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Procedure for correcting variational R-matrix calculations for polarization response
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Using standard bound-state methodology, variational calculations of moleRutaatrices can severely
underestimate polarization response in the near-target region insid®erttarix boundary. An ‘AR” proce-
dure is proposed here as an easily implemented but significant improvement dr suatnices. The efficacy
of this procedure is demonstrated in calculations of differential and integral cross sections for vibrationally
elastice-CO, scattering at and below 1 eV.
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[. INTRODUCTION closed-channel orbitals that couple to virtual excitations of
the target cannot easily be represented in a Gaussian basis,
The R-matrix method is a well-established, robust proce-because such orbitals decay as inverse powerns afuch
dure for calculating cross sections for electron scatteringess rapidly than the decay of Gaussian functions. So one
from atoms and moleculg4]. At the heart of the application might expect that Gaussian basis sets designed for bound-
of this method to molecular targets are fixed-nudleN) state calculations could not accurately represent the polariza-
variational calculations at a specified total eneBywithin  tion response outside the effective target radigis Unless
the “R-matrix box"—typically a sphere of radius, that  polarization pseudostates and explicit closed-channel orbitals
encloses theN-electron target—using quantum-chemistry are included in a variational calculation, this problem affects
codes originally developed for bound-state structure probany R-matrix calculation using a Gaussian orbital basis. This
lems[2,3]. The radiusr, is usually chosen to be twicer  observation motivates our development of thie procedure
more the effective target radius,. By interpolating the re- (DRP).
sulting FNR matrices in energy and internuclear separation This method, which we describe in Sec. II, is a simple,
R, one can construct theibronic R matrix R(r,) via the  Systematic algorithm for correcting ary matrix that inad-
energy-modified adiabatic phase-mat{€EMAP) method equately represents the polarization response in the near-
[4,5] or, if nonadiabatic effects are important, the nonadiatarget regiorro<r=r,. In Sec. Il we illustrate this method
batic phase-matrix metho,7]. Outside the box, efficient with calculations of cross sections ferCO, scattering at
analytic methods are used to solve the rovibronic couple@nd below 1.0 eV. In this energy range, these cross sections
equations of the electron-molecule system, yielding the deare very sensitive to the polarization response of the target
sired asymptotic scattering quantitigs. and to a virtual state.
While variational calculations foN+1 electrons inside
the effective target radiug, are comparable to well- Il. THEORY
established bound-state calculations, the extension to the
much larger box radius,; can be a formidable obstacle to ~ Assuming one has constructed a variational representation
converged calculations that correctly represent the polarize¢hat adequately represents exchange and correlation within
tion response. For a polyatomic target, bound-state variahe effective target radius,, and bound-free exchange and
tional methods using Gaussian basis functions can bstatic multipole potentials inside the-matrix boxr,, the
adapted to variationaR-matrix calculationg?2]. By repre-  crucial problem is to correct bound-free correlatigrolar-
senting the partial-wave open-channel orbitals which extendézation responsein the near-target region g<r<r,. The
to the R-matrix boundaryr; by a fixed Gaussian expansion first step in the DRP is the construction of a set of effective
[3], one can include bound-free exchange effects accuratel)R matrices atr, by propagating a given FN variational
Moreover, static multipole moments can be determined tdr-matrixinward fromr,, using as the potential energy one’s
sufficient accuracy within the effective radiug to deter- best estimate of the effective potential in the near-target re-
mine accurately the electron-static multipole potentials. Bugion from the original FN variational calculations.
The second step isutward propagation of each of these
effective R matrices fronr, to r4. If in this outward propa-
*Email address: morrison@mail.nhn.ou.edu; gation one used theameexternal potential as in the first
www.nhn.ou.edu/morrison step, one would merely regain the original FN variatioRal
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matrix atr,. In the DRP, however, this external potential is of vibrationally inelastic differential cross sectiofBCS'’s),
replaced in the outward propagation step by a local potentiabonvergence of sums over quantum numbeasd A is cru-
based either on theory or experiment, designed more accuwial. To ensure such convergence, we use Born completion
rately to represent the polarization response in the near-target2—15 to analytically complete these suni® infinity).
region. (SinceR-matrix propagation requires local potentials Thus the elastic DCS can be written

[8], it cannot incorporate bound-free exchange effects. But,

in the DRP scheme, information regarding these effects that

was in the original FNR matrices is retained through the do do® [deAR doPWB
inward-outward propagationln the present implementation, 40~ d0 + ( a0 da )’ 2.2
for example, we used the permanent quadrupole potential

—Q(R)/r®P,(cosé) for the inward propagation, and the

asymptotic potential where the superscrip8, VAR, and PWB denote first Born,

variational, and partial-wave Born. The first term is thea-
lytical) first Born approximate based on the asymptotic inter-
action potentialEq. (2.1)]. The second and third terms in
P,(cos6) Eqg. (2.2) are constructed from elements of the variational
2.1) and partial-wave Bori matrix, respectively, using elements
' with (1,1")<2I22W  The difference of these terms replaces
T-matrix elements withI(l") in the analytic first Born DCS
by corresponding elements of the variatiofamatrix.

ag(R)

R R
VafriR= 2R a(R) QR)

2r4 r3

for the outward propagation. Herkis the lab-frame scatter-
ing angle, andQ(R), a¢(R), anda,(R) are the permanent

qguadrupole moment and the induced spherical and non-
spherical polarizabilities of the target. Il IMPLEMENTATION AND RESULTS

In principal, the DRP replaces the effect of an inadequate o jjiystrative case is vibrationally elasgeCO, scatter-

near-target polarization potential in the original variationaling at and below an incident energy of 1.0 eV. We used the

calculations by one more suited to polarization in this region, 4 iational ENR matrices of Ref[16] at C-O separations of
The result is a vibroni®k matrix atr, that incorporates the 1 0, 2.0y, 2.1y, 2.1944,, and 2.%,. These varia-

physical effects of the polarization response of the targe{ibn

, _ al calculations used small complete active space configu-
more accurately than one calculated directly from the origivaion interaction functions, and allowed for polarization ef-
nal FN R matrices.

fects and virtual excitation by including in the trial wave

The outward-propagation step is an application of theynction the ground state and all additional configurations
asymptotic-distorted-waveADW) method([9,10] to the set  egicted to contribute to a Feshbach resonance. The size of

of scattering channels included in the original variatioRal o R.matrix box wasr;=10.0,; the maximum partial
matrices. For ele.ctronically elastiq scqttering ina body—fixeq,v(,ive order wa$\r{§f(=4. In our calculations, we augmented
reference frame in the FN approximation, these channels aig, '\ - iaiionalR matrices via the ADW method 162"
identified byl, the orbital angular momentum of the scatter- max

ing electron; and\, its projection on the internuclear axis.
The ADW method was designed to augment FN variational
R matrices with elements corresponding to angular momen-
tum quantum numbersand A of higher order than those in
the original calculation. In an ADWR-matrix propagation,

one uses multichannel potential functions with the correct
long-range behavior, and includes off-diagonal potentials
that couple open-channel target states to closed-channel
pseudostates. Because such a propagation is formally equiva-
lent to solving the FN close-coupling equations without ex-
change, the ADW method is justified only for partial waves
whose inner classical turning point is greater thah9]. The
present application of this method to the artifidaatrix at

ro, constructed via DRP inward propagation, for low-order
partial waves, is justified, as argued above, because informa-
tion on bound-free exchange is reinstated in the subsequent
outward propagation. The ideal methodology would be to Energy (eV)

propagate each origin& matrix inward tor,, augment it FIG. 1. Integrale-CO, cross sections from theoretical calcula-
there by a diagonal matrix of free-scattering partial wavegons ysing the EMAP method witfdot-dashed lineand without
elements as in the ADW methd@], and then propagate the (solig line DRP corrections. Also shown are theoretical results
resulting enlarge® matrix outward tor . from the complex Kohn calculations of Rescigeaial. [25] (dotted

In the calculations reported here, we used standard proc@ne), the Schwinger multichannel calculations of REZ6] (short
dures in the external regiom % r;) to determine scattering dashed ling and the experimental data of RE27] (open circlep
quantities from the vibroni® matrix[8,11]. For calculations and Ref.[28] (pluses.
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FIG. 2. Theoretical elastie-CO, differential cross sections at . . .
1.0 eV from calculations using only the original variatiofama- . FIG. 3. Total dlffere_ntl_al Cross s_ectlons at 1.0 eV from calcula-
trices of Ref.[16] (long-dashed ling and with the DRP correction t!ons baseq on the varlatlonRImatrlcgs .Of Ref[16] (long-dashed
(solid line). Also shown are the first Born approximdtiot-dashed line) "’?”d with the DRP co_rrecno(sohd line). Also shown are the
line) and the partial-wave Born contribution of Eq2.2) experimental results of Gibsaet al. [23].
(dotted ling.

IV. CONCLUSIONS

=6. In the near-target region,<r=<r, we corrected the Two issues require attention in an implementation of the

polarization response via the DRP as described above. F§{pp First. one must choose an effective target racjubat
the effective target radius we chosg=5.08,. For Q(R), g syitable for the first Born, ADW, and DRP calculations.
ao(R), anda(R), we used the values of Morrison and Hay This choice must be made in the context of the initial varia-
[17]. The maximum radius of propagation in the externaliona| calculation of theR matrix, so that completeness is

region was 50.8, . _ . . assured for<r,. Additionally, static multipole and transi-
In Fig. 1 we compare integral cross sections for energiegion moments should be well defined withig. Second, one

from near-zero to 1 eV to results of measurements and othepst choose local external polarization potentials for inward
theoretical calculations. The DRP correction markedly im-5,4 outward propagation of tiematrix. For outward propa-

proves the agreement with experiment throughout this e'gation this argues for the use of polarization pseudostates,
ergy range. These cross sections are dominated by a virtu omputed withinr , using bound-state methodologyo].

state pole in the&, symmetry[18,19, which renders them The ADW, DRP, and Born corrections are similarly moti-

especially sensitive to correlation and polarization effects in,5ted. Al three seek to improve the accuracy of cross sec-
O=r=r;. A measure of this sensitivity is the scattering (jons py improving the representation in tRematrix of the
length. This quantity, which is defined by the limiting slope ppysics outside the target without incurring significant addi-
of the FN eigenphase sum at threshold, can be obtained frogy 4 computational demands. The DRP offers a simple, sys-
a modified extended-range expansion of khenatrix in the  tematic solution to a common problem Rimatrix calcula-
limit of zero wave numbef20,21]. At equilibrium (Roc  tions. Such a correction may be especially important for
=2.1944@,), the computed values a®(VAR) = —4.448,  collisions in which polarization response in the near-target
andA(DRP)=—8.95,. (A negative scattering length signi- region plays a key role: e.g., near the energy of an
fies a virtual state.The DRP correction brings the scattering jntermediate- to long-lived resonance and for scattering from
length significantly closer to the valuk=—7.2a, derived  phighly polarizable targets such as,l[24]. Our results for
from experimental electron-swarm d422]. _e-CO, scattering at and below 1 eV illustrate the importance
Figure 2 shows the effect of the DRP on the 1.0-eV elastiGyf the polarization response and the efficacy of the DRP in
DCS. The variational DCS shows prominent backward butgrrecting both the virtual-state dominated very-low-energy

no significant forward scattering, in conflict with experiment ¢ross section and the forward-scattering dominated DCS's,
[23]. The DRP correction enhances the forward scatteringyhich, when calculated without the DRP, do not exhibit this

The resulting improved agreement with experiment is illus-important qualitative feature.
trated in Fig. 3. In this figure, the theoretical results incorpo-
rate ADW-converged matrices and Born completioa la
Eqg. (2.2, and are theotal (vibrationally) elastic cross sec-
tions, the sum of the rovibrationally elastic cross section and We are indebted to L. A. Morgan for the variational
all rotationally inelastiqbut vibrationally elasticcross sec- R-matrices used here. This project was supported by the Na-
tions. tional Science Foundation under Grant No. PHY-0071031.
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