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Procedure for correcting variational R-matrix calculations for polarization response
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Using standard bound-state methodology, variational calculations of molecularR matrices can severely
underestimate polarization response in the near-target region inside theR-matrix boundary. An ‘‘DR’’ proce-
dure is proposed here as an easily implemented but significant improvement of suchR matrices. The efficacy
of this procedure is demonstrated in calculations of differential and integral cross sections for vibrationally
elastice-CO2 scattering at and below 1 eV.
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I. INTRODUCTION

The R-matrix method is a well-established, robust proc
dure for calculating cross sections for electron scatter
from atoms and molecules@1#. At the heart of the application
of this method to molecular targets are fixed-nuclei~FN!
variational calculations at a specified total energyE within
the ‘‘R-matrix box’’—typically a sphere of radiusr 1 that
encloses theN-electron target—using quantum-chemist
codes originally developed for bound-state structure pr
lems @2,3#. The radiusr 1 is usually chosen to be twice~or
more! the effective target radiusr 0 . By interpolating the re-
sulting FNR matrices in energy and internuclear separat
R, one can construct thevibronic R matrix R(r 1) via the
energy-modified adiabatic phase-matrix~EMAP! method
@4,5# or, if nonadiabatic effects are important, the nonad
batic phase-matrix method@6,7#. Outside the box, efficien
analytic methods are used to solve the rovibronic coup
equations of the electron-molecule system, yielding the
sired asymptotic scattering quantities@8#.

While variational calculations forN11 electrons inside
the effective target radiusr 0 are comparable to well
established bound-state calculations, the extension to
much larger box radiusr 1 can be a formidable obstacle t
converged calculations that correctly represent the polar
tion response. For a polyatomic target, bound-state va
tional methods using Gaussian basis functions can
adapted to variationalR-matrix calculations@2#. By repre-
senting the partial-wave open-channel orbitals which ext
to theR-matrix boundaryr 1 by a fixed Gaussian expansio
@3#, one can include bound-free exchange effects accura
Moreover, static multipole moments can be determined
sufficient accuracy within the effective radiusr 0 to deter-
mine accurately the electron-static multipole potentials. B
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closed-channel orbitals that couple to virtual excitations
the target cannot easily be represented in a Gaussian b
because such orbitals decay as inverse powers ofr, much
less rapidly than the decay of Gaussian functions. So
might expect that Gaussian basis sets designed for bo
state calculations could not accurately represent the pola
tion response outside the effective target radiusr 0 . Unless
polarization pseudostates and explicit closed-channel orb
are included in a variational calculation, this problem affe
anyR-matrix calculation using a Gaussian orbital basis. T
observation motivates our development of theDR procedure
~DRP!.

This method, which we describe in Sec. II, is a simp
systematic algorithm for correcting anyR matrix that inad-
equately represents the polarization response in the n
target regionr 0<r<r 1 . In Sec. III we illustrate this method
with calculations of cross sections fore-CO2 scattering at
and below 1.0 eV. In this energy range, these cross sect
are very sensitive to the polarization response of the ta
and to a virtual state.

II. THEORY

Assuming one has constructed a variational representa
that adequately represents exchange and correlation w
the effective target radiusr 0 , and bound-free exchange an
static multipole potentials inside theR-matrix box r 1 , the
crucial problem is to correct bound-free correlation~polar-
ization response! in the near-target region r0<r<r 1 . The
first step in the DRP is the construction of a set of effect
R matrices atr 0 by propagating a given FN variationa
R-matrix inward from r 1 , using as the potential energy one
best estimate of the effective potential in the near-target
gion from the original FN variational calculations.

The second step isoutwardpropagation of each of thes
effectiveR matrices fromr 0 to r 1 . If in this outward propa-
gation one used thesameexternal potential as in the firs
step, one would merely regain the original FN variationaR
©2001 The American Physical Society02-1
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matrix at r 1 . In the DRP, however, this external potential
replaced in the outward propagation step by a local poten
based either on theory or experiment, designed more a
rately to represent the polarization response in the near-ta
region.~SinceR-matrix propagation requires local potentia
@8#, it cannot incorporate bound-free exchange effects. B
in the DRP scheme, information regarding these effects
was in the original FNR matrices is retained through th
inward-outward propagation.! In the present implementation
for example, we used the permanent quadrupole pote
2Q(R)/r 3P2(cosu) for the inward propagation, and th
asymptotic potential

Vasy~r ;R!52
a0~R!

2r 4 2Fa2~R!

2r 4 1
Q~R!

r 3 GP2~cosu!

~2.1!

for the outward propagation. Hereu is the lab-frame scatter
ing angle, andQ(R), a0(R), anda2(R) are the permanen
quadrupole moment and the induced spherical and n
spherical polarizabilities of the target.

In principal, the DRP replaces the effect of an inadequ
near-target polarization potential in the original variation
calculations by one more suited to polarization in this regi
The result is a vibronicR matrix at r 1 that incorporates the
physical effects of the polarization response of the tar
more accurately than one calculated directly from the or
nal FN R matrices.

The outward-propagation step is an application of
asymptotic-distorted-wave~ADW! method@9,10# to the set
of scattering channels included in the original variationaR
matrices. For electronically elastic scattering in a body-fix
reference frame in the FN approximation, these channels
identified byl, the orbital angular momentum of the scatte
ing electron; andL, its projection on the internuclear axi
The ADW method was designed to augment FN variatio
R matrices with elements corresponding to angular mom
tum quantum numbersl andL of higher order than those in
the original calculation. In an ADWR-matrix propagation,
one uses multichannel potential functions with the corr
long-range behavior, and includes off-diagonal potent
that couple open-channel target states to closed-cha
pseudostates. Because such a propagation is formally eq
lent to solving the FN close-coupling equations without e
change, the ADW method is justified only for partial wav
whose inner classical turning point is greater thanr 0 @9#. The
present application of this method to the artificialR matrix at
r 0 , constructed via DRP inward propagation, for low-ord
partial waves, is justified, as argued above, because infor
tion on bound-free exchange is reinstated in the subseq
outward propagation. The ideal methodology would be
propagate each originalR matrix inward tor 0 , augment it
there by a diagonal matrix of free-scattering partial wa
elements as in the ADW method@9#, and then propagate th
resulting enlargedR matrix outward tor 1 .

In the calculations reported here, we used standard pr
dures in the external region (r .r 1) to determine scattering
quantities from the vibronicR matrix @8,11#. For calculations
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of vibrationally inelastic differential cross sections~DCS’s!,
convergence of sums over quantum numbersl andL is cru-
cial. To ensure such convergence, we use Born comple
@12–15# to analytically complete these sums~to infinity!.
Thus the elastic DCS can be written

ds

dV
5

dsB

dV
1S dsVAR

dV
2

dsPWB

dV D , ~2.2!

where the superscriptsB, VAR, and PWB denote first Born
variational, and partial-wave Born. The first term is the~ana-
lytical! first Born approximate based on the asymptotic int
action potential@Eq. ~2.1!#. The second and third terms i
Eq. ~2.2! are constructed from elements of the variation
and partial-wave BornT matrix, respectively, using elemen
with ( l ,l 8)<2l max

ADW . The difference of these terms replac
T-matrix elements with (l ,l 8) in the analytic first Born DCS
by corresponding elements of the variationalT matrix.

III. IMPLEMENTATION AND RESULTS

Our illustrative case is vibrationally elastice-CO2 scatter-
ing at and below an incident energy of 1.0 eV. We used
variational FNR matrices of Ref.@16# at C-O separations o
1.9a0 , 2.0a0 , 2.1a0 , 2.1944a0 , and 2.5a0 . These varia-
tional calculations used small complete active space confi
ration interaction functions, and allowed for polarization e
fects and virtual excitation by including in the trial wav
function the ground state and all additional configuratio
predicted to contribute to a Feshbach resonance. The siz
the R-matrix box was r 1510.0a0 ; the maximum partial
wave order wasl max

VAR54. In our calculations, we augmente
the variationalR matrices via the ADW method tol max

ADW

FIG. 1. Integrale-CO2 cross sections from theoretical calcul
tions using the EMAP method with~dot-dashed line! and without
~solid line! DRP corrections. Also shown are theoretical resu
from the complex Kohn calculations of Rescignoet al. @25# ~dotted
line!, the Schwinger multichannel calculations of Ref.@26# ~short
dashed line!, and the experimental data of Ref.@27# ~open circles!
and Ref.@28# ~pluses!.
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56. In the near-target regionr 0<r<r 1 we corrected the
polarization response via the DRP as described above.
the effective target radius we choser 055.0a0 . For Q(R),
a0(R), anda2(R), we used the values of Morrison and Ha
@17#. The maximum radius of propagation in the extern
region was 50.0a0 .

In Fig. 1 we compare integral cross sections for energ
from near-zero to 1 eV to results of measurements and o
theoretical calculations. The DRP correction markedly i
proves the agreement with experiment throughout this
ergy range. These cross sections are dominated by a vir
state pole in theSg symmetry@18,19#, which renders them
especially sensitive to correlation and polarization effects
0<r<r 1 . A measure of this sensitivity is the scatterin
length. This quantity, which is defined by the limiting slop
of the FN eigenphase sum at threshold, can be obtained
a modified extended-range expansion of theK matrix in the
limit of zero wave number@20,21#. At equilibrium (ROC
52.19440a0), the computed values areA(VAR) 524.44a0
andA(DRP)528.95a0 . ~A negative scattering length sign
fies a virtual state.! The DRP correction brings the scatterin
length significantly closer to the valueA527.2a0 derived
from experimental electron-swarm data@22#.

Figure 2 shows the effect of the DRP on the 1.0-eV ela
DCS. The variational DCS shows prominent backward
no significant forward scattering, in conflict with experime
@23#. The DRP correction enhances the forward scatter
The resulting improved agreement with experiment is illu
trated in Fig. 3. In this figure, the theoretical results incorp
rate ADW-convergedT matrices and Born completioná la
Eq. ~2.2!, and are thetotal ~vibrationally! elastic cross sec
tions, the sum of the rovibrationally elastic cross section a
all rotationally inelastic~but vibrationally elastic! cross sec-
tions.

FIG. 2. Theoretical elastice-CO2 differential cross sections a
1.0 eV from calculations using only the original variationalR ma-
trices of Ref.@16# ~long-dashed line!, and with the DRP correction
~solid line!. Also shown are the first Born approximate~dot-dashed
line! and the partial-wave Born contribution of Eq.~2.2!
~dotted line!.
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IV. CONCLUSIONS

Two issues require attention in an implementation of
DRP. First, one must choose an effective target radiusr 0 that
is suitable for the first Born, ADW, and DRP calculation
This choice must be made in the context of the initial var
tional calculation of theR matrix, so that completeness
assured forr<r 0 . Additionally, static multipole and transi
tion moments should be well defined withinr 0 . Second, one
must choose local external polarization potentials for inw
and outward propagation of theR matrix. For outward propa-
gation this argues for the use of polarization pseudosta
computed withinr 0 using bound-state methodology@10#.

The ADW, DRP, and Born corrections are similarly mo
vated. All three seek to improve the accuracy of cross s
tions by improving the representation in theR matrix of the
physics outside the target without incurring significant ad
tional computational demands. The DRP offers a simple, s
tematic solution to a common problem inR-matrix calcula-
tions. Such a correction may be especially important
collisions in which polarization response in the near-tar
region plays a key role: e.g., near the energy of
intermediate- to long-lived resonance and for scattering fr
highly polarizable targets such as Li2 @24#. Our results for
e-CO2 scattering at and below 1 eV illustrate the importan
of the polarization response and the efficacy of the DRP
correcting both the virtual-state dominated very-low-ene
cross section and the forward-scattering dominated DC
which, when calculated without the DRP, do not exhibit th
important qualitative feature.
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FIG. 3. Total differential cross sections at 1.0 eV from calcu
tions based on the variationalR matrices of Ref.@16# ~long-dashed
line! and with the DRP correction~solid line!. Also shown are the
experimental results of Gibsonet al. @23#.
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