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Abstract
The long-standing discrepancy between the theoretically and experimentally
determined v = 0 → 1 vibrational cross-section of hydrogen is addressed by
analysing the transport theory used to deconvolute electron swarm transport
data. The implementation of the full energy and angular dependence of
quantum mechanically derived differential cross-sections in the semiclassical
transport theory (using both a multi-term Boltzmann equation solution and
an independent Monte Carlo simulation) is shown to be unable to resolve the
discrepancy. Assumptions and approximations used in the original transport
analyses are quantified and validated.

1. Introduction

For over 30 years, the field of electron–molecule scattering has been plagued by a severe
discrepancy between vibrational cross-sections obtained using beam and swarm measurements.
This discrepancy first appeared in the late 1960s and early 1970s, when crossed-beam data
from measurements by Ehrhardt et al (1968) of integral cross-sections for the electron-induced
v0 = 0 → v = 1 excitation of H2 were compared with contemporaneous cross-sections
determined by Crompton et al (see e.g. Huxley and Crompton 1974) from data taken in swarm
experiments. Over the energy range from threshold to about 1.5 eV, the highest energy at
which swarm-derived cross-sections could be determined with confidence, the two sets of data
disagreed by as much as 60%—an amount greatly in excess of the errors and uncertainties
claimed for each determination. Although a subsequent beam measurement by Linder and
Schmidt (1971) confirmed the results of Ehrhardt et al (1968), the significance of the disparity
with swarm-derived cross-sections was mitigated somewhat by the nature of these early beam
experiments, which were designed to explore resonance effects in vibrational and electronic
excitation rather than to measure absolute non-resonant cross-sections.
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To appreciate the nature of this discrepancy, it is important to understand that swarm
experiments differ significantly from crossed-beam methodologies in that they do not yield
cross-sections directly. Rather, a swarm experiment entails measuring physical properties
of an electron swarm that is in a quasi-steady state determined by a balance between power
input from an applied electric field E and energy loss rate via collisions between electrons
in the swarm and particles of a neutral gas of density N . A set of cross-sections (which for
low values of E/N includes the momentum transfer cross-section, rotational cross-sections
and vibrational cross-section for all energetically allowed excitations) is determined that is
consistent with the experimental raw data as follows.

The first step involves the experimental measurement of transport coefficients from swarm
experiments (e.g. the drift velocity W , transverse and longitudinal diffusion coefficients DT

and DL respectively and the rate coefficient ki for the ith collision process) for a range of
applied reduced fields E/N (see e.g. Huxley and Crompton 1974 for details).

The second step in the process involves the ‘inversion’ of the experimentally measured
transport coefficients to obtain the interaction cross-sections. The equation which links the
experimentally measured transport coefficients with the unknown interaction cross-sections
is Boltzmann’s equation. For a given set of cross-sections, all measurable quantities can
be calculated from the solution of Boltzmann’s equation. Rather than a direct inversion
of Boltzmann’s equation to determine the unknown interaction cross-sections, an iterative
scheme is employed: an initial set of trial cross-sections is input into the Boltzmann equation
and transport coefficients are theoretically determined over the range of E/N considered in
the experimental measurements. The experimentally measured transport coefficients are then
compared with the theoretically calculated transport coefficients for all values ofE/N at which
data were taken. The initial trial cross-section set is then iteratively adjusted and theoretical
transport coefficients recalculated until a set of cross-sections is obtained from which the
calculated transport coefficients match the experimentally measured transport coefficients (to
within experimental error) over the entire range of E/N . This is then the set of cross-sections
determined from swarm experiments. This was the procedure used by Crompton et al (1969,
1970) to generate the e–H2 vibrational cross-sections which differed so strikingly from the
crossed-beam results of Ehrhardt et al (1968) and Linder and Schmidt (1971).

Extensive research on e–H2 vibrational excitation during the past two decades by theorists
and experimentalists—as detailed in section 2—left the conundrum of vibrational excitation of
H2 at an impasse. The situation is quite serious, for more is at stake than low-energy vibrational
cross-sections for this particular system. For scattering energies from threshold to a few
eV, swarm experiments remain the primary experimental source of inelastic and momentum-
transfer cross-sections. In addition to their fundamental importance, such cross-sections are
in high demand for such diverse scientific and technological applications as astrophysics,
lasers, energy-related technology and pollution control. If, indeed, prior determinations of
vibrational cross-sections for e–H2 and other systems by conventional transport analysis have
been in error—one possible explanation for the disagreement of swarm-derived cross-sections
with theoretical and beam-determined data—then analyses that rely on these cross-sections,
such as laser kinetic modelling, may also be in error3.

This paper reports the first phase of a new project to tackle this long-standing and
exasperating problem from a completely different point of view, shifting attention to the
transport theory itself. Our long-term goal, in brief, is to investigate key assumptions
underlying existing analyses of swarm data. This project, a collaboration between OU and

3 A similar disparity exists between theoretical and swarm-derived vibrational cross-sections for e–N2 scattering
(Sun et al 1995). But neither approach has been studied as extensively for the e–N2 system as both have for e–H2
(see section 2).
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James Cook University, will combine a variety of approaches to the Boltzmann equation with
Monte Carlo calculations which apply a microscopic semiclassical transport theory to the
swarm experiments.

This first paper details tests of the suitability of the traditional semiclassical Boltzmann
analysis under the conditions of the scattering process under question. Unlike, say, elastic
electron–atom scattering, where agreement between swarm-derived and theoretical or other
experimental cross-sections is excellent, or electron–molecule scattering under conditions such
that only rotational excitation is involved, the problem at hand features electrons that lose energy
to two scattering processes with distinctly different thresholds and energy losses: the threshold
for the j0 = 0 → j = 2 rotational threshold is 0.044 eV, while that for the v0 = 0 → v = 1
vibrational excitation is 0.52 eV, more than an order of magnitude larger. Here, we present in
section 4.2 foundation studies which compare results from semiclassical Boltzmann analysis
and Monte Carlo simulations for collisions that satisfy these characteristics. These comparisons
build on earlier studies by Reid (1979), as will be discussed in this section.

Section 2 summarizes prior attempts to resolve the disparity in e–H2 vibrational cross-
sections. Then in section 3, we review the fundamental equation used in the analysis of
all swarm experiments—the semiclassical Boltzmann equation. In traditional analyses of
swarm experiments (hereafter referred to as ‘conventional theories’) (Gibson 1970, Huxley
and Crompton 1974), various approximations were implemented in the solution of this equa-
tion. These approximations are highlighted in section 3 along with the details of the present
theory, which avoids them. In section 4.3, we present for the first time results using the full
set of quantum mechanically derived anisotropic cross-sections of Morrison and Trail (1993),
with no approximations in both the Boltzmann equation and Monte Carlo treatments. We
focus exclusively on the simplest collision conditions for which swarm experiments have been
performed: a swarm of electrons drifting and diffusing through pure para-hydrogen at a gas
temperature of 77 K. We then turn our investigations to issues pertinent to approximations used
in conventional theories used in the analysis of swarm experiments. The errors associated with
certain of these approximations are quantified in section 4.4. Finally, section 4.5 contains a
systematic investigation of the importance of anisotropic scattering for this system. Our con-
clusions, summarized in section 5, lay the foundation for the broader inquiries described above.

2. Background

Hydrogen is the simplest neutral molecular target, with many characteristics that make it ideal
for experimental and theoretical study. It is non-polar. It has only two electrons. Its nuclei are
light enough to justify a non-relativistic treatment. Its electronically excited and dissociative
states are well separated in energy from low-lying rotational and vibrational levels of the
ground electronic state. And in that state, the rotational and vibrational degrees of freedom are
effectively uncoupled. So, in 1980, theorists at the University of Oklahoma (OU) and swarm
experimentalists at the Australian National University (ANU) undertook a joint inquiry into
low-energy electron–H2 scattering. The goal was to attain a confirmation of electron–molecule
collision physics comparable to that obtained in 1979 for electron–atom scattering, when
Nesbet (1979) reported calculated ab initio theoretical low-energy e–He cross-sections that
agreed with swarm-derived values at energies below the first electronically inelastic threshold
to within 1%.

Much to the consternation of all concerned, this goal proved unattainable. While results
from theoretical calculations and swarm experiments for the momentum transfer and rotational
excitation agreed superbly, the vibrational excitation cross sections disagreed by as much as
60%—many times the most pessimistic error estimates for either study.



608 R D White et al

There followed many years of work by theorists at OU, the Joint Institute for Laboratory
Astrophysics and the Lawrence Livermore Laboratory and by experimentalists at the ANU—
all of whom sought to resolve the situation. At OU, theoretical efforts involved successive
improvements in the rigour of the formulation, by eliminating approximations from the e–H2

interaction potential and refining the representation of the rotational and vibrational dynamics in
the solution of the Schrödinger equation. At the ANU, new transport analyses were undertaken,
both of the original swarm data and of new data taken in mixture measurements, in which the
electron swarm encounters a high concentration of a rare gas, whose momentum transfer
cross-section is well known, and a small concentration of molecular hydrogen.

All this work, the details of which have been summarized in two interim reports (Morrison
et al 1987, Crompton and Morrison 1993), left the situation virtually unchanged. The new
analyses of swarm data for mixtures of H2 and various rare gases yielded cross-sections
in agreement with those obtained in a re-analysis of earlier transport coefficients for pure
H2 (England et al 1988). Yet, the most rigorous OU theoretical vibrational cross-sections
remain persistently incompatible with the swarm-derived cross-sections. When inserted into
the transport analysis, the theoretical cross sections yield transport coefficients that disagree
with measured data by several per cent (Crompton and Morrison 1993), well outside the
better-than-1% accuracy of those data. In their final report on the situation, Crompton and
Morrison (1993) concluded ‘We are . . . left with the possibility of an error or inconsistency in
the analysis of swarm data in molecular gases, noting, however, that no such problems appear
in the analysis for atomic gases. This possibility must be considered along with the other
possible explanations of the persistent discrepancy (in the 0 → 1 vibrational cross-section),
no matter how remote they may seem’.

Two additional recent pieces of research provide essential background and motivation
for the present project: a new crossed-beam measurement of e–H2 vibrational cross-sections,
and a theoretical sensitivity study to the sole significant approximation remaining in the OU
theoretical calculations.

In 1990, Buckman et al reported state-of-the-art crossed-beam measurements using a
new apparatus designed to yield absolute low-energy cross-sections. The overall 90 meV
energy resolution of this apparatus enabled direct comparison of the resulting vibrational
cross-sections with swarm-derived values at energies as low as 1.0 eV, nearly twice the 0.52 eV
threshold of the 0 → 1 excitation. In the important energy range below 1.5 eV, the new crossed-
beam cross-sections agree within experimental error with the latest OU theoretical values and
with the previous crossed-beam data of Ehrhardt et al (1968) and Linder and Schmidt (1971).
But all these data are strikingly at odds with the swarm-derived cross-sections. Buckman
et al (1990) remarked that they ‘consider the present study to have settled [the] long-standing
controversy [over the 0 → 1 e–H2 cross-section]. In particular, the present [OU] theoretical
formulation . . . appears to accurately describe the 0 → 1 excitation at these energies’. In
conclusion, these authors call for ‘a new investigation of electron transport in H2 by Monte
Carlo methods’.

The second recent piece of relevant research was a sensitivity study by Morrison and
Trail (1993) of the e–H2 interaction potential used in the OU theoretical calculations. In its
most rigorous form, these calculations use converged close-coupling theory for the vibrational
dynamics and an adiabatic treatment of rotation that had been shown previously to be
highly accurate for energies at and above the first vibrational threshold. Furthermore, these
calculations treat rigorously the non-local exchange interaction that arises from the anti-
symmetrization postulate, using the same near-Hartree–Fock electronic H2 wavefunction as
in the static (Coulomb) interaction. Finally, they include a correlation-polarization potential
that correctly includes adiabatically induced distortions of the target for projectile coordinates
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outside the molecular charge cloud and that asymptotically yields polarizabilities in good
agreement with measured values. The sole significant approximation in this formulation is
the use of a ‘non-penetrating approximation’ to mimic the short-range, non-local, many-body
effects of bound–free correlation, effects which come into play for projectile coordinates very
near or within the molecular charge cloud.

Could errors in this approximate bound–free correlation potential be responsible for
the disparity between theoretical and swarm-derived 0 → 1 cross-sections? Morrison
and Trail (1993) addressed this question via a quantitative investigation of the sensitivity
of all relevant e–H2 cross sections—the momentum transfer, rotational excitation, integral
elastic and differential elastic—to physically reasonable variations in the model correlation
potential. In effect, the agreement of all these cross-sections with various experimental results
(including swarm-derived values) place ‘boundary conditions’ on any mechanism—theoretical
or otherwise—to explain the disparity in the vibrational cross-sections. In their study, Morrison
and Trail (1993) found that any reasonable alteration to their bound–free correlation potential
that yielded vibrational cross-sections consistent with the swarm-derived values seriously
compromised the rotational and/or momentum transfer cross-sections.

3. Semiclassical Boltzmann theory

The governing equation for a swarm of electrons moving through a background gas of neutral
molecules under the influence of a spatially homogeneous electric field (E) is Boltzmann’s
equation for the phase space electron distribution function f (r, c, t):

∂f

∂t
+ c · ∇f − eE

m
· ∂f
∂c

= −Ĵ (f ), (1)

where r and c denote respectively the position and velocity coordinates of an electron in
the swarm, Ĵ (f ) is the collision operator and t is the time. The electron mass and charge
magnitude are m and e respectively. In all prior applications of Boltzmann theory to swarm
experiments, the electron number density n(r, t) has been assumed to be sufficiently low that
the following conditions pertain:

(1) electron–electron scattering can be neglected;
(2) the fermionic character of the electrons can be ignored, i.e. one need not take account of

the Pauli exclusion principle in the collision integrals;
(3) the translational motion of the electrons can be treated classically;
(4) the background of neutral molecules remains in thermal equilibrium.

In swarm experiments the current is varied over several orders of magnitude to check for
these effects. No changes in the experimentally measured quantities are observed, which
indicates that space charge and the deviation of the neutral distributions from equilibrium may
be negligible. The collision operator Ĵ (f ) on the right-hand side of equation (1) thus represents
only electron–neutral molecule interactions. In the present work we employ the original
Boltzmann collision operator for elastic processes (Boltzmann 1872) and its semiclassical
generalization for inelastic processes (Wang-Chang et al 1964):

Ĵ (f ) =
∑
i,k

∫ ∫ [
f (r, c, t)Fi (C) − f (r, c′, t)Fk(C

′)
]
vσ (i→k)(v, θ) sin θ dθ dψ dC, (2)

where Fk(C) denotes the velocity distribution of neutral molecules in the ro-vibrational state
characterized by the index k ≡ (v, j,mj ), and C is the velocity of the neutral molecule. Primes
denote post-collision quantities. The differential cross-section for an electron that scatters into
centre-of-mass angles θ and ψ and induces a transition in the neutral molecule from state i to
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state k is σ (i→k)(v, θ), where v is the initial relative velocity of the electron and the molecule.
We shall discuss further the role of the angular dependence of the differential cross-section
in section 4. Here it suffices to say that the naturally occurring quantities in conventional
Boltzmann theory are the Legendre projections of the differential cross-sections. These follow
from the expansion

σ (i→k)(v, θ) =
Lmax∑
L=0

(
2L + 1

4π

)
σ

(i→k)
L (v)PL(cos θ), (3a)

and the orthogonality relation for Legendre polynomials as

σ
(i→k)
L (v) = 2π

∫ 1

−1
σ (i→k)(v, θ)PL(cos θ) d(cos θ). (3b)

Strictly speaking, the sum over L in (3a) includes an infinite number of terms, though in
practice the modest angular variation of the differential cross-sections allows it to be truncated
to high accuracy at only a few terms. We shall refer to the projections defined in equation (3b)
as partial differential cross-sections.

Equations (1) and (2) constitute the semiclassical Boltzmann equation and represent the
starting equation for all theoretical analyses of electron swarms in gases to the present. In
conventional analyses of swarm experiments (Gibson 1970, Huxley and Crompton 1974)
certain approximations and assumptions are implemented to solve this system of equations. In
what follows, we highlight these assumptions and approximations and demonstrate how they
are avoided in the present theory and associated code. To facilitate this we briefly review the
theory used in the present analysis and refer to prior analyses where appropriate.

The design and analysis of electron swarm experiments are generally made under the
assumption of the existence of the hydrodynamic regime. This regime exists when the swarm
has evolved to a stage where its subsequent space and time evolution are governed entirely
by linear functionals of the electron number density n(r, t) (Kumar et al 1980). Under these
conditions, the swarm can be fully characterized by time-independent transport coefficients.
A representation of equation (1) in the hydrodynamic regime is made via a series of two
expansions.

(1) A sufficient representation of the space and time dependence of the phase-space
distribution function in the hydrodynamic regime is the density gradient expansion (Kumar
et al 1980):

f (r, c, t) = n(r, t)f (0)(c) − f (1)(c) · ∇n(r, t) + · · · ,

=
∞∑
s=0

s∑
λ=0

λ∑
µ=−λ

g(sλµ; c)G(sλ)
µ n(r, t), (4)

where G(sλ)
µ is the irreducible tensor form of the gradient operator (Robson and Ness

1986). This representation enables direct connection with the continuity and diffusion
equations from which the transport coefficients are defined (see equations (9e)).

(2) The angular dependence of f (r, c, t) in velocity space is generally expanded in spherical
harmonics as (Robson and Ness 1986)

g(sλµ; c) =
 max∑
 =0

 ∑
m=− 

f (lm|sλµ; c)Y m(ĉ)δµm, (5)



Classical transport analysis to determine cross-sections for low-energy e–H2 vibrational excitation 611

where ĉ represents the angles of c. If we now define the quantities

F
(0)
 (c) ≡ i 

[
2 + 1

4π

]1/2

f ( 0|000; c)

F
(L)
 (c) ≡ il+1

[
2 + 1

4π

]1/2

f ( 0|110; c)

F
(T)
 (c) ≡ il+1

[
2(2 + 1)

4π ( + 1)

]1/2

f ( 1|111; c),

(6a)

then (in the absence of non-particle-conserving collisional processes, e.g. attachment,
ionization etc) the following hierarchy of equations suffices to determine the quantities of
interest in the present work (Kumar et al 1980):

l

2l − 1

(
eE

m

) [
d

dc
− l − 1

c

]
F

(0)
 −1(c) +

l + 1

2l + 3

(
eE

m

) [
d

dc
+
l + 2

c

]
F

(0)
 +1(c)

= − Ĵ F
(0)
 (c) (7a)

l

2l−1

(
eE

m

)[
d

dc
− l − 1

c

]
F

(L)
 −1(c) +

l + 1

2l + 3

(
eE

m

)[
d

dc
+
l + 2

c

]
F

(L)
 +1 (c)

= − Ĵ F
(L)
 (c) + c

[
l

2l − 1
F

(0)
 −1(c) +

l + 1

2l + 3
F

(0)
 +1(c)

]
(7b)

l−1

2l−1

(
eE

m

)[
d

dc
+
l − 1

c

]
F

(T)
 −1(c)+

l + 2

2l+3

(
eE

m

) [
d

dc
+
l + 2

c

]
F

(T)
 +1(c)

= − Ĵ F
(T)
 (c) + c

[
1

2l − 1
F

(0)
 −1(c) − 1

2l + 3
F

(0)
 +1(c)

]
, (7c)

where the superscripts L and T denote longitudinal and transverse. The matrix elements
of the collision operator are defined as∫

Y ∗
 ′ m′(ĉ) Ĵ (f ) Y m(ĉ) dĉ =

[
Ĵ 

(el) +
∑
i

Ĵ 
(inel)(i)

]
δll′δmm′ , (8)

where the superscripts ‘el’ and ‘inel’ refer to the elastic and inelastic processes and the
index i denotes the (inelastic) scattering process. Note that the operator Ĵ in equations (7)
is the quantity in square brackets in equation (8). It is traditional to refer to the  = 0 and
 = 1 members of the system (7a) as the isotropic and vector equations, respectively.

The treatment of the speed dependence in the coefficients F
(0)
 (c), F (L)

 (c) and F
(T)
 (c)

in (7) is purely a matter of computational efficiency and accuracy and is discussed further in
section 3.1.

Using the above definitions, the transport coefficients of interest in this research can be
expressed as

W =
(

4π

3

) ∫
c F

(0)
1 (c)c2 dc (9a)

DL =
(

4π

3

) ∫
cF

(L)
1 (c)c2 dc (9b)

DT =
(

4π

3

) ∫
cF

(T)
1 (c)c2 dc (9c)

ε = 4π
∫

1

2
mc2F

(0)
0 (c)c2 dc (9d)

ki→k = 4π
∫

F
(0)
0 (c)vσ (i→k)(v, θ) sin θ dθ dC dc, (9e)
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where W is the drift velocity, DL and DT are respectively the components of the diffusion
tensor parallel and perpendicular to the electric field, ε is the mean energy and ki→k is the rate
coefficient for the i → k excitation.

Understandably, many of the previous analyses of swarm experiments have utilized
approximations which reduce mathematical complexity and facilitate analytic or at least
simplified numerical solution of the system equations (7). To this end the two-term
approximation (namely the truncation of the expansion (5) at lmax = 1) has dominated the
literature and indeed the analysis of electron-swarm experiments involving H2 (Gibson 1970,
Huxley and Crompton 1974). These studies invoked further approximations on the collision
operator which enabled the reduction of the hierarchy of equations (generated through the
above procedure) to a second-order differential equation (Gibson 1970). In contrast, for the
present theory the infrastructure developed for the Boltzmann equation and the above form
of the collision operator (2) in the Sonine polynomial basis (see section 3.1) is extensive and
quite general in its applicability. Beyond the assumptions of the semiclassical picture and the
existence of a hydrodynamic regime, no approximations are made. In contrast to conventional
theories, we note the following for the present theory and associated code.

(1) No assumptions are made on the number of spherical harmonics in the expansion (5).

In the present theory this value is incremented until a specified accuracy condition is sat-
isfied. In contrast, conventional theories typically consider only the first two terms. The
inadequacy of the two-term approximation has been well documented for molecular gases
(Lin et al 1979, Reid 1979, Ness and Robson 1986).

(2) No assumptions are made on the action of the various collision process operators in the
various spherical harmonic equations.

In conventional theories, Ĵ (el)
0 and Ĵ

(inel)
0 are reduced to (in the appropriate limits of the

electron to neutral molecule mass ratio), and replaced by, the Davydov (1935) and the
Frost–Phelps differential-finite-difference (Frost and Phelps 1962) collision operators re-
spectively. In addition, in the vector equation (l = 1) of conventional theories, all collision
processes are lumped into a single entity. In the present theory, all collision processes for
all l-equations in equations (7) are treated as distinct processes.

(3) Mass ratio effects for all collision process operators, and all order matrix elements of
them, are treated in a consistent manner.

In the present theory, the electron to neutral-molecule mass ratio dependence of Ĵl for all
processes is represented through the expansion

Ĵl =
pmax∑
p=0

(
m

m + M

)p

Ĵl(p). (10)

In conventional theories, different levels of mass ratio approximation are employed for the
various Ĵl and types of collision process. For example, in the isotropic equation (l = 0),
Ĵ elast

0 is considered to first order in the mass ratio (i.e. the Davydov operator). All other
Ĵl for all other processes are truncated to zeroth order in the mass ratio (i.e. pmax = 0
in equation (10)). In the present theory, we have the flexibility to increment the value of
pmax until convergence in the transport properties is obtained.

(4) There is no restriction on the angular dependence of the differential cross-section.

In the present theory, the upper limit on the expansion (3a) can be incremented until con-
vergence is obtained, though the value is coupled to the value of lmax in equation (5) and the
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order of the mass ratio, pmax in equation (10) (namely Lmax � lmax +pmax). In contrast, in
conventional theories, the angular dependence of the differential cross-section is restricted
to Lmax = 1 and consequently only the total and momentum transfer cross-sections could
be sampled in these theories.

(5) No assumptions are made on the relative magnitudes of the cross-sections for the various
collisional processes.

In conventional theories, it was traditional to assume that the elastic momentum transfer
cross-section appearing in the Davydov operator was equal to the total momentum trans-
fer cross-section (Gibson 1970, Huxley and Crompton 1974). The validity of such an
approximation has been shown to be questionable (Reid 1979). No such assumptions are
needed nor employed in the present theory.

(6) We do not neglect the temporal derivative of higher-order l components.

Within the confines of the two-term approximation, it is traditional in the conventional
theories to set the time derivative in the vector equation to zero. Errors resulting from
this approximation manifest themselves only in the diffusion coefficients beyond the two-
term limit (Brennan and Ness 1992). No such approximation is made in the present theory.

(7) The thermal motion of the neutrals is systematically incorporated into all collision process
operators and all spherical harmonic equations.

The consideration of the thermal motion of the neutrals in conventional theories is generally
restricted to the isotropic matrix elements of the elastic collision operator.

In section 4.4, we shall attempt to isolate some of these approximations used in conventional
theories and estimate the magnitudes of their associated errors.

3.1. Computational considerations

3.1.1. Boltzmann equation. Solution of the hierarchy of equations generated through
expansions (4), (5) requires further representation of the speed dependence of f (r, c, t).
This representation is purely a matter of computational efficiency and accuracy, and various
techniques have been employed (see Robson and Ness (1986) for a review). In this work,
we expand the coefficients in (5) in a basis of modified Sonine polynomials Rν (αc) about a
Maxwellian distribution (w) at a ‘base temperature’ Tb (Lin et al 1979, Ness and Robson 1986):

f (lm|sλµ; c) = w(c; Tb)

∞∑
ν=0

F(ν  m|s λµ;α)Rν (αc), (11a)

where α2 ≡ m/kTb and the weight function w(c; Tb) is

w(c; Tb) =
(
α2

2π

)3/2

exp

(
α2c2

2

)
. (11b)

The base temperature Tb in these equations is a parameter used to optimize convergence.
This expansion defines the moments F(ν  m|s λµ;α). The benefits of a Sonine basis derive
from the extensive infrastructure available for an accurate systematic treatment of the collision
operator (2). For reviews on the solution of the semiclassical Boltzmann equation using this
basis set, the reader is referred to Lin et al (1979), Ness and Robson (1986) and references
therein.
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3.1.2. Monte Carlo simulation. In order to provide a definitive test of the validity and
accuracy of the Boltzmann equation treatment, a statistically accurate Monte Carlo simulation
is required. The simulation technique used is based on the null collision technique initially
introduced to kinetic theory by Skullerud (1968). We employ the adaptations of Brennan and
co-workers (Brennan 1990, White et al 1997), which avoid the need for repetitive interpolations
through the use of predetermined ‘look-up’ tables. Look-up tables are used for (i) optimized
null collision frequencies; (ii) collision probabilities and (iii) scattering angle probabilities for
anisotropic scattering.

While many methods exist for improving the convergence of Monte Carlo statistics to the
steady state result, the investigation of the space and time evolution of the swarm represents
a future direction of this project. Our technique involves simulating an ensemble of electrons
from a given initial distribution over a given time period—the displacement and velocity of
all electrons being sampled at stipulated time intervals. The formulation of this ‘ensemble
technique’ allows direct extension to the consideration of electron–electron interactions in
swarm experiments—another future direction of the present project. The time-dependent
transport properties of interest are then calculated using the traditional definitions:

dε

dt
= m

2

d

dt
〈c2〉 mean power in the swarm (12a)

W = d

dt
〈z〉 = 〈cz〉 drift velocity (12b)

DT = 1

4

d

dt
(〈x2〉 + 〈y2〉) (12c)

= 1
2 (〈xcx〉 + 〈ycy〉) transverse diffusion coefficient (12d)

DL = 1

2

d

dt
(〈z2〉 − 〈z〉2) (12e)

= 〈zcz〉 − 〈z〉〈cz〉 longitudinal diffusion coefficient (12f)

where 〈 〉 denotes an average over all swarm particles at a given time. The simulation
is quite general and is capable of handling (i) elastic, inelastic and superelastic collisions,
(ii) anisotropic scattering, (iii) non-zero neutral gas temperature and (iv) arbitrary charged-
particle–neutral-particle mass ratios.

4. Results and discussion

4.1. Cross-sections and experimental parameters

In this study we focus exclusively on electron transport in para-H2 at 77 K. This system
is the simplest case in which drift velocities determined from swarm-derived cross-sections
differ severely from those determined from beam-measured or theoretically calculated cross-
sections. Until this case is resolved, consideration of other experimental parameters represents
an unnecessary complication. We restrict the range of E/N to 0.1–10 Td (1 Td = 1 Townsend
= 10−21 V m2), which restricts average swarm energies to the interval 0.01–0.6 eV. This range
includes (i) the region of greatest disparity between the theoretical and experimental data and
(ii) the region of greatest confidence in the swarm cross-sections.

We employ for the first time the full set of theoretical differential cross-sections (Morrison
and Trail 1993). These differential cross-sections have been decomposed into partial cross-
sections using the relation (3a). In contrast to previous works (Haddad and Crompton 1980),
we do not assume that the angular dependence of the differential cross-section is energy
independent. Illustrative examples of the energy variation of the angular dependence of the
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Figure 1. The angular dependence of the H2 differential cross-sections (Morrison and Trail 1993)
at selected energies for (a) elastic and (b) v = 0 → 1 (pure-vibrational) processes.

differential cross-section for two collisional processes are displayed in figure 1. Furthermore
in this work, ro-vibrational processes are treated explicitly, instead of being lumped into the
overall vibrational cross-sections.

4.2. Foundation studies

To attempt resolution of the discrepancies between theory and experiment, we require a
Boltzmann equation theory and associated code that is more accurate than both techniques
from which the discrepancy originates. To this end, we have performed a series of comparative
and benchmark tests to validate the present Boltzmann equation treatment. In particular,
we consider those features of the molecular cross-sections which are distinct from those in
the atomic case, for which there exists very good agreement between quantum mechanical
and swarm-derived cross-sections. These features include large threshold energy disparities,
energy variation of cross-section in the vicinity of the threshold and anisotropic scattering.
We compare with an independent Monte Carlo simulation and other published results where
possible. The details of the models and the results are displayed in appendix A.1. The results
support the accuracy and integrity of the present theory and associated code to account for
cross-sectional features distinct to molecular gases.

4.3. Direct comparison of experiment and theory

In table 1 we display the various transport coefficients calculated from the present Boltzmann
equation treatment using theoretical differential cross-sections. These results are compared
with the experimentally measured (Huxley and Crompton 1974) drift velocity W and ratio of
the transverse diffusion coefficient to the mobility, DT/µ. This represents the first treatment
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Table 1. Comparison of theoretically determined transport coefficients using theoretical OU
differential cross-sections and the present Boltzmann theory (A) with (B) experimental results
(Huxley and Crompton 1974), for electrons in para-H2 at 77 K.

E/n0 ε W n0DL n0DT DT/µ

(Td) (10−2 eV) (103 m s−1) (1023 m−1 s−1) (1023 m−1 s−1) (10−2 V)

0.01 A 1.0998 0.323 74 2.2159 2.4783 0.765 52
B 0.333 2.65 0.761

0.05 A 1.7973 1.145 3 2.2263 3.1321 1.367 3
B 1.131 3.19 1.410

0.1 A 2.3002 1.955 0 2.4404 3.4733 1.776 6
B 1.913 3.47 1.814

0.5 A 5.5754 5.573 2 2.5180 4.7629 4.273 0
B 5.42 4.64 4.28

1.0 A 10.145 7.366 4 2.5008 5.7816 7.848 6
B 7.15 5.62 7.86

5 A 37.672 13.441 3.9347 8.4123 31.294
B 13.04 8.42 32.3

10 A 56.564 19.625 0 4.6373 9.3170 47.475
B 18.90

using the full set of anisotropic cross-sections without further assumptions. The present
Boltzmann equation treatment emphasizes the disparity between the experimental results
and those obtained using the present theoretical cross-sections. Differences between the two
quantities are as high as 4% over the reduced electric field range considered. Such errors are
well above the quoted uncertainty for the experimental values.

Table 2 displays the excitation rates for the various collisional processes, including the
relevant ro-vibrational processes. These results demonstrate why we limit our discussion to
E/N values below 10 Td (or equivalently to average swarm energies less than 0.6 eV). Beyond
this range, the v = 0 → 2 becomes an important though unnecessary complication to our
major aim.

4.4. Studies of traditional assumptions

We now turn our attention to the underlying assumptions in the conventional theory used
to analyse swarm experiments and generate cross-sections. These approximations were
highlighted in section 3 and the associated errors are quantified below.

4.4.1. Truncation in the l-index; two-term approximation. In tables 3 and 4 we demonstrate
the convergence in the l index of the spherical harmonic expansion equation (5) of the transport
coefficients. For the drift velocity, the error associated with the two-term approximation is of
the order of 0.1% over the range of field strengths considered. The coefficient DT/µ however,
appears more sensitive to the value of lmax. The error in the two-term approximation for
this quantity increases with increasing E/N ; its maximum value, however, remains less than
2% and much less than the experimental uncertainty. These coefficients are calculated from
averages over the entire velocity distribution and hence are primarily dependent on electrons
in the bulk of the distribution. These results thus indicate that anisotropy of the velocity
distribution in the bulk is relatively weak at these fields. It is interesting to note, however,
that those transport properties which effectively only sample the very tail of the distribution
can introduce relative errors in the two-term approximations as high as 65%, for example the
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Table 2. Excitation rates for electron swarms in para-H2 calculated from the Boltzmann equation solution. The rate coefficients are defined by kv0j0−vj , where
v and j denote the vibrational and rotational quantum numbers respectively. The subscript 0 refers to the initial states.

kelast/N k00−02/N k00−04/N k02−04/N k00−10/N k00−12/N k00−14/N k02−14/N

E/N (×10−15) (×10−16) (×10−16) (×10−16) (×10−16) (×10−16) (×10−16) (×10−16)
(Td) (m3 s−1) (m3 s−1) (m3 s−1) (m3 s−1) (m3 s−1) (m3 s−1) (m3 s−1) (m3 s−1)

0.01 4.231 1.613 × 10−3

0.05 5.631 8.29 × 10−3

0.1 6.476 3.373 × 10−2

0.5 10.95 5.495 × 10−1 1.354 × 10−7 1.689 × 10−4

1.0 15.95 1.411 2.553 × 10−6 1.557 × 10−3 5.785 × 10−7 4.972 × 10−8

5.0 37.74 8.824 9.187 × 10−2 2.546 × 10−2 1.917 × 10−1 1.136 × 10−1 4.462 × 10−6 2.328 × 10−6

10.0 49.56 17.09 3.412 × 10−4 5.365 × 10−2 9.906 × 10−1 7.802 × 10−1 5.104 × 10−5 2.136 × 10−3
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Table 3. Variation of the transport coefficients with lmax in the spherical harmonic expansion (5).

E/N W DT/µ

(Td) lmax (×103 ms−1) (V)

0.01 1 0.3238 0.7656
2 0.3237 0.7655
3 0.3237 0.7655
converged 0.3237 0.7655

0.1 1 1.955 1.780
2 1.955 1.777
3 1.955 1.777
converged 1.955 1.777

1.0 1 7.371 7.920
2 7.366 7.846
3 7.366 7.849
converged 7.366 7.849

10.0 1 19.64 48.12
2 19.63 47.44
3 19.63 47.48
converged 19.63 47.47

Table 4. Variation of selected rate coefficients with lmax in the spherical harmonic expansion (5).
The rate coefficients are defined by kv0j0−vj , where v and j denote the vibrational and rotational
quantum numbers respectively. The subscript 0 refers to the initial states.

E/N k00−00/N k00−02/N k00−10/N k00−12/N

(Td) lmax (×10−15 m3 s−1) (×10−16 m3 s−1) (×10−16 m3 s−1) (×10−16 m3 s−1)

0.1 1 6.476 0.033 73 — —
2 6.475 0.033 72 — —
3 6.476 0.033 72 — —
converged 6.476 0.033 72 — —

0.5 1 10.96 55.01 4.98 × 10−14 5.56 × 10−16

2 10.96 54.95 6.36 × 10−14 7.44 × 10−16

3 10.96 54.95 6.39 × 10−14 7.49 × 10−16

converged 10.96 54.95 6.39 × 10−14 7.50 × 10−16

1.0 1 15.96 1.412 5.220 × 10−7 4.352 × 10−8

2 15.95 1.411 5.776 × 10−7 4.960 × 10−8

3 15.95 1.411 5.785 × 10−7 4.972 × 10−8

converged 15.95 1.411 5.785 × 10−7 4.972 × 10−8

5.0 1 37.77 8.832 0.1916 0.1134
2 37.74 8.824 0.1917 0.1136
3 37.74 8.824 0.1917 0.1136
converged 37.74 8.824 0.1917 0.1136

vibrational and ro-vibrational rate coefficients at 0.5 and 1 Td. Other rate coefficients and the
vibrational and ro-vibrational coefficients at higher fields sample more of the bulk electrons
and the two-term approximation is an adequate representation.

It should be emphasized that the anisotropies of the velocity distribution and of the
differential cross-sections are coupled. Thus it is difficult to isolate the errors associated
with an inadequate representation of the velocity distribution function. In section 4.5, we
isolate the influence of anisotropy in the differential cross-sections.
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The results presented in this section may appear to validate the original analysis of the
swarm experiments using the traditional two-term theory. One should be careful, however,
in comparing the strict two-term approximation considered here with the traditional two-term
approximation of conventional theories. The strict two-term approximation sets lmax = 1 in
equation (5), but makes none of the other assumptions of the conventional theories detailed
in section 2. Further study of the additional approximations in the contemporary theory is
required and is considered below.

4.4.2. Assumptions on the relative magnitudes of σm. An assumption in the contemporary
two-term theory implies that the elastic momentum transfer cross-section appearing in the
Davydov operator for elastic collisions can be replaced by the total momentum transfer cross-
section. This approximation enables the reduction of the system of two coupled equations to a
single second-order equation. Such an approximation would generally require that the inelastic
momentum transfer cross-section be much less than the elastic component. The fact that the
momentum transfer cross-section in the elastic Davydov collision operator is weighted by the
electron to neutral mass ratio may relax this restriction. The validity of such an assumption
however needs to be quantified and this section addresses this issue.

To investigate this approximation we replace the elastic momentum transfer cross-section

σ (el)
m (v) = σ

(i→i)
0 (v) − σ

(i→i)
1 (v) (13)

by the total cross-section

σ (total)
m (v) =

∑
ik

Ni

N

[
σ

(i→k)
0 (v) − vik

v
σ

(i→k)
1 (v)

]
, (14)

where Ni is the number density of neutrals in the internal state i and N is the total neutral
number density. Conservation of energy requires

εi + 1
2µv

2 = εk + 1
2µv

2
ik, (15)

where εi denotes the internal energy of the state i and µ denotes the reduced mass of the
interactive constituents. We restrict our discussion to the two-term approximation. Beyond
this level of approximation a meaningful investigation of this assumption on the cross-section
is diminished.

The results associated with this approximation are compared with the values in the strict
two-term limit in table 5. The errors introduced by making this approximation are of the order
of or less than 0.1%, surprisingly small considering the difference between the elastic and
total momentum transfer cross-sections (see figure 2). The validity of this approximation for
electrons in para-hydrogen is confirmed, but this need not be the case for all gases (Reid 1979).

4.4.3. Neglect of the recoil of the H2-molecule in inelastic collisions. It is traditional in
conventional theories to neglect the motion of the neutrals in the inelastic component of the
collision operator (see e.g. the Frost–Phelps form of the inelastic collision operator used in
Gibson 1970). This is equivalent to assuming an infinite mass for those neutral molecules
involved in an inelastic collision. As discussed in section 3, in the present theory and associated
code, the mass ratio is treated consistently over all collisional processes, though we have the
flexibility to truncate any component of the collision operator at any power of the mass ratio
(see equation (10)). To test the accuracy of the assumptions in the Frost–Phelps collision
operator, we truncate the inelastic component of the collision operator to zeroth order in the
mass ratio. The results are displayed in table 6, where they are compared with those from the



620 R D White et al

0 2 4 6 10

4

6

8

8

10

12

14

16

18

20

σ m
 (

10
-2

0 m
2 )

Energy (eV)

 Elastic σ
m

 Total σ
m

Figure 2. Comparison of the elastic momentum transfer cross-section and the total momentum
transfer cross-section for e–H2 scattering using the cross-section of Morrison and Trail (1993).

Table 5. Comparison in the two-term limit of the conventional treatment of the elastic momentum
transfer cross-section (A) and the exact treatment (B).

E/n0 ε W n0DL n0DT DT/µ

(Td) (10−2 eV) (103 m s−1) (1023 m−1 s−1) (1023 m−1 s−1) (10−2 V)

0.01 A 1.0998 0.3237 2.2159 2.4783 0.765 52
B 1.0997 0.3238 2.2160 2.4779 0.765 4

0.05 A 1.7973 1.1453 2.2263 3.1321 1.367 3
B 1.797 1.146 2.227 3.132 1.367

0.1 A 2.3002 1.9550 2.4404 3.4733 1.776 6
B 2.300 1.955 2.440 3.473 1.777

0.5 A 5.5754 5.5732 2.5180 4.7629 4.273 0
B 5.576 5.573 2.517 4.763 4.273

1.0 A 10.145 7.3664 2.5008 5.7816 7.848 6
B 10.150 7.364 2.499 5.7823 7.852

5 A 37.672 13.441 3.9347 8.4123 31.294
B 37.71 13.43 3.937 8.414 31.32

10 A 56.564 19.625 4.6373 9.3170 47.475
B 56.621 19.612 4.6391 9.3188 47.516

systematic treatment. The observed errors of less than 0.1% support the accuracy of the zeroth-
order mass-ratio truncation of the inelastic collision operator used in conventional theories, for
this gas over the range of fields considered.

4.5. Systematic investigation of anisotropic scattering

The aim of this section is to systematically investigate the influence of the anisotropic character
of the theoretical differential cross-sections on the transport coefficients and other properties.
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Table 6. Comparison of the zeroth-order truncation in the mass ratio for the inelastic component
of the collision operator (A) and the converged multi-term results (B).

E/n0 ε W n0DL n0DT DT/µ

(Td) (10−2 eV) (103 m s−1) (1023 m−1 s−1) (1023 m−1 s−1) (10−2 V)

0.01 A 1.0998 0.3237 2.2159 2.4783 0.765 52
B 1.0997 0.3238 2.2160 2.4779 0.765 4

0.05 A 1.7973 1.1453 2.2263 3.1321 1.367 3
B 1.797 1.146 2.227 3.132 1.367

0.1 A 2.3002 1.9550 2.4404 3.4733 1.776 6
B 2.300 1.955 2.440 3.473 1.777

0.5 A 5.5754 5.5732 2.5180 4.7629 4.273 0
B 5.576 5.573 2.517 4.763 4.273

1.0 A 10.145 7.3664 2.5008 5.7816 7.848 6
B 10.150 7.364 2.499 5.7823 7.852

5 A 37.672 13.441 3.9347 8.4123 31.294
B 37.71 13.43 3.937 8.414 31.32

10 A 56.564 19.625 4.6373 9.3170 47.475
B 56.621 19.612 4.6391 9.3188 47.516

Table 7. Converged multi-term transport coefficients in para-hydrogen at 77 K for various
approximations: (A) full anisotropic cross-sections; (B) isotropic scattering only; (C) σl = 0
for l > 1 for elastic processes and σl = 0 for l > 0 for inelastic processes.

E/n0 ε W n0DL n0DT DT/µ

(Td) (10−2 eV) (103 m s−1) (1023 m−1 s−1) (1023 m−1 s−1) (10−2 V)

0.01 A 1.0998 0.323 74 2.2159 2.4783 0.765 52
B 1.1094 0.341 62 2.3489 2.6415 0.773 22
C 1.0998 0.323 74 2.2159 2.4783 0.765 53

0.05 A 1.7973 1.145 3 2.2263 3.1321 1.367 3
B 1.8315 1.216 8 2.4362 3.3763 1.387 3
C 1.7974 1.145 3 2.2264 3.1322 1.367 4

0.1 A 2.3002 1.955 0 2.4404 3.4733 1.776 6
B 2.3392 2.095 6 2.6799 3.7578 1.793 2
C 2.3003 1.955 1 2.4405 3.4733 1.776 6

0.5 A 5.5754 5.573 2 2.5180 4.7629 4.273 0
B 5.8750 6.048 4 2.8924 5.3678 4.437 3
C 5.5760 5.574 0 2.5192 4.7636 4.273 0

1.0 A 10.145 7.366 4 2.5008 5.7816 7.848 6
B 10.986 8.095 1 3.0371 6.7607 8.351 6
C 10.147 7.368 1 2.5026 5.7835 7.849 4

5 A 37.672 13.441 3.9347 8.4123 31.294
B 40.859 16.011 5.3415 10.633 33.207
C 37.683 13.447 3.9378 8.4186 31.304

10 A 56.564 19.625 4.6373 9.3170 47.475
B 61.129 23.672 6.0603 11.982 50.616
C 56.576 19.628 4.6342 9.3246 47.506

In previous studies, the energy and angular dependence of the differential cross-section were
assumed to be separable (Haddad and Crompton 1980). In figure 1, we demonstrate the
energy dependence of the differential cross-section and bring into question the validity of such
an approximation. No such approximation is made here, the representation of the differential
cross-section being given by equation (3a). Here we investigate the sensitivity of the transport
coefficients and velocity distribution function to the value ofLmax in equation (3a). To decouple
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Figure 3. A comparison of the velocity distribution functions for isotropic (dashed curves) and
fully anisotropic (solid curves) scattering for e–H2 scattering using the cross-sections of Morrison
and Trail (1993) (E/N = 5 Td). The values of the contours are (eV)3/2.

the anisotropy in the velocity distribution from that in the differential cross-section, we set lmax

to 5. The partial cross-sections for L > Lmax are set to zero, unless explicitly stated. The
results are displayed in table 7.

The inadequacy of an isotropic scattering assumption (i.e. Lmax = 0) is emphatically
demonstrated as E/N is increased. Errors of the order of 20% are observed in the measured
transport coefficients. In conventional theories, truncation of equation (3a) at Lmax = 1 for
elastic scattering and at Lmax = 0 for all inelastic processes is assumed. The application of
this approximation is also displayed in table 7. The importance of this extra partial cross-
section for elastic collision processes is clearly demonstrated. The errors are reduced to less
than 1% in this case. The inclusion of additional partial cross-sections beyond this level of
approximation (or equivalently further angular dependence in the differential cross-sections)
has minimal effect on the transport coefficients.

As a further probe into the effect of anisotropic scattering, we investigate its influence
on the velocity distribution function. The results are displayed in figure 3 for both isotropic
and exact differential cross-sections in para-H2. For this gas, anisotropic scattering does not
manifest itself in any marked angular dependence in the velocity distribution, but rather the
dominant effect appears to be in the angular integrated form—the speed/energy distribution
function. The form of the velocity distribution in figure 3 supports the accuracy of the two-
term approximation for electron transport in para-H2 over the range of fields considered, as
highlighted previously.

5. Concluding remarks

In this work, we have employed an accurate semiclassical solution of Boltzmann’s equation
supported by an independent Monte Carlo simulation in an attempt to resolve the disparity in
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the v = 0 → 1 vibrational cross-section of H2 that has existed in the literature for many years.
None of the enhancements on prior analysis accomplished this goal. We have focused on the
assumptions in the traditional semiclassical theory which was used in the original analysis of
the swarm experiments (Huxley and Crompton 1974); our results support the validity of this
treatment.

By eliminating possible sources of error in this approach we have laid the groundwork for
the next phase of this project, in which we turn to questions that reach beyond the standard model
of swarm experiments. Does the conventional kinetic theory as presented here suffer from cer-
tain basic flaws? Must the fermionic nature of the electrons and electron–electron interactions
be incorporated into the transport analysis? Is it meaningful to compare quantities derived from
transport analysis of swarm experiments with theoretical and beam measured cross-sections?
Are there heretofore unaccounted for processes operative within the drift chamber?
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Appendix. Comparative and benchmark model testing

To validate the present theory and associated code for the solution of the semiclassical
Boltzmann equation, we compare against an independent Monte Carlo simulation and other
theories where possible.

A.1. Model anisotropic scattering benchmarks

We employ a model introduced by Reid (1979) to investigate the influence of anisotropic
scattering on electron transport. The model has served as a benchmark for multi-term solutions
of Boltzmann’s equation (see Ness and Robson 1986) and references therein). The details of
the model under consideration are (Reid 1979)

σ el
m = 10 Å

2
(elastic momentum transfer cross-section) (A.1)

σ inel
0 = 0.4 (ε − 0.516)Å

2
(inelastic total cross-section) (A.2)

M = 2 amu, T0 = 0 K. (A.3)

The differential cross-section is assumed separable,

σ(v, χ) = σ̄ (v)I (χ) (A.4)

where the angular function I has the following forms:

A. I (χ) = constant (A.5)

B. I (χ) = cos4 χ (A.6)

C. I (χ) = exp{−1.5(1 + cosχ)} (A.7)

D. I (χ) =



1 0 � χ � 0.134π
0 0.134π � χ � 3

4π

1 3
4π � χ � π .

(A.8)
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Table A.1. Benchmark comparisons for the anisotropic scattering models of Reid (1979). (1)
Present Boltzmann equation treatment; (2) present Monte Carlo treatment; (3) Monte Carlo
treatment of Reid (1979); (4) Boltzmann equation treatment (Haddad et al 1981).

Model ε W n0DL n0DT DT/µ

(Td) Technique (eV) (103 m s−1) (1023 m−1 s−1) (1023 m−1 s−1) (10−2 V)

A 1 1.2293 5.2626 1.0723 1.9582 9.3025
2 1.227 5.24 1.069 1.94
3 1.234 5.26 1.984
4 5.2560 9.308

B 1 1.2259 5.2472 1.0945 1.9046 9.0743
2 1.227 5.26 1.10 1.90
3 1.229 5.24 1.898
4 5.2447 9.080

C 1 1.2168 5.1690 1.0337 1.8951 9.1656
2 1.217 5.18 1.03 1.90
3 1.216 5.13 1.919
4 5.1655 9.174

D 1 1.2103 5.1399 1.0723 1.8013 8.7615
2 1.213 5.14 1.08 1.81
3 1.210 5.12 1.795
4 5.1365 8.771

The results are contained in table A.1. They are compared with those from the independent
Monte Carlo simulation, the Monte Carlo simulation of Reid and the Boltzmann equation
treatment of Haddad et al (1981). Excellent agreement exists between all values calculated
by all independent techniques, lending support to the accuracy of the present theory and its
ability to accurately consider anisotropic scattering.

A.2. Threshold behaviour studies and testing

The slope of all cross-sections in the vicinity of the threshold energy can be determined
theoretically without reference to any particular scattering calculation. It can be derived
entirely from the Schrödinger scattering equation and thus is free of any physical assumptions
(other than neglect of relativistic effects) or numerical precision limits. This well defined
‘threshold law’ stipulates how inelastic cross-sections must depend on energies sufficiently
close to threshold. Thus, it is interesting for us to investigate the sensitivity of the transport
properties to the energy variation of the cross-section near threshold. It should be emphasized,
however, that no cross-section set that ‘violates’ the threshold law could possibly be correct,
independent of the results from the Boltzmann equation or any other analysis.

Upto the present there have been no benchmark models which include a large separation
between the threshold energies—a characteristic in the threshold energies for molecular gases.
The validity of the Boltzmann equation treatment for these characteristics must be verified.

With these motivations, we implement a model with the following characteristics:

σ el
0 = 10 Å

2
(total elastic cross-section) (A.9)

σ rot
0 =

{
0.5 Å

2
for ε > 0.044 eV (total rotational cross-section)

0 otherwise
(A.10)

σ vib
0 =

{
C (ε − 0.516)Å

2
if ε < ε8 (total vibrational cross-section)

0.5 Å
2

if ε � ε8
(A.11)

M = 2 amu, T0 = 0 K (A.12)
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Table A.2. Transport coefficients and properties for the double-ramp model equation (A.12):
(A) C = 0.15 Å2 eV−1; (B) C = 0.25 Å2 eV−1. The primed rows denote the Monte Carlo
simulation results for the equivalent cases.

E/n0 Model / ε W n0DL n0DT

(Td) Technique (eV) (104 m s−1) (1023 m−1 s−1) (1023 m−1 s−1)

0.5 A 0.0247 0.796 2.15 2.82
A′ 0.0249 0.793 2.16 2.84
B 0.0247 0.796 2.15 2.82
B′ 0.0248 0.793 2.18 2.86

1.0 A 0.0415 1.25 2.24 3.44
A′ 0.0415 1.26 2.23 3.43
B 0.0404 1.257 2.22 3.47
B′ 0.0405 1.26 2.22 3.46

5.0 A 0.3614 2.071 5.032 10.41
A′ 0.361 2.07 5.04 10.4
B 0.3390 2.124 5.181 10.08
B′ 0.339 2.13 5.19 10.1

10.0 A 0.7193 2.819 7.879 14.77
A′ 0.719 2.82 7.89 14.8
B 0.6300 2.990 7.724 13.78
B′ 0.630 2.99 7.72 13.8

20.0 A 1.371 3.978 10.46 20.25
A′ 1.37 3.97 10.4 20.4
B 1.166 4.302 9.753 18.49
B′ 1.17 4.31 9.78 18.5

where C is the initial slope of the vibrational cross-section and ε8 is the value of ε where
C (ε − 0.516) = 0.5. All scattering is assumed isotropic.

Immediately it is evident from table A.2 that the transport coefficients are particularly
sensitive to the energy variation of the cross-section around threshold. The variations of
the transport coefficients themselves between the two values of C are to be expected. The
decreasing mean energy results from an increased loss of energy through the vibrational
channel, while the increase in the drift velocity results from the reduction in the momentum
transfer collision frequency associated with a reduction in the mean energy of the swarm. For
mean energies in the vicinity of and greater than the threshold, the variations of the measurable
transport coefficients are generally greater than 5%. This is much greater than the quoted
uncertainties in the experimental measurements. Thus one would expect the violation of the
threshold laws to be adequately measurable.

The agreement between Boltzmann and Monte Carlo simulation results serves again to
support the accuracy and integrity of the present solution of the semiclassical Boltzmann
equation.
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