MODULE GaussB_Module USE Numeric_Kinds_Module USE Parms_Module USE Pow_Module IMPLICIT NONE SAVE LOGICAL :: old_way = .True. INTEGER(KIND=IW_Kind) :: noscil(narran) ! Number of harmonic oscillators. INTEGER(KIND=IW_Kind) :: nhermt(narran) = 25 ! Number of Gauss_Hermite quadrature points. INTEGER(KIND=IW_Kind) :: nglegn(narran) = 46 ! Number of Gauss_Legendre quadrature points. INTEGER(KIND=IW_Kind) :: nlegndre(narran) = 6 ! Number of Legendre polynomials. INTEGER(KIND=IW_Kind) :: intwt(narran) = 1 ! REAL(Kind=WP_Kind) :: weau(narran) = 2.00534D-02 ! vibrational constant in Hartree's. REAL(Kind=WP_Kind) :: ralpha(narran) = 3.166D0 ! ralpha*alpha is the REAL(Kind=WP_Kind) :: re(narran) = 1.40112d0 ! equilibrium positions for diatomic fragments. REAL(Kind=WP_Kind) :: rx(narran) = 1.085 ! rx*re is the position of harmonic oscillator basis. This ! variable should usually be between 1.0 and 1.2 and 1.1 is ! usually the best. REAL(Kind=WP_Kind) :: balpha(narran) = 1.0D0 ! REAL(Kind=WP_Kind) :: calpha(narran) = 0.92D0 ! REAL(Kind=WP_Kind) :: dalpha(narran) = 0.03D0 ! REAL(Kind=WP_Kind) :: anharm(narran) = 0.8D0 ! REAL(Kind=WP_Kind) :: wexeau(narran) = 5.52847D-04 ! anharmonicity constant in Hartree's. REAL(Kind=WP_Kind) :: delta(narran) = 0.01D0 ! REAL(Kind=WP_Kind) :: zeta(narran) =1.d0 ! NAMELIST/gauss/ rx, re, noscil, nhermt, npow, zeta, delta, nglegn, weau, wexeau, ralpha, & balpha, calpha, dalpha, anharm, intwt, old_way, nlegndre ! nlegndre(iarran)=jmax(0,iarran) END MODULE GaussB_Module