2.2 30 
3.037 582 8 30 
4.974 796 6 40 
7.298 999 3 50 
9.0 50 

mmax 

60 
60 
60 
80 

100 

V,,(eV) 

30.0 
20.0 

7.0 
7.0 
7.0 

The results at the shortest distance are in Table V. The 
agreement of the three methods is good. The 1 meV agree- 
ment of the average energies in this very repulsive region, 
where all the channels are strongly closed and very precise 
eigenvalues are not important, is more than accurate 
enough for any scattering calculations envisioned. At this 
p the DVR is the fastest of the three with the FEM a close 
second and the ABM taking about twice as much time as 
the DVR due to the large number of quadrature points 
required when the ABM integrals are done in the APH 
coordinates. At the second distance (Table VI) the accu- 
racies are also all fully satisfactory with agreement being 
even better, namely, to within a few tenths of a meV. The 
relative efficiencies are about the same as at the first p 
value. 

-UW 

25.0 
10.0 
4.0 
4.0 
4.0 
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At the third distance (Table VII) the situation has 
changed. ABM calculations performed with both the APH 
and arrangement channel quadratures gave identical ener- 

Downloaded 28 Aug 2002 to 129.15.30.25. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



TABLE VI. ABM, DVR, and FBM surface function energies 8?:t in eV, 
average energies, dimension of eigenvalue equations, and cpu times at 
p=3.037 582 8 a,. See the text for discussion. 

t ABM DVR FEM 

11 1.9845 1.9845 1.9849 
12 1.9975 1.9975 1.9979 
13 2.0515 2.0515 2.0519 
14 2.1090 2.1090 2.1093 
15 2.1275 2.1275 2.1281 
16 2.1352 2.1353 2.1357 
17 2.1994 2.1994 2.1998 
18 2.2578 2.2578 2.2584 
19 2.2730 2.2730 2.2737 
20 2.3197 2.3197 2.3204 

$?(20) 1.8551 1.8551 1.8554 
N 277 653 3307 

cpu(min) 22.9 12.3 14.8 

gies to all figures shown. The ABM and DVR average 
energies agree to within 0.2 meV, and the individual ener- 
gies, even for the higher states, usually agree to within 
about 1 meV, which is very good. It should be emphasized 
that the fact that the DVR energies often lie lower than the 
ABM energies does not mean that they are more accurate; 
the DVR method is not variational, and its higher eigen- 
values often converge from below. We believe the ABM 
and DVR energies have about the same absolute accuracy 
here. The FEM gives an average energy which is about 1 
meV high, and its higher energies are a few meV higher 
than the variational ABM energies. This p is in a region 
where flux piles up and resonances form. If one had narrow 
resonances whose energies were accurately needed, the 
FEM basis might not be quite adequate; however, it is still 
accurate enough for most scattering purposes. Looking at 
the times, we note that this p requires a fine grid over 
much of the angular space with the consequence that the 
DVR becomes about 50% less efficient than before, and the 
FEM becomes very inefficient. However, because the ABM 
can now use the arrangement channel quadratures, it be- 

TABLE VII. ABM, DVR, and FEM surface function energies 8Y:t in eV, 
average energies, dimension of eigenvalue equations, and cpu times at 
p=4.974 796 6 a@ See the text for discussion. 

t ABM DVR FEM 

91 2.0701 2.0701 2.0720 
92 2.0734 2.0727 2.0760 
93 2.0896 2.0869 2.0916 
94 2.0941 2.0943 2.0961 
95 2.1107 2.1093 2.1132 
96 2.1232 2.1220 2.1267 
97 2.1509 2.1495 2.1549 
98 2.1650 2.1645 2.1672 
99 2.1806 2.1799 2.1833 
100 2.1892 2.1893 2.1918 

V(lO0) 1.3977 1.3975 1.3985 
N 284 721 5857 

cpuhid 5.1 16.6 40.6 

TABLE VIII. ABM, DVR, and FEM surface function energies 8’* in eV, 
average energies, dimension of eigenvalue equations, and cpu times at 
p=7.298 999 3 a,. See the text for discussion. 

t ABM DVR FEM 

91 2.0564 2.0569 2.0679 
92 2.0754 2.0760 2.0928 
93 2.0981 2.0981 2.1023 
94 2.0990 2.0994 2.1141 
95 2.1098 2.1099 2.1148 
96 2.1196 2.1198 2.1278 
97 2.1273 2.1278 2.1443 
98 2.1542 2.1543 2.1537 
99 2.1551 2.1551 2.1608 
100 2.1602 2.1608 2.1621 

P(100) 1.3788 1.3790 1.3811 
N 284 665 4877 

cpu(min) 4.0 13.7 36.2 

comes the most efficient of the three, three times faster 
than the DVR and almost 8 times faster than the FEM. 

At the fourth (Table VIII) and fifth (Table IX) dis- 
tances the results are similar. Because the arrangement 
channels viewed in the hyperangles shrink as p grows, the 
angular region over which the fine grid is needed is a little 
smaller and the FEM and DVR methods a little less ex- 
pensive than at the third distance. The ABM and DVR 
methods give excellent agreement. The FEM is less accu- 
rate and will not give thresholds that are very accurate. If 
the tolerances were set to make the FEM give results as 
accurate as the other two methods, it would markedly in- 
crease the time it requires, and it is already much the slow- 
est of the three. The ABM is the most efficient of the three 
methods and a factor of 2 to 3 faster than the DVR. 

For this FH, system, p=9.0 a0 is as large as distance 
as needed. However, many systems with strong long-range 
potentials and/or heavy-light-heavy atomic mass combi- 
nations require much larger distances to reach the asymp- 
totic region. For example, the LiFH reaction28 and the 
HO2 reaction41 both need calculations out to p as large as 
35 a,. To better understand what such systems would re- 

TABLE IX. ABM, DVR, and FBM surface function energies I, in eV, 
average energies, dimension of eigenvalue equations, and cpu times at 
p=9.0 a,,. See the text for discussion. 

t ABM DVR FEM 

91 2.0747 2.0748 2.0805 
92 2.0779 2.0782 2.0863 
93 2.0964 2.0974 2.1051 
94 2.1010 2.1009 2.1065 
95 2.1153 2.1154 2.1233 
96 2.1194 2.1197 2.1284 
97 2.1252 2.1253 2.1315 
98 2.1470 2.1482 2.1541 
99 2.1545 2.1546 2.1562 
100 2.1559 2.1560 2.1564 

P(100) 1.3791 1.3792 1.3812 
N 284 537 4617 

cpu(min) 4.0 8.7 28.2 

G. A. Parker and R. T Pack: Quantum reactive scattering. VI 6891 

J. Chem. Phys., Vol. 98, No. 9, 1 May 1993 Downloaded 28 Aug 2002 to 129.15.30.25. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



quire, we have performed ABM and DVR calculations for 
the present FH, example at p = 35 a,,. The ABM calcula- 
tions were very simple, and the results are accurate and 
similar to those of Table DC: g( 100) is 1.3801 eV, N is 
284, and the calculation required 3.9 min of cpu time. 
However, the DVR proved quite unsatisfactory. With the 
64 Mb of physical memory and 160 Mb of swap space that 
the SUN Spare 2 workstation used has in its present con- 
figuration, the largest DVR parameters that could be used 
were Z,,= 100 and m,,=200. With these values and the 
other DVR parameters as at 9.0 ao, % (100) is 1.5728 eV, 
which is in error by more than 190 meV, and the calcula- 
tion required 29.9 min of cpu time. This markedly longer 
time is due to the much larger number of DVR points that 
must be handled; it is not because of the size of the final 
eigenvalue problem as iV was only 189. 

the method of choice at large p for all systems because the 
coverage of the whole space by the DVR points makes the 
DVR inefficient at large p. 

As we show in future publications,‘9Y28 it is easy to use 
one method at small p and switch over to another method 
at large p. In the present test system, such a combination 
of the DVR and ABM methods allows the surface function 
basis to be generated 50 times faster than in the earliest 
papers ‘-’ of this series. As a result, surface function calcu- 
lations now consume only a small fraction of the compu- 
tational effort in hyperspherical reactive scattering calcu- 
lations. 
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APPENDIX: CHOOSING BASIS SET PARAMETERS 

In this Appendix we show how to simply get good 
initial estimates for the values of the parameters af, bp and 
cf of the anharmonic variable zf of Eq. ( 19). We model the 
diatomic potential by a Morse potential and choose the 
functions C$ to behave approximately like the Morse eigen- 
functions T for the cases in which p is either larger or 
smaller than the position of the potential minimum. 

On the other hand, to do ABM calculations at p equal 
to 35 or 100 or even 1000 a0 is very simple and requires no 
changes of any of the basis parameters. The rotational basis 
becomes exact, the vibrational basis becomes optimized, 
and the channel quadratures become optimum. Hence, the 
ABM is ideally suited for calculations at large p. 

To proceed, we assume that, as for most diatomic mol- 
ecules, vf behaves approximately like a Morse potential in 
the scaled Jacobi internuclear distance, 

IV. DISCUSSION AND CONCLUSIONS 

In this paper we have presented an analytic basis 
method (ABM) for calculating the surface function basis 
needed in hyperspherical formulations of reactive scatter- 
ing theory. Harmonic functions of an anharmonic variable 
were introduced and shown capable of providing a com- 
pact, efficient vibrational basis at all distances p. 

ufbf) = Df[e - wfc~f-%lf) _ 2e-/3fcsf-%f) ] ) (Al) 
where smf is the position of the minimum, the equilibrium 
internuclear distance of the diatom of the rfth arrange- 
ment in the mass-scaled coordinates. Use of this Morse vf 
should lead to basis functions with reasonable behavior at 
all distances except at such small p that the wave functions 
sense the failure of the Morse potential to have the correct 
singularity at sf=O. Estimates of the depth Df and steep- 
ness parameter Pf of this potential are obtained from the 
fundamental frequency wef and anharmonicity wefxCf of 
the diatom via42 

Test calculations on the F+H, system with the T5A 

pf = (““kpf) 1’2, 

PES comparing the ABM, DVR, and FEM methods and 
showed that the FEM method was always the least efficient 
of the three. Because the ABM basis is shaped by the po- 
tential, it always gave the most compact basis and required 
diagonalizing the smallest matrices of the three methods. 
At large p, where its quadrature is efficient, the ABM was 
the most efficient of the three methods. At small p, where 
the ABM quadratures were not efficient, the speed with 
which the DVR constructs the Hamiltonian matrix made it 
the most efficient method. Thus, for this system, the DVR 
is the method of choice for small p, and the ABM is the 
method of choice for large p. In fact, the present and 
other’9,28s41 calculations indicate that the ABM method is 

where all parameters are in some consistent set of energy 
and distance units such as atomic units, and ,u is the three- 
body reduced mass. 

Before continuing, we note that sf = p sin af in Eq. 
(Al), and we consider the behavior of Eq. (Al) as a 
function of ap This behavior is illustrated in Fig. 1, where 
a Morse potential is plotted as a function of af for several 
values of p. At large p, vf essentially reaches its asymptotic 
value as af approaches its upper limit of ?r/2. At smaller 
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FIG. 1. Behavior of a Morse vibrational potential uJ.r,) as a function of the Delves angle 8, at various values of the hyperradius p. The parameters 
are those for an HF fragment in the FH, system, but the qualitative behavior is the same for any vibrational potential. Note that the slope of the potential 
is always zero at af=1r/2. (a) p= 1.3 0,. The potential is similar to that of a simple but one-sided oscillator with its equilibrium position at Bf=rr/2. 
(b) p=1.5 a,. The behavior is qualitatively the same as in (a). (c) p= 1.793 748 a,. Here p=s,,,,., the scaled equilibrium distance. The potential is 
similar to that of a one-sided gumtic oscillator with equilibrium position at Bf=r/2. (d) p=2.2 a,, the shortest distance needed in the scattering 
calculations. The potential appears very anharmonic and is far from reaching its asymptotic value at B,.=rr/2. (e) p=3.0 a,,. (f) p=5.0 a,. (g) p=7.3 
0,. By this value of p, the potential is nearly harmonic near its minimum, has the classic diatomic potential shape, and essentially reaches its asymptotic 
value before B, reaches r/2. 
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FIG. 1. (Continued.) 

values of p, it does not reach its asymptote. However, be- 
cause of the behavior of the sine function, it should be 
noted that the derivative of uf with respect to 8f is zero at 
?r/2 at all p, and this behavior produces the following 
interesting phenomenon: When p=smf, uf reaches its equi- 
librium position just as af reaches its upper limit of 7r/2, 
and the two effects combine to make the first three deriv- 
atives of uf vanish, so that uf behaves like the potential of 
a quartic oscillator centered at r/2. For p <smf, Uf behaves 
like the potential of an ordinary oscillator centered at ~12. 

The p)s,,,, case 

Let us first consider the case in which p>smf. Then, 
the Delves angle of the minimum of Uf can be defined by 

i3,fEsin-‘(smf/p). C-44) 
For convenience in what follows, we next approximate 

Eq. (Al) by a Morse potential in the Delves angle af 
itself, 

Uf(Sf) Z=of [e-2~f(*f-*~f) -2e-~f(4f-“mf’], (AS) 

This replacement can be made in two ways: If one simply 
makes a small angle expansion of the sines in Eq. (Al), 
one obtains Eq. (A5) with 

Yf’Ppr.G (Aa 
however, if one instead expands Eq. (Al) about amf, one 
obtains Eq. (AS) with 

rf = PPf cos 6mf * L47) 
At large p the two expansions give the same result and are 
equivalent. For most p Eq. (A7) is more accurate than Eq. 
(A6). However, it should be noted that, at P=s,,,~, where 
8,, =?r/2, an Eq. (A5) based on Eq. (A7) collapses and 
fails entirely for all 6p To allow the oscillators to spread 
out enough to be a good basis for the quartic oscillator at 
this p but to keep them from failing entirely, we mix Eqs. 
(A6) and (A7), choose rf to satisfy 

(AS) 

and determine the parameter 8, variationally to give a 
good basis at p=smf (or at the smallest p needed if that is 
larger than smf) . 

Using Eq. (A5) in ECq. ( 16)) one can solve analyti- 
callous for the jf =0 solutions. For the lowest solution, for 
use in Eq. ( 17) in determining the parameters of (p, we take 

y+-KfeXPt -rf(sf-~~f)l,--rf(Kf- 112) (8f-“mf) 

XCO&f 6,) W) 

where Kf is given by42 

@ef 
-Kf =2wefxef [S, + (l-df)COS iYmf] . (-410) 

The first two factors on the right side of Eq. (A9) simply 
constitute the ground state Morse oscillator wave function. 
The third factor enforces the ?r/2 boundary condition. 
Nominally, cf > 1; however, it turns out that any cf > 0 will 
lead to functions C$ which vanish at ?r/2, so that we allow 
gf to be a variational parameter which is determined at 
p=smf or at the smallest p needed if that is larger than 
srnf For any p for which the Morse potential is reasonable, 
the Morse wave function ‘Y’ of Eq. (A9) decreases rapidly 
enough left of 6, that the resulting C#I functions vanish 
rapidly at small af without the complication of introduc- 
ing an explicit sin 6 f factor in Eq. (A9). 

We recall that Eq. (17) is 

Tf@fGP) 
sin 28f =j$-J (P,(ZfL .(17) 

where Bf is simply the Jacobian factor, defined by Eq. 
(23), which makes the oscillator functions automatically 
orthonormal. To proceed, we use one factor of sin 2af out 
of the Bf in Eq. (17) to cancel the similar factor on the 
left-hand side of this equation. Then, we note that one can 
easily show that the rest of l/Bf is, to within a constant 
factor, simply (az,/aS,) . 1’2 Since our objective here is to 
make the rapidly varying (exponential) parts of these 
functions match, we proceed as in the the usual theory of 
asymptotic expansions4 to treat this preexponential factor 
as approximately constant. 

Now, one can write the remaining functions in Eq. 
(17) as exponentials (4=eeh and ‘Y=emg) and equate 
exponentials (ignoring arbitrary normalization factors). 
We denote the position of the maximum of C$ and ‘Y, which 
is also the minimum of h and g, by 6, and note that, 
because of anharmonicity, 8, is not equal to a,, the 
position of the minimum of the Morse potential. We note 
that h is simply f z$ and g is the negative of the log of Eq. 
(A9) and expand both h and g in a power series in (Jlf 
-aMy), equating terms through the cubic. After a little 
algebra involving the intermediate parameters 
A=af sec2 itMf and B = b f csc2 aMf, one finds that the de- 
sired parameters are given by 

af =cos4 SMf gi”++ tan 6Mf 
( 6g2 1 

, 
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( l/2 g3 bf=sin4 41Mf g, -- 6g;j2 comuf , 
i 

(A121 

cf =bf cot 41Mf -af tan 6,. (A13) 

Here gi is the ith derivative of g at i3MP These are given by 

s2=r”rcfe -yf((“Mf-‘mf) +cf xc2 aMf, (Al4) 

and 

g3= -y+c~-Yf(8W-6mf)f2gf sec2aMftanaMf, 
(A15) 

and aMf is determined by the requirement that 

a=0 

Thus given any choice of the variational parameters Sf and 
Q, solution of this simple transcendental equation for 8, 
determines the parameters af, bf, and cf which make the 4 
behave much like the appropriate Morse eigenfunction. 
The parameters adjust smoothly with p and are appropri- 
ate for all p&f. 

The p<smf case 

For many systems one never needs p <smf, and the 
above analysis suffices. However, when the diatomic mol- 
ecule of one of the arrangement channels has a consider- 
ably longer bond length than one or more of the diatomics 
in the other arrangements in scaled Jacobi coordinates, it is 
often necessary to begin the propagation of the coupled 
channel (CC) equations at distances where p <smf for the 
larger (longer) molecule. 

For p < smf, one could probably get good accuracy and 
convergence using a harmonic oscillator basis in af cen- 
tered about n/2. However, that basis must include only the 
$,,/ with odd integers vf in order to satisfy the boundary 
conditions. It would also require integrating over half the 
usual range for harmonic oscillator variables. We have not 
yet implemented that approach as we have thus far been 
able to obtain rather good basis functions by a simple mod- 
ification of the procedure used for p>smf. It keeps the 
same functions and variable ranges and proceeds as fol- 
lows: Eq. (A 1) is again approximated by a Morse potential 
in 6, which has the form of Eq. (A5 ), but now has 

6mfsd2. C-417) 

The depth Df of the Morse potential is again obtained 
from Eq. (A3). The steepness parameter rf is obtained by 
expanding Eqs. (Al) and (A5) in powers of (8,-z-/2) 
and equating the first nonvanishing term (the quadratic). 
That gives 

1/2ff=PfPb2(P) -dp)l, (A18) 
where 

u(p),@f(P-%f), (A191 

and the fact that sf= p at Bf =r/2 has been used. 

While Eq. (A18) is expected to be satisfactory for 
most p <smf, the right-hand side vanishes at p=smf for 
reasons already discussed. It also vanishes at extremely 
small p due to the factor of p on the right-hand side. This 
failure occurs because the Morse potential does not have 
the proper Coulomb singularity at zero internuclear dis- 
tance. To join smoothly onto the parameters obtained for 
p>smf and prevent failure at very small p, while approxi- 
mating Eq. (A18) at most p<smf, we replace Eq. (A18) 
by 

?If=c~pprsf~2+Pf~,f~~2~P~-~~P~1~1'2. t-420) 

With the parameters of the Morse potential thus chosen, 
one can again use Eq. (A9) with Eq. (AlO) now replaced 
by 

Kf=2wefxefc(P f> 
wefP 

6 2+(smf/Pf>[~2(p>--u(P)l}1’2’ 
(A21 > 

and proceed as before. For any cff> 0, the maximum of ‘Yf 
and 4 occurs at a aMf, determined by Eq. (A16), which is 
less than ?r/2, and Eqs. (All) through (A15) give a well 
behaved basis. The basis thus determined has proved sat- 
isfactory for p <smf in all cases for which it has thus far 
been tested. lg 
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