SUBROUTINE Vleg_Mat(pj,vprime,weight,vleg,jmax,jtot,j_min,symmetry) USE Numeric_Kinds_Module USE int1d_Module IMPLICIT NONE LOGICAL symmetry CHARACTER(LEN=21), PARAMETER:: ProcName='vleg_mat' ! integrate the PES(times associated legendre polynomials) ! over big-theta. INTEGER jf, jn, jmax, lambda, iltheta, jtot, k, j_min, deltaj REAL(Kind=WP_Kind) pj(nbtheta,0:jmax,0:jmax) REAL(Kind=WP_Kind) weight(nbtheta), temp(nbtheta) REAL(Kind=WP_Kind) vprime(nbtheta,nltheta+1), vleg_int REAL(Kind=WP_Kind) vleg(nltheta+1,0:jmax,0:jmax,0:jmax) ! This corresponds to rtp98/4/30-5 Eq. 26. Big-theta integration ! only and hence the elements vleg are functions of little-theta. deltaj=1 IF(symmetry)deltaj=2 DO jf=j_min,jmax,deltaj DO jn=j_min,jf,deltaj DO lambda=0,MIN(jf,jn,jtot) DO k=1,nbtheta temp(k) = pj(k,jf,lambda)*pj(k,jn,lambda)*weight(k) ENDDO DO iltheta=1,nltheta+1 vleg(iltheta,jf,jn,lambda) = vleg_int(temp,vprime(1,iltheta)) vleg(iltheta,jn,jf,lambda) = vleg(iltheta,jf,jn,lambda) ENDDO ENDDO ENDDO ENDDO ! results are stored in vleg. RETURN ENDSUBROUTINE Vleg_Mat