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Abstract

The “two-term” approximation (representation of the electron distribution by the first two terms
of an expansion in spherical harmonics in velocity space) continues to occupy a central role in
the low temperature plasma physics literature, in spite of the mass of evidence illustrating its
inadequacy in the swarm (free diffusion) limit for many molecular gases. Part of the problem lies
in the failure of many authors to specify quantitatively what they mean when they say that the two-
term approximation is “acceptable”. Thus for example, an error of 10% in transport coefficients
may well be acceptable in many plasma applications, but for analysis of highly accurate swarm
experiments to compare with ab-initio and beam derived cross-sections, 0.1% or less is required,
making “multi-term” analysis mandatory. While reconciliation of the swarm and plasma literature
along the lines of two different accuracy regimes may thus be possible, we dispute claims that the
two-term approximation is generally satisfactory for inversion of swarm experiment data to obtain
electron impact cross sections. The unsatisfactory nature of the accuracy assessment of other
assumptions implicit in much of the modern plasma kinetic theory literature is also discussed.

PACS numbers: 51.10.+y, 52.25.Dg, 52.25.F's, 34.80.-i



I. INTRODUCTION

The basic problem in the kinetic theory of dilute charged particles (e.g., ions, electrons,
positrons, muons) in a neutral gas at equilibrium, governed by a Maxwellian velocity distri-

bution function fy, is to solve Boltzmann’s equation [1]:
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for the charged particle velocity distribution function f(r, e, t), subject to appropriate ini-
tial and boundary conditions. Here a is the acceleration on the particle, ¢ and r are the
particle’s velocity and position respectively and t is time. This equation is fundamental
for understanding weakly ionised gases of all descriptions, be they low temperature plas-
mas or charged particle “swarms”, ie, the test particle or free diffusion limit of a plasma,
where charged-particle — charged-particle interactions, as characterised by the second and
subsequent terms on the right hand side of (1), are negligible. In this case, the charged-
particle-neutral collision term (%)coll ~ -J(f, fo) is the same in both cases, and the kinetic
equation is linear. Note that J(f, fo) is usually taken to be the classical Boltzmann collision
operator in the case of elastic collisions and the Wang-Chang, Uhlenbeck, de Boer semi-
classical collision operator [2] (or a small mass ratio derivative [3]) for electron-molecule
collisions. The difference is that for a plasma the field term a = Z(E + ¢ x B) derives
from space charge/currents, which must be found self-consistently from Maxwell’s equa-
tions, while for a swarm the fields are externally specified. This rider aside, it is clear that
there is a substantial degree of overlap between swarm and plasma kinetic theory, a fact
that is not always acknowledged in the current low temperature plasma literature - see,
for example, two recent reviews [4, 5]. In particular, statements made in these two papers
claiming adequacy for the “two-term” approximation of the electron distribution function,

i.e., terminating the expansion
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with lh.x = 1, appear to be at odds with the results of “multi-term” kinetic theory of

electrons swarms (Imay arbitrary) developed since the early 1970’s [5-11]. (In equation



(2), and in other cases below where convenient, we have supressed the explicit space-time
dependence.) Recent articles [12, 13| re-analyse the two-term approximation in the context
of the swarm-plasma connection, and confirm some of these previous results without actually
acknowledging them. All in all we are concerned by the lack of awareness apparent in much
of the the modern low-temperature plasma literature concerning results long established in
the swarm literature, especially regarding the two-term approximation, and feel that it is
timely to give up to date, definitive statements concerning its accuracy and applicability.
One important aspect of the present discussion concerns the adequacy of two-term theory
for inversion of swarm data to obtain electron-atom and molecule cross sections [4, 14-16].
For this and other applications a clear specification of accuracy requirements, for example,
as outlined in Section II, is required. In Section III the two-term and other approximations
are discussed in more detail. We then give a brief discussion in Section IV concerning
determination of electron impact cross sections from swarm and beam experiments and

from ab initio quantum mechanics calculations.

II. SPECIFICATION OF ACCURACY

Since equation (1) must in general be solved numerically, and a number of approximations
made, it is necessary to specify an accuracy criterion for one or more of the calculated
quantities at the outset. For example, if it were desired to obtain the z-component of the

average velocity (for convenience we suppress space-time dependence)
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to within a relative error £, the normal practice would be to carry out successive approximate

(3)

numerical solutions of (1) until the following condition were satisfied over the desired range

of fields:

‘vgNH) - vgN)‘ <e ‘U(N)

: (4)

where N is an integer denoting a parameter or group of parameters (see below for specific

examples) associated with the numerical approximation used, and vgN) denotes the N** ap-

proximation. Alternatively, more rigorously and with correspondingly greater computational



demands, one could apply an accuracy test to the distribution function f(»,e,t) itself over
all points e of interest in velocity space, or to its angular “moments” fr(,i)(c) (see equation
(2)) over all relevant speeds, again for a specified range of field strengths. The choice is usu-
ally determined by the experimental data with which one wishes to compare the theoretical
results.

It is our impression that claims made in recent review articles that

e “..the two term approximation ... does a remarkably good job of describing the

transport of electrons in ... most gases” [4];
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e “... restriction of the velocity distribution expansion to the lowest two terms already

leads to good approximations under many plasma conditions” [17]

are representative of the opinion widely held by many in low temperature plasma kinetics (see
e.g. recent reviews and articles [18-23]). Taken at face value, these claims and many others
like them in the modern literature appear questionable. For one thing, it is meaningful to
discuss approximations and compare results, be they of a theoretical or experimental nature,
only after specifying the “error bars”, as outlined above. In the context of the present
discussion, a quantitative specification is required as to what “good” means. After all, an
error of 10% in transport coefficients may well be acceptable in many plasma applications,
and the above statements would be true if they contained that proviso. However, for analysis
of highly accurate swarm experiments (required to compare with beam and/or ab-initio
calculations of cross-sections), accuracy to within 0.1% or better is required, and a “multi-
term” analysis or Monte-Carlo simulation is mandatory. If authors were prepared to qualify
statements concerning the two-term approximation in this way, reconciliation of the swarm

and plasma literature would be possible.



III. APPROXIMATIONS IN ELECTRON KINETIC THEORY

A The two-term approximation vs muliterm theory

The kinetic theory of dilute ions and electrons in gases underwent something of a revolu-
tion in the mid to late 1970’s, with the lifting of two restrictions that had hitherto hindered

progress:

1. Viehland and Mason [24, 25] developed a rigorous, systematic technique for solving
Boltzmann’s equation for ions in electric fields of arbitrary strength, for realistic ion-

atom interaction potentials; and

2. Lin et al. [6] adapted this technique to electrons and light ions, and developed the
first of what have become to be known as “multi-term” solutions of Boltzmann’s
equation. (Note that multi-term analysis for electrons had already commenced in a
limited fashion some years previously [11], and the scaling of two-term errors with
m/mg reported recently in [12, 13] had already been observed by then.) Subsequent
multi-term techniques were developed in the early 80’s (see the review article [26] and

references therein).

Both areas have progressed significantly beyond that time, with many new techniques and
applications (see the reviews [5, 10, 27]. In this paper we focus our attention primarily on
electrons, but many of our remarks could apply equally well to ions as well, since equation
(1) is the same for both species, and many of the numerical solution techniques are also
identical [6, 10, 11, 28].

Solution of (1) for both ions and electrons usually begins with the decomposition of
velocity dependence of f(r, ¢, t) in (2) in directions € in velocity space with [, an arbitrary
positive integer. Early in the last century Lorentz [29] represented f(c) for light particles in
a bath of heavy scatterers by the first two terms of such an expansion, effectively by setting
lmax = 1, giving rise to the nomenclature “two-term” approximation. There are well based
physical grounds [6, 30, 31| for assuming this near-isotropy in velocity space for electrons

undergoing mainly elastic collisions, where kinetic energy exchange between the electron and



the neutral is relatively small, but the situation is not so clear-cut when inelastic collisions
involving a much larger exchange of energy are important. For ions, (or to take another
example in transport theory, neutrons [32], where (2) would be designated as the “P,_, ”
approximation) no such low order approximation has ever been considered appropriate, given
that even in elastic collisions there is a large fractional energy exchange between the swarm
and neutral particles, and the velocity distribution is generally significantly distorted from
spherical symmetry (see also [33, 34]). The velocity distribution function of electrons in
molecular gases can often assume a similar appearance [9, 35|, for the same reason, i.e.,
large energy exchange in collisions, and thus any distinction between ions and electrons
based upon asymmetry of f(c) is lost: for strong inelastic proceses, the electron distribution
function starts to look like an ion distribution function, and it should come as no surprise
that the electron velocity distribution function also requires a multi-term representation,
i.€.y lmax > 1in (2).

These ideas are made concrete in Figs. 1-2. In Figure 1, we display the variation of the
velocity distribution functions with ion mass for charged particles in a gas of hard-spheres.
For smaller mass ratios (see Fig. 1A), the energy transferred per elastic collision is small
and the velocity distribution function is near-isotropic. For higher mass ratios however
(see Fig. 1B), the energy transferred per elastic collision increases and consequently so too
does the anisotropy of the velocity distribution function. For molecular gases (e.g. CO,
shown in Fig. 2) the energy transferred per inelastic collision is generally large (relative
to the incident energy) at this field and the electron velocity distribution function has the
associated anisotropic character displayed in the ion velocity distribution functions. Other
recent papers dealing with visualisation of the velocity distribution function can also be
consulted [34-36].

So when can these distortions in f(c) be considered “small”? Although there are physical
arguments and simplified estimates [6, 30, 31], ultimately the answer depends upon the
imposed accuracy criterion! If the imposed accuracy criterion were applied to the drift
velocity W (equal to the average velocity v, in the stationary, uniform state) of electrons

in Argon as in (4) with N = Iy, then setting ¢ = 0.1% would generally lead to the



conclusion that for Argon at the field strength (and monatomic gases, where only elastic
collisions are involved), the two-term approximation would probably suffice (see Table T and
reference [37]). If we extend our accuracy requirements to include diffusion coefficients and
keep ¢ = 0.1%, then convergence can only be achieved by setting N = [0, = 5. On the
other hand, even in a case like electrons in CHy (see Table I), which is very often used to
illustrate the necessity of a multi-term representation, we would find that (4) would hold
with N = [ = 1, i.e., the two-term approximation for drift velocity would be satisfied
over a wide range of fields, if we were to set ¢ =~ 10%. Two-term theory would also be
satisfactory for (e,CH,) diffusion coefficients if we relaxed the accuracy requirement and set
e ~ 20%. Further relaxation of the accuracy requirement would be required to make the
same statement about f,g,i)(c) for all speeds ¢, and an even greater reduction would be needed
for the velocity distribution function f(e).

There are of course exceptions to the above general rules, and the two-term theory some-
times even gets the physics wrong [38]. For example, if we consider the reduced transverse
diffusion coefficient nygD7 for electrons in methane under the influence of an a.c. electric
field of various reduced field frequencies w/ng as shown in Fig. 3. At lower frequencies (viz.
Fig. 3A), the instantaneous relative errors between the two-term and converged multi-term
results can be as high as 50%. At a higher frequency (see Fig. 3B) we observe that the
two-term approximation actually predicts oscillations that are m out of phase to those of the
converged multi-term results. Instantaneously the relative error can be as high as 70%.

On another point of misunderstanding, it is sometimes claimed that the two-term approx-
imation becomes increasingly difficult to satisfy at higher fields (see e.g. [39, 40]). There
are, however, examples which clearly show that this is not the case, e.g., Fig. 6 (CH,) and
Fig. 13 (COy) of reference [9] indicate that the two term results are worst at field strengths
which facilitate the onset of significant inelastic collisions, and then become quite good at
higher fields, as the relative importance of inelastic collisions declines. It is the latter which
is the dominating criterion for the breakdown of the two-term approximation and not just

the field strength per se.



B Other factors determining accuracy

1 Treatment of Ionisation

The treatment of ionisation in the kinetic theory of low-temperature plasmas and swarms
is of vital importance and there often exist common approximations and assumptions in its
treatment. The first approximation in widespread use in electron kinetics is the treatment
of electron impact ionisation as no different from any other inelastic process, ignoring the
true physics of the non-particle conserving collision process (see e.g. [17, 41]. It is rare to
find any mention of the error associated with this assumption. In some cases the results
are not even qualitatively correct under such an approximation [38]. In Figure 4 we display
the relative error in the rate coefficient for the process of electron impact ionization in
molecular oxygen, comparing the treatment as a true ionization process with that as a purely
inelastic scattering process for electrons in oxygen. Over the range of fields considered here
(appropriate to plasma operating conditions), the relative error increases with F/N and
is as high as 120% - rendering the assumption totally invalid at such field strengths. An
equivalent study has also been performed in Ar [42] and the errors are qualitatively similar.
The specially-constructed Lucas-Saelee model shows that glossing over this assumption could
be problematic and the reader is referred to the calculations of [9, 43] for further discussion.
Otherwise it appears that error estimates can only be made on a case by case basis, and,
like the other assumptions mentioned above, we feel strongly that it is incumbent on those
making this particular approximation to provide such accuracy estimates.

Another issue of importance in the treatment of ionization is the partitioning of post-
collision energy between the scattered and ejected electrons. In the absence of any further
information, workers are generally forced to make an assumption on the partitioning in their
kinetic theory. For field strengths operative in plasma discharges however, the transport
properties can be very sensitive to the partitioning scheme. Such sensitivity is displayed in
the ionisation rates in Figure 4 and extends to other transport properties. Two schemes
(i) post-collision energy is shared equally (50-50) and (ii) post-collision energy is given all

to one electron while the other has zero kinetic energy (0-100), are compared with the



rate determined by assuming all fractions of the distribution of post-collision energy are
equiprobable. The 50-50 scheme tends to underestimate the equiprobable partitioning rates
while the 0-100 scheme tends to overestimate them. Differences of up to 15% exist between
the schemes over the range of fields considered. Equivalent calculations have been performed
in Ar [42] and the sensitivity demonstrated. Thus, in the extraction of ionization cross-
sections from swarm data one must keep in mind that transport properties are sensitive
to both the magnitude of the ionization cross-section and the partitioning scheme for the

post-collision energy.

2 Mass ratio expansion

Another approximation in widespread use in the electron kinetic theory is the represen-
tation of the actual Boltzmann integral collision term J(f, fy) by an approximation based
upon the smallness of the electron-neutral molecule mass ratio m/my. We emphasise that
as far as both elastic and inelastic collisions are concerned, and before any such approxima-
tion is made, J(f, fo) is of the same mathematical form to start with, regardless of whether
we are talking about ions, electrons, positrons or muons, and that in all cases, it can be

represented by the same mass ratio expansion, which we write formally as:

Pmax

J(f, fo) ~ Z(m%)p TO(F, ) . (5)

Here pnax is a nonnegative integer, which, like [,,x, must strictly speaking be chosen
by incrementation using an accuracy criterion like (4), with N = ppua.. For electrons
m/my ~ 107* — 107° and we expect the series (5) to converge very rapidly. Indeed we
have found that the normal approximation of setting pm.x = 1 and 0 for the elastic and
inelastic collision terms respectively leads to an error in all electron transport coefficients of
e ~ 1075 over all fields of interest [34, 44]. The accuracy of the mass ratio approximation for
the distribution function is expected to be somewhat less, but we have not carried out such
an investigation. The great advantage of truncation at first order in mass ratio is that J©

and J® can be represented in differential-finite difference form [3, 30, 45-47] and special



numerical techniques can be brought to bear to effect very accurate solutions of the approx-
imate Boltzmann equation [5, 17]. However, it does not make sense to endeavour to obtain
such numerical solutions to an accuracy greater than that of the approximate equation itself.
At the time of writing, relative errors to within ~ 107 for the numerical solution of the
Pmax = 1 approximated Boltzmann equation were proclaimed (see e.g. [48]), which lies at
the bounds of the limits of validity of the approximated collision term itself. If such high
precision is required, the only way to obtain a true estimate of the overall accuracy of the
calculation is to go to the ppax = 2 representation of J(f, fo), but then advantages of sim-
plification in mathematical form are lost, and it is not clear whether the special numerical
techniques developed for the p,.« = 1 representation could continue to be applied.

For particles heavier than electrons, more terms in (5) are certainly required to achieve
the desired overall accuracy. For muons (m, &~ 200 m,) for example, it has been found
that transport coefficients accurate to 0.1% or so over the range of fields of interest can be
achieved only by taking pmax = 3 [49]. As expected in this case, the two-term approximation
is inadequate for this accuracy criterion, and [, = 2 or more in (2) is required. For ions
of mass equal to the neutrals, i.e., m/my = 1, it is found that pyax as high as 6-7 and .«
as high as 4-6 can be required for an accuracy of 1% or better in the transport coefficients

over field strengths of interest [34].

IV. ELECTRON-MOLECULE IMPACT CROSS SECTIONS FROM SWARM
DATA

A Swarm and beam experiments, ab initio quantum mechanical calculations

The greatest significance of swarm experiments in relation to fundamental and applied
topics in electron scattering lies in their ability to furnish accurate cross sections at low
energies. While advances in crossed-beam techniques have enabled measurement of relative
angular distributions to an accuracy of a few percent even at energies as low as 0.5 eV
[50], the necessity of determining from these data integral cross sections, by extrapolation

to small and large angles followed by normalization, introduces significant additional error.
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As a consequence, at energies below about 1eV, analysis of transport data from swarm
experiments remains the most accurate way of determining integral cross sections for electron
scattering. Of special interest is electron-molecule scattering, where analysis of transport
coefficients can determine rotationally and vibrationally inelastic cross sections at energies
very near threshold, typically from fractions of a millivolt (for rotational excitation) to a
few tenths of an eV (for vibrational excitation). Swarm and beam derived cross sections
have been complemented by many substantial ab initio quantum mechanical calculations
for simple molecules [51]. The modern approach to determination of cross sections over a
wide range of energies is a combination of all three techniques.

In principle, swarm-derived cross sections are most accurate at energies where at most
one inelastic process is energetically accessible. When several inelastic channels are open,
there may be problems with a lack of uniqueness, which can grow more serious with in-
creasing energy above threshold. It is here that ab initio theoretical calculations can play
a crucial role, e.g., by fixing rotational cross sections and thus allowing the determination
via transport analysis of a unique vibrational cross section. A joint study of ro-vibrational
excitation in molecular hydrogen along these lines is currently underway aimed at resolving
the long-standing controversy surrounding the e, Hy vibrational cross section [15, 52, 53].
Our experience with this problem in particular highlights the importance of examining with
the greatest of care statements concerning the accuracy of transport analyses and the cross

sections they yield.

B Unfolding the cross sections from transport data

Low energy electron impact cross sections can be “unfolded” from measurements of trans-
port properties obtained from swarm experiments, in conjunction with solutions of (1). The
early methods of deriving cross sections from swarm measurements of the drift velocity and
transverse diffusion coefficient in an electric field has been extensively reviewed by Huxley
and Crompton [14] and became accepted as competitive and complementary to other es-

tablished techniques, such as crossed beam or total attenuation experiments. Originally the
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two term theory was used to unfold the transport data, but in the early 1980’s Haddad [7]
tested this approximation using the then recently developed muliterm code [6], and found
it wanting in a number of cases. More recently in the Heidelberg experiments [54, 55] using
electric and crossed electric and magnetic fields, the four quantities W, Lorentz deflection
angle o, and both longitudinal and transverse diffusion coefficients Dy and Dy respectively
were measured, with accuracies of around 0.2% obtained for each of the former, and around
2% for each of the latter over the range of fields considered. It seems reasonable to demand
that theoretical calculations should have an even greater precision, say better than 0.1%. It
is precisely in this accuracy range that the two-term approximation is found to be wanting
for many molecular gases, as evidenced by the large number of studies conducted over the
past two decades (see the reviews [5, 10, 26]). At best, one is never sure that the two-term
approximation holds to a specified accuracy until a multi-term analysis (or Monte Carlo sim-
ulation) has been run as a check. Schmidt and coworkers [54, 55] subsequently developed an
fully automated procedure for extracting cross sections from their experimental transport
data. With the multi-term analysis, accuracies typically around 1—3% were achieved for the
elastic momentum transfer cross section in the range 0.01 — 1.0eV for the gases considered,
with uncertainties of 5 — 10% for inelastic cross sections.

If the claim that two term approximation is typically used for swarm analysis were true
(and it is not in our experience), then we suggest the accuracy of cross sections derived
on that basis is therefore open to serious doubt and the such cross-sections are possibly

unsuitable for comparison with other theoretical and/or experimental techniques.

V. CONCLUDING REMARKS

This note suggests that when viewed in the cold hard light of numerical precision, the
continued uncritical use of the two-term approximation as the standard-bearer of electron
kinetics is unwarranted. In our opinion, the distinction between electron and ion kinetics
becomes blurred for many molecular gases, and multi-term analysis should be regarded as

the norm, not the exception, just as it is for ions in general. Windows of opportunity
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certainly exist for continued use of the two-term theory in many cases, e.g., for plasma
modelling requiring only accuracy of = 10%. However, in general when high precision
of around 0.1% or better is required, a multi-term code (or Monte Carlo simulation) is
mandatory for all molecular gases. For intermediate accuracies, say ~ 1% , it is difficult to
give a definitive statement, but we recommend that a multi-term analysis (or Monte-Carlo
analysis) be applied, if only for checking the two-term results.

We have discussed two other approximations implicit in much of the literature on electron
kinetics: the approximation of the collision operator to first order in mass ratio, and the
approximate treatment of ionisation purely as an inelastic process. The former assumption
leads to errors in electron transport coefficients typically around 10~5 and would only come
into question when solutions of the Boltzmann equation to a similar accuracy or better
were required. The latter cannot be glossed over and must be analysed on a case by case
basis. We feel strongly that it is incumbent on authors making such an approximation to
investigate and report just what error is involved.

Our overall recommendation is that in general the usual practice in physics of specifying
“error bars” should be followed in the low-temperature plasma literature, and that in par-
ticular, the accuracy of calculations based upon the two-term approximation and other well

known assumptions implicit or explicit in this literature should be clearly spelled out.

VI. ACKNOWLEDGMENT

The support of the Alexander von Humboldt Foundation and the National Science Foun-
dation under Grant PHY-0071031 is gratefully acknowledged. It is a pleasure to acknowledge

helpful discussions with Dr Kevin Ness and Dr. Malte Hildebrandt.

REFERENCES

[1] L. Boltzmann, Wein. Ber. 66, 275 (1872).
2] C.S. Wang-Chang, G. E. Uhlenbeck, and J. DeBoer, in Studies in Statistical Mechanics,
edited by J. D. Boer and G. E. Uhlenbeck (Wiley, New York, 1964), vol. II, p. 241.

13



[3] K. Kumar, H. R. Skullerud, and R. E. Robson, Aust. J. Phys. 33, 343 (1980).
[4] W. L. Morgan, Adv. At. Mol. Opt. Phys. 43, 79 (2000).

5] R. Winkler, Adv. At. Mol. Opt. Phys. 43, 19 (2000).

6] S. L. Lin, R. E. Robson, and E. A. Mason, J. Chem. Phys 71, 3483 (1979).

8
9

]
]

—_n =

L. C. Pitchford, S. ONeil, and J. R. Rumble, Phys. Rev. A 23, 294 (1981).

[
[
[7] G. N. Haddad and R. W. Crompton, Aust. J. Phys. 29, 975 (1980).
[
[

K. F. Ness and R. E. Robson, Phys. Rev. A 34, 2185 (1986).

R. D. White, K. F. Ness, and R. E. Robson, Appl. Surf. Sci. 35, 26 (2002).

R. E. Robson and K. Kumar, Aust. J. Phys. 24, 835 (1971).

A. Rokhlenko, Phys. Rev. E 58, 976 (1998).

J. L. Lebowitz and A. Rokhlenko, Journal of Plasma Physics 60, 861 (1998), article
English J PLASMA PHYS 4 159T1J.

L. G. H. Huxley and R. W. Crompton, The drift and diffusion of electrons in gases
(Wiley, New York, 1974).

R. W. Crompton and M. A. Morrison, Aust. J. Phys. 46, 203 (1993).

R. W. Cromption, Adv. At. Mol. Opt. Phys. 32, 97 (1994).

R. Winkler, D. Loffhagen, and F. Sigeneger, Applied Suface Science 192, 50 (2002).
C. M. Ferreira and J. Loureiro, Plasma Sources Science and Technology 9(4), 528
(2000), article English PLASMA SOURCES SCI TECHNOL 374JA.

L. D. Tsendin, Plasma Sources Science and Technology 4, 200 (1995).

M. J. Pinheiro and J. Loureiro, J. Phys. D: Appl. Phys. 35, 3077 (2002).

B. M. Smirnov, Phys. Usp. 12, 1251 (2002).

U. Kortshagen, C. Busch, and L. D. Tsendin, Plasma Sources Sci. Technol. 5, 1 (1996).
L. L. Alves, G. Gousset, and C. M. Ferreira, Phys. Rev. E 55(1), 890 (1997).

L. A. Viehland and E. A. Mason, Ann. Phys. 91, 499 (1975).

L. A. Viehland and E. A. Mason, Ann. Phys. 110, 287 (1975).

R. E. Robson and K. F. Ness, Phys. Rev. A 33(3), 2068 (1986).

L. A. Viehland, Chem. Phys. 179, 71 (1994).

K. Kumar, Aust. J. Phys. 20, 205 (1967).

14



[29]
[30]
31]
2]
3]
4]
5]
[36]

3

3

[
[
3
[
3

[37]
[38]
[39]

[40]

[41]

H~

W
A

H. A. Lorentz, Proc. Amsterdam Acad. 7, 438 (1905).

W. P. Allis, Hand. d. Physik, vol. XXI (Springer-Verlag, Berlin, 1956).

V. L. Ginzburg and A. V. Gurevich, Usp. Fiz. Nauk. 70, 201 (1960).

B. Davidson, Neutron Transport Theory (Clarendon, Oxford, 1958).

G. H. Wannier, Bell Syst. Tech. J. 32, 170 (1953).

R. D. White, R. E. Robson, and K. F. Ness, Comp. Phys. Comm. 142, 349 (2001).

R. D. White, K. F. Ness, and R. E. Robson, J. Phys. D: Appl. Phys. 34, 2205 (2001).
R. D. White, K. F. Ness, and R. E. Robson, J. Phys. D: Appl. Phys. 32(16), 1842
(1999).

M. J. Brennan and K. F. Ness, Nuovo Cimento D 140, 933 (1992).

R. D. White, R. E. Robson, and K. F. Ness, Phys. Rev. E 60, 7457 (1999).

N. A. Dyatko and A. P. Napartovich, in Proc. Int. Symp. On Electron-Molecule Colli-
sions and Swarms, edited by 1. Fabrikant, G. Gallup, and P. Burrow (Lincoln, Nebraska,
2001).

K. Yoshida, S. Goto, H. Tagashira, C. Winstead, B. V. McKoy, and W. L.. Morgan, J.
Appl. Phys. 91, 3530 (2002).

C. M. Ferreira, L. L. Alves, M. Pinheiro, and A. B. Sa, IEEE Trans. Plasma Sci. 19,
229 (1991).

K. F. Ness and T. Makabe, Phys. Rev. E 62, 4083 (2000).

B. Li, R. D. White, and R. Robson, J. Phys. D: Appl. Phys. 35, 2914 (2002).

R. D. White, K. F. Ness, R. E. Robson, and B. Li, Phys. Rev. E 20(2), 2231 (1999).
M. J. Druyvesteyn, Physica 10, 61 (1930).

B. I. Davydov, Phys. Z. Sowj. Un. 8, 59 (1935).

L. S. Frost and A. V. Phelps, Phys. Rev. 127, 1621 (1962).

D. Loffhagen and R. Winkler, J. Phys. D: Appl. Phys. 29, 618 (1996a).

K. Ness and R. E. Robson, Phys. Rev. A 39, 6596 (1989).

S. J. Buckman, M. J. Brunger, D. S. Newman, G. Snitchler, S. Alston, D. W. Norcross,
M. A. Morrison, B. C. Saha, G. Danby, and W. K. Trail, Phys. Rev. Lett. 65, 3253
(1990).

15



[51] M. A. Morrison and W. K. Trail, Phys. Rev. A 48, 2874 (1993).

[52] M. A. Morrison, R. W. Crompton, B. C. Saha, and Z. L. Petrovic, Aust. J. Phys. 40,
239 (1987).

[53] R. D. White, M. A. Morrison, and B. A. Mason, J. Phys. B: At. Mol. Opt. Phys. 35,
605 (2002).

[54] B. Schmidt, Comments At. Mol. Opt. Phys. 28, 379 (1993).

[55] B. Schmidt, K. Berkhan, B. Goetz, and M. Mueller, Physica Scripta 53, 30 (1994).

16



FIG. 1: Contour plot of the velocity distribution function for ions of masses 4 x 10~* amu
(A) and 4 amu (B) in a model gas of hard spheres of mass 4 amu at E/ny = 1Td (Note:
the electric field force is vertically upward). The cross-section is independent of energy
and is fixed at 6A? while the neutral gas temperature is fixed at 295K. The values of the
solid contours from largest to smallest radii in (A) are 0.3,0.6,0.9.1.2,1.5 (eV)~%/2; (B) are
25,50,100,150,200 (eV)_3/2. The energy scale is denoted by the dashed circular contours. The
values of the energy scale contours of increasing radii are respectively for (A) are 0.3,0.6,0.9

eV while for (B) are 0.01, 0.05, 0.1 eV.
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FIG. 2: Contour plots of the velocity distribution functions for electrons in carbon-dioxide
at 293K subject to a reduced electric field of E/ny = 5Td (Note: the electric field force is
vertically upward). The value of the solid line contour heights from largest to smallest radii

3/2

are, respectively 0.5,1,2,4,8 eV~°/%. The energy scale is indicated by the dashed concentric

circular plots of increasing radii referring to 0.3,0.6 and 0.9 eV respectively.
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FIG. 3: Comparison of the two-term and multi-term profiles of the transverse diffusion
coefficient for CH4 under the influence of an a.c. electric field at various applied reduced
angular frequencies w/ng (rad m® s7'): (A) 1x107'7 (B) 1x107' (C) 1x107'. (E/ng =

5 coswt Td where ng is the neutral number density and ¢ is time).

TABLE I: Convergence in the [-index of the drift velocity and diffusion coefficients for
electrons in methane (CHy: E/ng=5Td; Ar: E/ny=0.5Td. ng is the neutral number density.)

Gas Transport Imaz
coefficient 1 2 3 4 5 6
CHy W (x10*ms™1) 10.6 9.89 10.0 10.0 10.0 10.0

noDr (x10*#*m~'s71) 4.94 4.53 4.62 4.59 4.61 4.60
noDyp (x10%*m~!s7!) 1.87 2.18 2.02 2.05 2.05 2.05
Ar W (x10°ms™1) 2.515 2.515 2.515 2.515 2.515 2.515
noDr (x10%°m~'s™1) 1.737 1.685 1.693 1.690 1.691 1.691
noDy (x10%*m~!s™1) 2.042 2.043 2.043 2.043 2.043 2.043
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FIG. 4: Comparison of ionization rates for electrons in molecular oxygen at 300K calculated
using the various approximations for the ionization process . The results are displayed as
relative differences to those rates calculated assuming all fractions of the post-collision energy
are distributed uniformly between scattered and ejected electrons. The various schemes are
(i) ionization treated as an inelastic collision process (INEL) (ii) post-collision energy is
equally shared between the scattered and ejected electrons (50-50) and (iii) post-collision

energy is all given to one electron the other remaining stationary (0-100).
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