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Ultrasimple calculation of very-low-energy momentum-transfer
and rotational-excitation cross sections:e-N2 scattering

Michael A. Morrison, Weiguo Sun,* William A. Isaacs, and Wayne K. Trail
Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019-0225

~Received 24 May 1996!

The calculation of electron-molecule cross sections at scattering energies well below 0.1 eV using conven-
tional algorithms for solving the Schro¨dinger equation is often rendered problematic by severe numerical
problems. Here we describe and implement an alternative procedure that combines known analytic properties
of the body-frame electron-molecule scattering matrix, as codified in the modified effective range theory, with
an analytic correction that imposes physically correct threshold laws. This approach eliminates completely the
need for numerically solving the Schro¨dinger equation at energies below about 0.1 eV. Instead, one uses
scattering matrices above this energy to determine parameters for an extrapolation to subthermal energies. We
apply this method to the calculation ofe-N2 momentum-transfer and rotational excitation cross sections from
threshold to 1.25 eV. The results resolve a long-standing apparent anomaly in the analysis of experimental data
for very low-energy electron scattering from N2. Finally, we use linear regression to present our theoretical
results in a user-friendly form.@S1050-2947~97!08603-4#

PACS number~s!: 34.80.Gs
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I. INTRODUCTION

Integral elastic, momentum transfer, and rotational ex
tation cross sections at energies below 0.1 eV are of inte
not only for the fundamental insight they afford into qua
tum dynamics, threshold behavior, and many-body effe
such as bound-free correlation, but also for technological
plications. These range from the modeling and optimizat
of plasma devices and gas lasers to understanding plan
atmospheres and photoelectric heating in astrophysics.
cause rotational energy levels are very closely spaced~with
typical separations on the order of meV! and very many lev-
els are populated under common physical~and experimental!
conditions@e.g., experiments at room temperature~293 K!
excite roughly 20 rotational states of N2 @1##, such applica-
tions often require a huge number of rotational cross s
tions. These concerns further highlight the need for efficie
numerically reliable ways to calculate the rotational cro
sections that participate in energy transfer in lo
temperature molecular gases. One such method is the su
of the present work.

Recent advances in experimental techniques for mea
ing electron-molecule cross sections have heightened inte
in scattering at energies well below 0.1 eV—the very-lo
energy~VLE! region. Prominent among these advances
the use of afterglow and drift tube techniques@2#, electron
monochromators@3#, monoenergetic electrons resulting fro
photoionization of rare-gas atoms@4#, and Rydberg atoms
The latter, excited to states with principal quantum num
from several hundred to over 1000, serve as a VLE elec
trap in collisions with molecules@5#. A survey of these ad-
vances can be found in the topical review by Dunning@6#

*Permanent address: Department of Chemistry, The Sich
Union University, Chengdu, Sichuan 610065, People’s Republi
China.
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and subsequent developments in the report of a recent
ference on VLE scattering@7#.

Such techniques complement the indirect determination
cross sections by Boltzmann analysis of data taken in sw
experiments. This swarm data directly yields transp
coefficients—collective properties of the swarm of electro
as it drifts and diffuses through a dilute gas of molecules
known density and temperature under the influence of
applied electric field of known strength. Transport analy
then seeks to reproduce these data from an electron velo
distribution function determined by solving the Boltzman
equation with an assumed set of cross sections as input@8,9#.
The analysis is iterative, the cross sections being varied u
self-consistency is attained between calculated and meas
transport coefficients. Swarm experiments, too, have
vanced in recent years, notably in a new class of such
periments based on direct production of the electron sw
by a short UV laser pulse@10#. As documented in the mono
graph by Huxley and Crompton@11# and in recent reviews
@12#, transport analysis is now well established as
primary—and for many systems the sole—source of integ
rotational, vibrational, and momentum transfer cross secti
at energies below several tenths of an eV. Since 1979,
have been collaborating with crossed-beam and swarm
perimentalists to subject these cross sections to close s
tiny in conjunction withab initio theoretical cross sections o
high numerical precision@13–15#. To date this effort has
focused one-H2 scattering@9,13,14#.

This program has now turned to the scattering of VL
electrons by N2. Boasting a more complicated electron
structure and far more strongly nonspherical static field th
H2, as well as an intermediate duration shape resonanc
2.39 eV, thee-N2 system has become the prototype for te
ing both theoretical and experimental approaches to reso
and nonresonant low-energy collisions@15#. For a review of
the extensive theoretical literature on this system, see
@16#; for resonant scattering, see Ref.@17#; for experimental
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55 2787ULTRASIMPLE CALCULATION OF VERY-LOW-ENERGY . . .
results, see Ref.@18#; and the data compilation Ref.@19#.
We have selectede-N2 scattering for the present study

hopes of gaining insight into a long-standing enigma c
cerning VLE rotational excitation in this system. Transp
analysis ofe-N2 swarm data requires as inputj 0→ j 062
rotational cross sections for all initial rotational statesj 0
populated in the target gas. From the earliest such analys
the most recent@20–22#, experimentalists have calculate
these cross sections using the simple quadrupole Born
proximation~QBA! expression derived by Gerjuoy and Ste
@23#. In the essential role of this expression lies the enigm

The QBA expansion is validin the threshold limitwhere
the exit channel projectile wave numberkj→0. Just above
threshold, however, the long-ranger24 ~induced! polariza-
tion interaction becomes important. Not surprisingly, t
quadrupole-polarization Born approximation~QPBA! ex-
pression of Dalgarno and Moffett@25# deviates substantially
from the QBA form. With still further increases in energ
intermediate- and short-range interactions~static, exchange
nonasymptotic polarization, and correlation! begin to affect
the scattering, and the weak scattering assumption of
Born approximation rapidly breaks down@26#. All this ap-
pears to happen within a few tens of meV of threshold, w
below the characteristic energy of the swarms in the afo
mentioned experiments.Yet only the QBA cross section—n
the presumably more accurate QPBA results nor cross s
tions from theoretical studies that include short- a
intermediate-range interactions@27,28#—yield transport co-
efficients within the 1% error bars on the measured data. A
desire to understand more fully the physics of VLE rotatio
excitation, to resolve this conundrum, and to produce a d
base of numerically sounduD j u52 cross sections that reflec
the full e-N2 interaction motivated the present resear
which complements a recent analysis of transport data ta
in swarm experiments in N2-Ne mixtures@29#.

The challenge VLE scattering poses to the theorist is
solving the electron-molecule Schro¨dinger equation at ener
gies below a few tenths of an eV entails a host of sometim
severe practical difficulties. In methods based on a sin
center expansion of the scattering function in angular m
mentum eigenstates of the projectile@30,16#, these difficul-
ties arise predominantly from the strongly nonspheri
interaction potential. This potential is dominated by t
short-range electron-nuclear Coulomb interaction and so
strongly couple a large number of partial waves—projectio
of the scattering function on spherical harmonics defin
with respect to an origin of coordinates at the center of m
of the molecule. Because of repulsive centrifugal potent
in scattering channels with projectile orbital angular m
mental .0, many of these strongly coupled radial functio
decay rapidly asr→0. This decay is exacerbated with d
creasing energy, since as the classical turning point in e
channel rapidly grows, so does the size of the classic
forbidden region.

Consequently, a host of unsightly technical problems
devil the numerical solution of the Schro¨dinger equation at
very low energies. These include a breakdown of linear
dependence among the columns of the radial wave-func
matrix, accelerating error in propagating this matrix throu
the strong potential region because of the extreme rang
magnitudes in various channel components, and~in algo-
-
t

to

p-

.

he

ll
-

c-

l
ta

,
en

at

s
e-
-

l

an
s
d
ss
ls
-

ch
ly

-

-
n
h
of

rithms based on the integral form of the Schro¨dinger equa-
tion! difficulties attendant upon generating the chan
Green’s functions needed to impose scattering boundary
ditions @31,32#. Even if these problems are not crippling, on
realizes that the growing number of partial waves required
the energy descends into the VLE region is a nonphys
artifice—a mathematical consequence of the off-center
gularity in the~fixed-nuclei! electron-nuclear static potentia
Our present goal is to avoid completely such scattering
culations.

To this end we offer in Sec. II a procedure that explo
the known analytic properties of the scattering matrix,
embodied in modified effective range theory~MERT!, and
approximate treatments of the rotational dynamics that
sure physically correct~PC! threshold behavior of VLE cross
sections. This procedure follows the MERT philosophy
analytically ‘‘extrapolating’’ scattering quantities to ver
low energy; here we extrapolate elements of the scatte
matrix from energies above 0.1 eV, where they can be
culated with relative ease by numerical solution of the Sch¨-
dinger equation, into the VLE region. This procedure
volves minimal computational effort, requiring only a fe
seconds on a personal computer. Following a sketch of
method and a summary of its key equations in Sec. II
apply it to e-N2 scattering at energies from zero to seve
tenths of an eV in Sec. III. In a companion experimental a
theoretical paper@29#, these results are used in transpo
analysis ofe-N2 swarm data.

II. THEORY AND IMPLEMENTATION

Here we describe our procedure for calculating VLE cro
sections for electron scattering from a closed-shell nonp
molecule. The context for this method—the close-coupl
solution of the nonrelativisitic Schro¨dinger equation for this
collision system—has been reviewed several times pr
ously @16–34#; the review of Shimamura@34# is devoted
solely to rotational excitation, and emphasizes sum rules
scaling relations. Equations for close-coupling solution
the scattering equations in the present formalism appea
the review by Morrison and Sun@35#, and will not be re-
peated here. Additional background concerning our imp
mentation of these equations toe-N2 scattering can be found
in Ref. @15#. Finally, we discussed application of the bod
frame-modified effective range theory formalism of Fab
kant @36# to the calculation of VLEtotal cross sections in
Ref. @37#.

A. Overview of procedure

Three theoretical assumptions underlie the method u
here. First, at energies below about 0.1 eV, we can appr
mate scattering matrix elements of low partial wave order
analytic expansions in powers of the exit channel elect
wave number~MERT!. Second, we can approximate el
ments of high partial wave order using the first Born a
proximation ~FBA! @32,38#; the validity of this assumption
hinges on scattering in these channels being weak and du
the long-range interaction potential. Third, we can treat
rotational motion adiabatically, subject to a correction th
ensures a PC dependence of the scattering matrix on en
near threshold.
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2788 55MORRISON, SUN, ISAACS, AND TRAIL
The assumption of adiabatic rotations inheres in the fi
nuclear orientation~FNO! approximation, according to
which the orientationR̂ of the internuclear axis is fixed dur
ing the collision@16#. This approximation, which eliminate
the rotational Hamiltonian from the Schro¨dinger equation, is
valid except at scattering energies that are comparable to
rotational level spacing of the target@30,33#. The solution of
the FNO Schro¨dinger equation~subject to real boundary con
ditions! yields a reactance (K) matrix that describes the pro
jectile dynamics but not target rotational excitation. ThisK
matrix is subsequently transformed to a transition (T) matrix
appropriate to the scattering process of interest.

Rotations are reintroduced asymptotically via a rotatio
frame transformation of theT matrix @39#. But the resulting
rotationally inelasticT-matrix elements approach a positiv
constant rather than zero as the energy approaches thres
This defect in the FNO formulation, if left uncorrected, ge
erates enormous errors in VLE rotational cross sections@32#.
We impose PC near-threshold behavior on the frame tra
formedT matrix using the scaled adiabatic nuclear rotat
~SANR! theory summarized below@40#.

Prior to invoking the frame transformation, we work e
tirely within the FNO approximation. Hence we conv
niently express the Schro¨dinger equation in a body-fixed
~BF! reference frame whosez axis is coincident withR̂. In
addition to reintroducing rotations, the rotational fram
transformation also transforms theT matrix from the body
frame to a space-fixed frame appropriate to the labora
description of the collision.

Our procedure for calculating the BFK matrix depends
on whether the scattering energy is above or below
‘‘boundary energy’’EM : for E>EM we solve coupled radia
scattering equations using a static-exchange-polariza
~SEP! interaction potential and including the full comple
ment of partial waves required to converge the scatte
quantity of interest~usually, these are keyK-matrix ele-
ments! to 1% or better@15#. For E<EM we use the simple
analytic BF MERT expressions given in Sec. II B. The co
nection between these two energy regions is made via
rameters in the MERT equations, which we determine fr
K-matrix elements at a few energiesE>EM . This proce-
dure, along with the implementation of the other two und
lying assumptions, is summarized in Fig. 1. In the rest of t
section, we present relevant equations and specifics of
application toe-N2 scattering.

B. Modified effective range theory

The fundamental equations of modified effective ran
theory~MERT! are analytic expansions of various scatteri
quantities in powers of the exit-channel projectile wave nu
ber @41–46#. These expansions do not depend on the m
assumptions and approximations that typically underlie s
tering calculations~e.g., the representation of the target, a
proximations to the interaction potential, or assumptio
about the dynamics!. Rather, they are based on analytic pro
erties of theSmatrix near threshold@42#.

For electron-atom and electron-molecule scatteri
MERT extends the familiar effective range theory for sho
range potentials@47#, so as to accommodate long-range
teractions such as the spherically symmetric 1/r 4-induced
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polarization potential characteristic of both types of syste
@43#. For electron-molecule scattering, MERT must also ta
into account the non-spherical long-range polarization a
permanent quadrupole potentials@44,42,33#.

These potentials depend only on the permanent and
duced moments of the target, averaged over the probab
density of the ground vibrational state. For a homonucl
target, these are the spherical and nonspherical polariz
ities ā0 and ā2, and the~permanent! quadrupole momen
Q̄:

āl5^w0
~v !ualuw0

~v !& ~l50,2!,

Q̄5^w0
~v !uQuw0

~v !&, ~1!

where the overbar denotes the average over the ground
brational wave functionf0

(v)(R). The long-range potential is
then

Vint~r ,u! ;
r→`

2
ā0

2r 4
2F Q̄r 3 1

ā2

2r 4GP2~cosu!, ~2!

where u is the scattering angle in the body frame. The
three moments appear in the leading terms in MERT exp
sions along with one or more parameters intended to inc
porate short- and intermediate-range interactions that in
ence VLE collisions. These interactions affect primar
s-wave channels, and their effects are usually collapsed

FIG. 1. Summary of MERT extrapolation procedure for calc
lating rotational cross sections.
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55 2789ULTRASIMPLE CALCULATION OF VERY-LOW-ENERGY . . .
a single parameter, the scattering lengthA, which character-
izes the scattering function in the zero-energy limit@47#.

Expansions of theK-matrix elements in the BF FNO for
mulation of electron scattering from a closed-shell nonpo
molecule were derived by Fabrikant@36# using MERT, and
have been implemented by Isaacs and Morrison@37# for low-
energy totale-H2 ande-N2 cross sections. In the BF FNO
formulation, elements of scattering matrices are labeled
channel quantum numbers (n,l ;L), wheren signifies the
vibrational state of the target,l the orbital angular momen
tum of the projectile, andL its projection alongẑ5R̂. In the
FNO approximation,L is a constant of the motion, so th
radial scattering equations are uncoupled inL; for homo-
nuclear targets, parityh is also conserved. Hence theK ma-
trix is block diagonal, and the collision is~colloquially! de-
scribed as occurring in independent electron-molec
symmetries labeledSg(L50, even parity!, Su(L50, odd!,
Pu(L51, odd!, etc. We shall denote particular elements
this matrix by appending orbital quantum numbers onto
symmetry designation: e.g.,Sg(2,0) denotes the element o
theSg K matrix with l 50 andl 052. As we are interested
here in vibrationally elastic collisions (n5n050) we shall
suppress the vibrational quantum numbern and write
K-matrix elements asK

l ,l 0

Lh . At energies aboveEM , we ex-

tract these elements from converged solutions to the b
frame vibrational close-coupling scattering equatio
@15,35,48#, which we solve using an integral equations alg
rithm @49–51#, as described in Ref.@35#.

For E,EM we use the MERT expansion ofK
l ,l 0

Lh in

powers of the projectile wave number

k5A2meE. ~3!

To orderk3, this expansion is

K
l ,l 0

Lh 5c1k1c2k
21Zl ,l 0

L k3 ln k1O~k3!. ~4!

The linear andk2 coefficients are

c152Ad l 0d l 001Q̄ql l 0
L~1! ,

c25ā0al d l l 01ā2~21! l 1LS l l 0 2

L 2L 0D
~5!

3pl l 01Q̄2ql l 0
L~2! ,

with

al 5
p

~2l 21!~2l 11!~2l 13!
. ~6!

Analytic expressions for the other factors in Eq.~5!—
ql l 0

L(1) , ql l 0
L(2) , pl l 0, andZl ,l 0

L —can be found in Ref.@36#.

Of particular importance in the application of BF MER
to rotational excitation are restrictions in Eqs.~4!–~6! on the
orbital angular momenta and the presence or absence ic1
andZl ,l 0

L of the scattering lengthA. First, Wigner 3j coef-

ficients inql l 0
L(1) andql l 0

L(2) restrict the change in angular mo

mentum in the collision toDl 5l 2l 0562. Hence the
r

y

le

f
e

y
s
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present method is applicable only to rotational excitatio
j 0→ j5 j 062. Second, short-range effects influenceZl ,l 0

L

only for two elements of theSg symmetry:Sg(0,0) and
Sg(2,0). As we shall see in Sec. III, this dependence is c
cial to VLE scattering.@For other elements of theSg K
matrix, and those of other symmetries, the MERT expans
Eq. ~4! through order k2 is identical to the first Born ap-
proximation expression based on the asymptotic interac
potential Eq.~2!; see the Appendix to Ref.@32#.#

For rotational excitation withD j52, the key element of
the BFK matrix isSg(2,0). The correspondingZ coefficient
depends onA as

Z0,2
0 5

1

105A5
F23 Q̄31

14

3
ā0Q̄25ā2Q̄1A~2Q̄217ā2!G .

~7!

Because this coefficient multipliesk3 ln k in Eq. ~4!, this A
dependence may~and, for VLEe-N2 scattering, does! inad-
equately represent the influence on scattering in theSg sym-
metry from regions of space near the target. We can ext
the range of validity of the expansion Eq.~4! by including
higher-order coefficients, as

K
l ,l 0

Lh 5c1k1c2k
21Zl ,l 0

L k3 ln k11c3k
31c4k

41O~k5!.

~8!

The additional coefficientsc3 andc4 incorporate short- and
intermediate-range effects beyond those represented by
scattering lengthA. Since physically based expressions su
as Eqs.~5! do not exist for these coefficients, they should
considered mere numerical fitting parameters.

The use of such expansions immediately raises quest
about the range of their validity@46#. Although MERT is
formally valid in the threshold limitkj→0, in practice its
expansions remain accurate well above this limit. Hen
their range of validity must be determined empirically f
each system and symmetry class@37#. This is an issue of
great importance, because in our procedure we extract
scattering length~and, if required, parametersc3 and c4)
from BFVCCK-matrix elements at energies aboveEM , and
at these energies MERT must be valid. In practice, we h
found the BF MERT theory for rotational excitation summ
rized in Fig. 1 to be valid to 1% fore-N2 scattering at ener-
gies up to 0.4 eV and, in independent studies~not shown!,
for e-H2 scattering up to 0.3 eV.

C. Interaction potential

The electron-molecule interaction potential in the BFVC
equations for E>EM contains static, exchange, an
correlation-polarization terms@16,30#. The e-N2 potential
used in the present calculations has been described in d
elsewhere@15#, so we shall only summarize its high points

The static and exchange terms are based on
R-dependent Hartree-Fock~single-configuration! wave func-
tion for the groundX 1Sg electronic state of N2. To generate
the correlation-polarization potential, we augment t
Hartree-Fock basis with diffuse functions that allow for p
larization distortions@52#. From the asymptotic form of the
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2790 55MORRISON, SUN, ISAACS, AND TRAIL
static potential at eachR, we extract the quadrupole mome
functionQ(R) and from the long-range polarization pote
tial, the spherical and nonspherical induced polarizabi
functions ā0(R) and ā2(R). We then average these fun
tions over the ground vibrational state, using Morse vib
tional functions as described in Ref.@15#, obtaining the val-
ues in Table I. These quantities appear in the ME
coefficients~5!.

Finally we note two approximations in our interaction p
tential. First, we treat short-range nonlocal bound-free co
lation effects using the nonpenetrating approximation
Temkin @60#. This results in a parameter-free loc
correlation-polarization potential that, for reasons detai
elsewhere, we call the ‘‘better-than-adiabatic dipole’’ pote
tial @28,61#. Second, we approximate exchange effects us
a parameter-free energy-dependent local potential base
the free-electron-gas model originally introduced to electr
molecule scattering by Hara@62#. While this potential has
been exhaustively studied for various electron-molecule s
tems@63#, it must be extensively modified to accommoda
e-N2 scattering as described in Ref.@15#.

D. From the K matrix to rotational cross sections

To address the issues raised in Sec. I concerning trans
analysis ofe-N2 swarm data, we require a total momentu
transfers (m) and rotational excitation cross sectionss j 0→ j

(r ) .

These we calculate from BF FNOK matrices, which we
obtain either from solutions of the BFVCC scattering equ
tions for E.EM , or from MERT expansions forE,EM .
One can, of course, use analogous MERT expansions to
culate total integral and differential cross sections@37#. The
cross sectionss (m), which can easily be generated from th
BF FNOK matrix, using Eq.~136! in @35#, includes contri-
butions from elastic scattering and rotational excitation
all open channels. Calculating the rotational cross sec
from theK matrix requires that we first transform this matr
into a T matrix in a space-fixed laboratory frame whosez
axis is coincident with the incident electron wave vec
k0. This transformation@39# alters the representation from
BF FNO theory, in which asymptotic channels are labeled
(n,l ;L), to the laboratory-frame coupled angular mome

TABLE I. Permanent and induced moments of N2 used in the
MERT expressions for body-frameK-matrix elements; see als
Ref. @53#.

Source Q(ea0
2) a0(a0

3) a2(a0
3)

Present theory 20.9608 10.980 3.096
Experiment 21.0960.07a 11.74460.004b 3.0860.002c

CI target function 21.14d 11.52e 3.16e

aFrom induced optical birefringence measurements by Buckingh
Graham, and Williams~Ref. @54#!.
bMeasured by Orcutt and Cole~Ref. @55#! and Newell and Baird
~Ref. @56#!.
cFrom relative anisotropies of Bridge and Buckingham~Ref. @57#!.
dMany-body perturbation results of Cernusak, Diercksen,
Sadles~Ref. @58#!.
eMultireference CI results of Langhoff, Bauschlicher, and Cho
~Ref. @59#!.
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tum ~LAB-CAM ! theory, in which channels are labelle
(n, j ,l ;J) with j the rotational quantum number of the targ
andJ the total angular momentum of the system.

This transformation is implemented in two steps. First
transform the BF FNOK matrix into aT matrix in the same
representation via the transformation

TLh522iKLh~12 iKLh!21, ~9!

where the prefactor22i corresponds to the conventio
TLh512SLh. Second we transform the BF FNOT matrix to
the LAB-CAM representation via the unitary rotation
frame transformation@39#

Tj l , j 0l 0
J 5(

L
Aj l
JL T

l ,l 0

Lh Aj 0l 0
JL , ~10!

where

Aj l
JL5S 2 j11

2J11D
1/2

C~ j l J;L,2L!, ~11!

with the conventions of Rose for the Clebsch-Gordan co
ficients@64#. This second transformation reintroduces the
tational dynamics to the asymptotic description of the co
sion, as required to describe transitionsj 0→ j ; physically,
this procedure is equivalent to the adiabatic nuclear rota
approximation@65#.

At energies near a rotational thresholde j , we must in-
voke an additional correction because rotational cross
tions calculated directly from the LAB-CAMT matrices that
emerge from the transformation~10! do not obey PC thresh
old laws. That is, these cross sections behave incorrectl
the exit-channel wave numberkj approaches zero, where

kj[S 2me

\2 ~E2e j ! D 1/2, ~12!

with me the electron mass ande j the threshold energy mea
sured from the ground rotational state. In terms of the ro
tional constantsB0 andD0, this threshold energy is@66#

e j5B0 j ~ j11!2D0 j
2~ j11!2. ~13!

Specifically, elements of the LAB-CAMT matrix must go to
zero according to a power law@67,33,32# that depends on
l , the order of the dominant partial wave~in the exit chan-
nel! at energyE:

Tj l , j 0l 0
J ;

kj→0
kj
l 11/2. ~14!

This, in turn, forces the cross section to zero as

s j 0→ j
~r ! ;

kj→0
kj

2l 11. ~15!

However, rotationally frame-transformedT-matrix elements
do not obey Eq.~14!, and cross sections calculated fro
them do not obey Eq.~15!; in fact the latter approach a
nonzero constant at threshold.

To ensure that all LAB-CAMT-matrix elements that are
important to the cross sections of interest conform to

,
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threshold law~14!, we scale the results of the rotation
frame transformation~10! by a ratio of matrix elements cal
culated in the first Born approximation@40#. Details of this
‘‘scaled adiabatic nuclear rotation’’ correction appear as E
~140! and are discussed in Ref.@35#; the required Born ma-
trix elements can be found in the Appendix to Ref.@32# and
in Sec. III A of Ref. @15#. As we shall demonstrate in Se
III, rotational cross sections calculated from correct
T-matrix elements do approach zero according to Eq.~15!.
This consideration is particularly important for transpo
analysis of swarm data ine-N2, because the electron velocit
distribution is quite sensitive to rotational excitation fro
threshold to 0.1 eV.~The rotational threshold of N2 is very
small owing to the small rotational consta
B051.998 cm21; for the 0→2 excitation, for example, the
threshold is 1.479 89 meV.! For this system we apply thi
correction at energies below 0.2 eV.

Having generated and, if necessary, corrected the LA
CAM T matrices, we can calculate the desired rotatio
cross sections, which are sums over final and averages
initial rotational sublevelsmj and mj 0

. To facilitate the
analysis of our results in Sec. III, we write these quantities
sums over cross sections partial in the total angular mom
tum quantum numberJ,

s j 0→ j
~r ! 5

1

2 j 011 (
J50

`

~2J11!s j 0→ j
J . ~16!

TheseJ partial cross sections can in turn be decompo
according to the partial waves of the projectile in the e
trance and exit channels, as

s j 0→ j
J 5 (

l ,l 0
s j 0→ j
J ~ l 0→l !, ~17!

which, finally, are related to theT matrix as

s j 0→ j
J ~ l 0→l !5

p

k0
2 uTj l , j 0l 0

J u2. ~18!

Two special features of the cross-section calculation
very low scattering energies deserve note. First, the sum
L in the rotational frame transformation~10! includes all
electron-molecule symmetries allowed by the triangle ru
imposed by the Clebsch-Gordan coefficients in Eq.~11!. De-
pending on the values ofl and l 0 for the LAB-CAM T
matrix being generated, these sums overL may call for BF
FNO K-matrix elementsK

l ,l 0

Lh that were not obtained in th

BFVCC ~or MERT! scattering calculations, because the
calculations are typically performed only for small-L sym-
metries. For example, even at energies below several te
of an eV, we find that to convergeD j52 rotational cross
sections fore-N2 we must include LAB-CAM matrix ele-
ments withl >2. To generate these via Eq.~10! requires, in
turn, BF FNOK-matrix elements withL.1. Rather than
perform additional BFVCC calculations for such high-L
symmetries, we approximate the requiredK matrices using
the first Born approximation in the BF FNO formulatio
@32#; for e-N2 scattering below several tenths of an eV, th
approximation is quite accurate forl >2.
s.
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Second, we must face a similar problem in evaluating
sum overJ in the final rotational cross section~16!. In prac-
tice this sum runs not to infinity but rather to some fin
maximum valueJmax determined to ensure convergence
the desired accuracy. For each includedJ, the partial cross
sections j 0→ j

J is calculated from Eq.~17! by summing over

partial-wave ordersl and l 0 as prescribed by the triangl
rulesD( j 0l 0J) andD( j l J). These partial wave sums typ
cally call for T-matrix elements whose order exceeds t
maximum generated in the BFVCC or MERT scattering c
culations. If this happens, we again invoke the first Bo
approximation—this time in the LAB-CAM formulation
this strategy is justified fore-N2 scattering in Sec. IV C of
Ref. @15#. To converge the present cross sections, for
ample, we require LAB-CAMT-matrix elements of orders
up to l 510; those forl .2 we replace with their first Born
approximates.

III. RESULTS AND DISCUSSION

In this section we use the MERT extrapolation proced
to calculate VLE rotational and momentum transfer cro
sections fore-N2 scattering, then use the results to expla
the seemingly anomalous behavior ofs0→2

(r ) in transport
analysis for nitrogen. To demonstrate the accuracy of
procedure, we first compare MERT-extrapolatedK-matrix
elements and cross sections to those from converged s
tions of the BFVCC scattering equations. We preface t
demonstration with a few remarks on implementation of
procedure.

The first step is determining the parameters in the ME
expansions for the requisiteK-matrix elements. For example
for elements in theSg symmetry, we calculatedA, c3, and
c4 via a least-squares fit to BF-FNOK-matrix elements ob-
tained from solutions of the BFVCC scattering equations
energiesE>EM . In particular, to obtain the values in Tab
II, we used 0.1, 0.12, 0.16, 0.18, and 0.20 eV. Our choice
these energies as input to the least-squares fit, altho
somewhat arbitrary, is guided by two criteria. First, t
MERT expansion must be valid at all energies used in the
Second, BFVCC scattering calculations must be compu
tionally viable at these energies. We expectEM50.1 eV to
be reasonable for many electron-molecule systems: at
above this energy, solution of the scattering equations is

TABLE II. MERT parameters~in atomic units! obtained via a
least-squares fit to BFVCCK matrices at 0.1, 0.12, 0.16, 0.18, an
0.20 eV. Also shown~in parentheses! are MERT parameters for a
rigid-rotor calculation atR52.068a0.

K-matrix element A c3 c4

Sg(0,0) 0.420 29.148 257.919
~0.483! ~27.650! (257.260)

Sg(2,0) 20.926 25.884
(22.270) ~24.903!

Sg(2,2) 1.391 26.409
~2.222! (212.934)
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merically stable even when very stringent numerical crite
are imposed.

Studies of rotational excitation, especially at energies b
low the first vibrational threshold, are often performed in th
rigid-rotor approximation, in which the internuclear separ
tion is frozen at equilibrium. Although this approach ca
yield cross sections whose qualitatively behavior is reliab
the effects of even the zero-point vibrational motion can
considerable@68#. For completeness, in Table II we als
show MERT parameters from such a rigid-rotor calculatio
on e-N2 scattering.

A. MERT-extrapolated K matrices

To illustrate the accuracy of the MERT extrapolation pro
cedure for thee-N2 system, we consider two crucia
K-matrix elements. For calculating VLE momentum transf
cross sections, the most important matrix element
Sg(0,0). In Fig. 2~a! we compare the MERT-extrapolated
values for this element to their BFVCC counterparts, de

FIG. 2. MERT extrapolations~solid curve! of the ~a! Sg(0,0)
and ~b! Sg(2,0) elements of thee-N2 K matrix for vibrationally
elastic scattering. The BFVCCK-matrix elements are shown a
E>0.1 eV~open circles!—these were used to determine the MER
parameters—and at a few energies belowEM ~solid circles! for
comparison to the MERT extrapolation. In~b! the ‘‘full MERT’’
extrapolation Eq.~8!, which yielded the solid curve, included term
throughk4, with parameters as in Table II. This is to be compare
to the a ‘‘limited MERT’’ extrapolation~dashed curve! based on
Eq. ~4!, which retains terms only through orderk0

3lnk0. Also shown
are cross sections calculated in the first Born approximation~FBA!
~dotted line! with a potential given by Eq.~2!.
a

-

-

,
e

-

r
is

-

onstrating agreement to better than 1% from 0.2 eV down
0.02 eV, the lowest energy at which we could converge
BFVCC calculations. At higher energies~not shown!, this
expansion is comparably accurate up to about 0.4 eV,
yond which it breaks down. This level of agreement char
terizes the other important diagonal elemen
Su(1,1), Pu(1,1), andPg(2,2).

For calculatingD j562 rotational cross sections, the d
agonalPu(1,1) andSu(1,1) elements are the most importa
except very near threshold. Here the scattering is domina
by the off-diagonal elementSg(2,0). In Fig. 2~b! we com-
pare BFVCC results for this matrix element to values fro
MERT extrapolations and as calculated in the FBA using
long-range potential~2!. This figure compares two MERT
expansions: the limited expansion~4!, which includes only
terms through orderk3lnk, and the extended expansion~8!,
which includes additional terms through orderk4. Clearly,
the limited expansion is accurate only very near the ro
tional threshold. As the energy increases, this expans
comes to qualitatively resemble the FBA values. The
tended expansion Eq.~8!, however, is accurate throughou
the energy range from threshold to several timesEM .

The physical reason for improved accuracy of the e
tended expansion is suggested by the similarity of the limi
expansion to the FBA values. As implemented with Eq.~2!,
the FBAK-matrix elements reflect only the long-range qua
rupole and polarization interactions—not short- a
intermediate-range effects. The limited MERT expansion
~4! does incorporate these effects in thek3lnk term, which is
proportional to the scattering lengthA ~note thatc1 is inde-
pendent ofA for l Þl 0). But for theSg(0,2) matrix ele-
ment, in which the electron in thes-wave exit channel is
fully exposed to short-range interactions, this incorporat
of these interactions is inadequate. The addition of high
order fitting coefficientsc3 and c4 takes up the slack and
yields a very accurate MERT expression. Of course,
k→0, both MERT expansions and the FBA results com
into agreement.

B. Momentum-transfer cross sections

At low energies, the totale-N2 momentum-transfer cros
section, the sum of terms for elastic scattering and all en
getically allowed excitations, is overwhelmingly dominate
by the elastic (j 0→ j 0) term, the contribution of which ex-
ceeds by two orders of magnitude that of the largest rotat
ally inelastic contribution. Hences (m) is determined to a
great extent by the largest diagonal element of theK matrix,
Sg(0,0). In Fig. 2~a! we showed the MERT extrapolation o
this element to be very accurate. Not surprisingly, then,
find in Fig. 3~a! that thes (m) calculated from extrapolated
K-matrix elements is essentially identical to that construc
from BFVCC elements.

One can, of course, generate MERT momentum-tran
cross sections directly from the scattering length using
expansion@36#

s~m!54pSA21
4

45
Q̄2D1

8p

5 S 2pAā01
p

15
ā2Q̄

10.8625AQ̄210.06Q̄3D k01F2AS 245ā2Q̄
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10.0034Q̄3D1
4

3
A2S 2ā01

1

5
Q̄2D2Q̄2~0.052ā0

10.0186ā2!10.001 12Q̄4Gk02 ln k0 . ~19!

Although an easier route tos (m) than calculations from the
BF MERTK matrix, use of Eq.~19! is also less accurate. To
illustrate, we include in Fig. 3~a! cross sections obtained
from this equation. Clearly, the higher-order analytic term
in the MERTK matrix play a significant role in this cross
section over the whole energy range.

The BF MERT extrapolation enables the comparison
theoretical cross sections to those derived from transp
analysis in Fig. 3~b!. To this end we construct a ‘‘compos
ite’’ cross-section set consisting of MERT-based values
energiesE<EM and BFVCC values forE>EM . The two
swarm-based cross sections in this figure were determine

FIG. 3. ~a! Total momentum-transfer cross sections fore-N2

scattering from BFVCC calculations~open and closed circles!, from
a MERT extrapolation based on BFVCCK-matrix elements at
E>0.1 eV~solid line!, and from the direct MERT expansion of thi
cross section, Eq.~19! ~dashed curve!. The open circles show
BFVCC cross sections at the energies used to extract the ME
parameters; the closed circles denote BFVCC results below
energy, shown for comparison.~b! Comparison of composite
MERT-BFVCC momentum-transfer cross sections to experimen
values determined via from transport analyses by Haddad@21#
~solid circles! and by Phelps and Pitchford@22# ~dotted curve!. Also
shown is the crossed-beam result of Shyn and Carignan@24# ~tri-
angle!.
s

f
rt

r

by

Haddad@21# and Phelps and Pitchford@22# in separate trans
port analyses of swarm data taken in pureN2. A more de-
tailed test of the VLE theoreticals (m), obtained by inserting
it into the Boltzmann equation and using the resulting el
tron distribution function to calculate transport coefficien
for comparison to measured data, will appear in Ref.@30#.

C. Rotational excitation cross sections

Unlike s (m), the rotational cross sectionss j 0→ j
(r ) (E) at

very low energies are significantly influenced by scatter
in more than one symmetry. The threshold laws~14! and
~15!, which apply at energies sufficiently near the rotation
threshold, shed light on the dominant exit-channel par
wave order (l ) at these energies. In Fig. 4 we compare t
dependence of the 0→2 cross section on exit-channel wav
numberk2 @see Eq.~12!# with the predictions of Eq.~15!. As
E0 approaches threshold andk0 approaches zero,s0→2

(r ) goes
to zero as the first power ofk2, corresponding to an
s-wave exit channel—as expected from the aforementio
dominance of theSg(2,0) K-matrix element. With a slight
increase in energy, however, this dependence switche
k2
3, corresponding to ap-wave exit channel. At these ene
gies, scattering is strongly influenced by thePu(1,1) and, to
a lesser extent, theSu(1,1) elements. So, exceptvery near
threshold, all three of these symmetries must be represe
accurately to produce PC rotational cross sections.

These findings, together with the sensitivity ofSg(2,0) to
short-range interactions demonstrated in Fig. 2~b!, suggest
that the limited MERT expansion Eq.~4! will not provide
sufficient accuracy to ensure precise rotational cross sect
throughout the energy range of interest. Sure enough, Fi
shows that the higher-order fitting coefficients of Eq.~8! are
required to accurately reproduce the 0→2 cross section.

D. Anomalous behavior of rotational cross sections
in transport analysis

The MERT-extrapolated rotational cross sections exa
ined above are sufficiently accurate to warrant their use in

T
is

al

FIG. 4. Demonstration that the theoreticale-N2 rotational
0→2 cross section~closed circles! obeys the threshold law Eq
~15!. The dashed curves are, respectively, linear~long dash! and
cubic ~short dash! in the exit-channel wave numberk2 and, accord-
ing to the threshold law for this excitation, correspond to outgo
s andp waves.
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inquiry into the long-standing enigma concerninge-N2 trans-
port analysis described in Sec. I—that this analysis yie
transport coefficients within experimental error bars o
when based on the QBAD j52 rotational cross sections
The behavior of the 0→2 cross section in Fig. 5 is typical o
those that participate in this analysis. After its sharp r
from zero at threshold, this cross section exhibits very li
variation with scattering energy untilE0 exceeds 0.2 eV
This energy dependence appears more akin to that of
QBA cross section that the presumably more accurate QP
result—which, as its acronym indicates, includes an inter
tion ~polarization! that the QBA neglects. This resemblan
is explored further in the comparison in Fig. 6 of these t
Born results to the composite MERT-BFVCC cross sectio

The QBA cross section for aD j562 transition in a
homonuclear molecule is@23#

FIG. 5. Rotational cross sections for the 0→2 excitation from
BFVCC scattering calculations and from MERT extrapolatio
based on BFVCCK-matrix elements atE>0.1 eV~solid and dotted
curves!. The open circles show BFVCC results at energies use
extract the MERT parameters; the closed circles denote results
low this energy. The cross sections based on MERTK matrices
were obtained in two separate extrapolations, one to orderk3 ~dot-
ted curve!, the other including coefficients fork3 and k4 terms
~solid curve!. Also shown are the BFVCC-MERT cross sectio
scaled by 1.3 to account for inaccuracies in the quadrupole mom
~see text!.

FIG. 6. Comparison of BFVCC-MERT 0→2 rotationale-N2

cross sections~solid curve! with values calculated in the quadrupo
Born ~dotted curve! and quadrupole-polarized Born approximatio
~dashed curve!, Eqs.~20! and ~22!, respectively.
s

e
e

he
A
c-

s.

QBAs j 0→ j
~r ! 5

8p

15

kj
k0
Q̄2F6~ j 0!, ~20!

where the factorF6( j 0) discriminates inelastic from super
elastic scattering,

F6~ j 0![H ~ j 011!~ j 012!

~2 j 011!~2 j 013!
~ j 0→ j 012!

j 0~ j 021!

~2 j 021!~2 j 011!
~ j 0→ j 022!.

~21!

This approximation is strictly valid only in thekj→0 limit,
where the strong centrifugal barrier in thed-wave entrance
channel@as manifested in the dominantSg(0,2) K-matrix
element# guarantees very weak scattering at very lo
range—conditions that validate retention of only the quad
pole interaction. Just above threshold, significant scatte
occurs in channels with~weaker! p-wave barriers and the
long-range polarization interaction begins to play a role. T
interaction, therefore, should be taken into account—as
in the QPBA expression@25#

QPBAs j 0→ j
~r !

5QBAs j 0→ j
~r !

1
p2

30

kj
k0

FQā2

3k0
21kj

2

kj

1
9p

64
ā2
2~k0

21kj
2!GF6~ j 0!. ~22!

Note that Eq.~22! corrects Eq.~20! with an additional term
whose dominant dependence onkj is kj

3 , consistent with the
threshold law forl 51, as required according to Fig. 4. I
e-N2 scattering, the effect of this correction term is esp
cially dramatic because of a partial cancellation in the lon
range potential due to the opposite signs ofQ̄ and ā2; this
effect can be seen in the comparison of two Born 0→2 cross
sections in Fig. 6. This line of reasoning highlights t
anomalous nature of the agreement in shape of the ME
BFVCC rotational cross sections and those of the Q
theory.

This agreement, however, is misleading. The appar
anomaly is explained by the demonstration in Figs. 2~b! and
5 that the short- and intermediate-range interactions~static,
exchange, intermediate-range polarization, and bound-
correlation! significantly affectK-matrix elements that are
important tos0→2

(r ) at these energies. As shown in Fig. 5, t
effect of adequately representing these interactions, thro
the coefficientsc3 andc4 in Eq. ~8!, is to increasethis cross
section. Coincidentally, the energy dependence of the res
ing more accurate rotational cross section more closely
sembles that of the QBA theory than of the QPBA theory

It is important that the results in Fig. 6 not be misco
strued to mean either that the QBA theory accurately refle
the physics of rotational excitation at these energies, or t
one can use it with impunity for other systems.Quite the
contrary. Both the QBA and QPBA theories neglect co
pletely short- and intermediate-range interactions; neith
therefore, correctly incorporates physical effects that are
portant at energies ranging from slightly above threshold
several tenths of an eV. The coincidental concurrence
tween the shapes of the QBA and MERT-BFVCC rotation
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cross sections explains why in prior transport analysis
swarm data in pure N2 and in N2–rare-gas mixtures, only
QBA rotational cross sections yielded transport coefficie
that agreed with measured data@21#. The coincidental nature
of this agreement is the crucial point; no such agreem
should be anticipated for other electron-molecule system

In conclusion, we should note that—notwithstanding t
importance of interactions other than the long-ran
quadrupole—at very low energiess0→2

(r ) remains very sensi
tive to the value of the quadrupole momentQ̄. Our MERT-
BFVCC cross sections correspond toQ̄520.961ea0

2, which
may be compared to the experimental values
Q̄52(1.0460.07)ea0

2 obtained from electric-field-gradient
induced birefringence measurements@54#, and21.15ea0

2 ex-
tracted from far-infrared spectra@69#.

Our theoretical quadrupole moment is too small becaus
is based on a near-Hartree-Fock representation of
X 1Sg ground electronic state of N2. A more accurate elec
tronic function would have produced a different quadrup
moment. For example, the fourth-order perturbat
theory calculations of Maroulis and Thakkar@70# give
Q̄521.146ea0

2, while the multiconfiguration self-
consistent-field calculations of Ermler and Huang@71# yield
21.25ea0

2. However, unanimity about the theoretical depe
dence ofQ(R) on internuclear separationR seems elusive
Table I in Liu, Lie, and Liu @72#, which collects various
theoretical values ofQ(R52.068a0), displays configuration-
interaction values ranging from20.98ea0

2 to 21.25ea0
2.

~Our near-Hartree-Fock value at this internuclear separa
is 20.902ea0

2.! Averaging these values over the ground
brational state would increase them by about 6%.

Because of the aforementioned sensitivity ofs j 0→ j
(r ) to

Q̄, this uncertainty about the quadrupole moment has sig
cant consequences for transport analysis based eithe
QBA theory or the present MERT-BFVCC rotational cro
sections. The MERT expansion~4! shows that the dominan
dependence ofD j562 cross sections on the quadrupo
moment isQ̄2. This holds from threshold to several tenths
an eV—precisely the energy range in which the drift veloc
is most sensitive to rotational excitation. This observat
suggests a crude~but efficient! way to correct our rotationa
cross sections: simply scale them by the square of the rat
the experimental to theoretical quadrupole moment. If,
example, one takes as the experimental value 1.1ea0

2, then
the cross sections in Fig. 5 should be multiplied
u1.1/0.961u251.3. The result of this scaling, shown in Fig.
illustrates the sensitivity of these cross sections toQ̄. As
detailed in Ref.@29#, these scaled theoretical rotational cro
sections, when inserted into the Boltzmann equation, y
transport coefficients within the 1% error bars of the m
recent swarm experiments. This, we believe, explains
apparent enigma with respect to this scattering process.

Nevertheless, in addition to being somewhat unrefin
this scaling correction suffers from uncertainty about the
perimental value ofQ̄. But it is unarguably easier than re
peating the current scattering calculations with
configuration-interaction ~CI! target function—a CPU-
intensive effort that would also be plagued by the aforem
tioned uncertainties about the CI value of this molecular c
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stant. In any case, no such scaling is required~or appropriate!
for the momentum transfer cross section, the total cross
tion, or rotational cross sections above a few tenths of
eV—none of which are similarly dominated by the lon
range quadrupole interaction.

E. Fitted cross sections

To facilitate their future use, we here present our comp
ite MERT-BFVCC cross sections in a user-friendly form
The threshold laws fors (m) ands j 0→ j

(r ) prescribe the depen

dence of these quantities on the exit-channel wave num
kj . Thus we can use these laws to construct series ex
sions of these cross sections, and determine the required
pansion coefficients via linear regression analysis@73#.

To determine which terms to include in this fit, we turn
the BF-MERT expansion of the momentum transfer cro
section, Eq.~19!. The leadingk0-dependent terms in this
expression are proportional tok0 andk0

2lnk0. Translated into
the incident projectile energyE05k0

2/2, these terms yield
factors proportional toAE0, E0, andE0lnE0. As noted in the
discussion of Eq.~19! and illustrated in Fig. 3~a!, this direct
MERT expansion ofs (m) is not valid over the entire energ
range from 0.002 to 1.25 eV. Thus instead we fit our MER
BFVCC cross sections, augmenting these terms with
proportional tok0

4}E0
2 to accommodate the high end of th

range.
At zero energy,s (m) should reduce to the value 4pA2,

which, for our scattering lengthA50.420a0 equals
2.2167a0

2. However, because BF MERT entails the FNO a
proximation, the total momentum-transfer cross section~at
any energy! includes contributions from all rotational excita
tions, whether or not they actually correspond to open ch
nels; these contributions are nonzero because, as note
Sec. II, they do not approach zero at their respective exc
tion thresholds. This results in a zero-energy limit that
incorrect by an amount 16pQ̄2/45, which for oure-N2 cal-
culations equals 1.031a0

2. To correct this slight mismatch in
the present fit, we simply replace the zeroth-order value
its correct limit 4pA2. Doing so yields the following fit for
the total momentum-transfer cross section~in a0

2) as a func-
tion of incident energyE0 ~in eV!:

s~m!52.2167129.2988E0
1/2244.6748E0 ln E0220.3865E0

125.4971E0
2 . ~23!

This fit reproduces our MERT-BFVCC momentum-trans
cross sections to better than 1% from zero to 1.25 eV.

Similarly, we can use the known behavior of the rot
tional cross section to devise a fit to our composite MER
BFVCC values forD j52 transitions, which, as noted abov
are the only appreciable excitations below the resonance
gion from about 1.5 to 4.0 eV.~Cross sections for deexcita
tion can be calculated from these using detailed balance.! As
E0 decreases toward thresholde j , this rotational cross sec
tion approaches the QBA form~20!. Hence we can write it in
a form that introduces an ancillary functionf j 0→ j (E0) which
goes to zero at threshold, viz.,

s j 0→ j
~r ! ~E0!5QBAs j 0→ j

~r ! ~E0!@11 f j 0→ j~E0!#, ~24!
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and need to fit only the ancillary function to theoretical da
Note that the QBA cross section goes to zero askj , in con-
formity with the threshold law ~15! for the s-wave-
dominated exit channel, as illustrated in Fig. 4.

Swarm experiments typically requireD j52 cross sections
for a range of initial statesj 0. For example, the recent swar
experiments in N2-Ne mixtures, which were performed a
78.6 K, require cross sections forj 050,1, . . . ,12. Wehave
generated and fit the ancillary function for these transitio
using the form

f ~E0!5d1AE02e j1d2~E02e j !1d4~E02e j !
2, ~25!

and obtain the coefficients in Table III. This fit reproduc
our SANR-corrected MERT-BFVCC cross sections to be
than 1% from threshold to 1.25 eV. If cross sections
higher j 0 are required, say for analysis of experiments
higher temperatures, they can be generated from the da
Table III using scaling relations such as those describe
Ref. @74#.

IV. CONCLUSION

The principal theoretical result of this study is the B
MERT extrapolation procedure summarized in Fig. 1. T
principal practical results are the fits~23! and ~24! to our
composite MERT-BFVCCe-N2 momentum-transfer and ro
tational cross sections. These fits can be used, together
scaling formulas if necessary@74#, to generates (m) or any
desireds j 0→ j

(r ) for D j52 at energies below about 1.25 eV

Above this energy, rotational excitation is controlled by t
2.4-eV shape resonance, the shapes of these cross se
differ from those off resonance, andD j54 transitions be-
come appreciable. In addition to the validity of MERT fo
E<EM , the assumptions underlying the present results
those of the BFVCC scattering calculations forE>0.1 eV—

TABLE III. Coefficients in the ancillary functionf j 0→ j (E0) of
Eq. ~25! used to fit theoreticale-N2 rotational cross sections fo
j 0→ j 012 transitions. These are coefficients of powers of the in
dent energyE minus the threshold energye j ~both in eV!. The
analytic forms obtained by inserting these functions into Eq.~24!
for s j 0→ j

(r ) (E) reproduce to within 1% our calculated cross sectio
from threshold to 1.25 eV.~Threshold energies are based on co
stants in Ref.@66#.!

j 0 e j (eV) d1 d2 d4

0 0.001 480 22.0216 10.8604 18.2194
1 0.002 466 21.8734 9.2870 39.6345
2 0.003 453 21.9283 9.8817 32.3389
3 0.004 440 21.9151 9.8909 31.3904
4 0.005 426 21.9101 9.9038 31.0499
5 0.006 413 21.8976 9.8645 31.1314
6 0.007 399 21.8791 9.7873 31.4314
7 0.008 386 21.8563 9.6436 32.4237
8 0.009 373 21.8351 9.5712 32.5957
9 0.010 359 21.8100 9.4427 33.3092
10 0.011 346 21.7805 9.2820 34.2476
11 0.012 334 21.7615 9.1977 34.6676
12 0.013 319 21.7679 9.2964 34.0475
.

s,

r
r
t
in
in

e

ith

ions

re

primarily the FNO approximation, use of a near-Hartre
Fock electronic function for the target, and simplifications
the exchange and polarization constituents of the interac
potential; we discussed these assumptions in detail in R
@35#.

The principal conceptual result is the resolution of t
long-standing enigma concerning in swarm determination
e-N2 rotational cross sections~see Fig. 6 and the accom
panying discussion!. This resolution brings additional cohe
ence to a long-term project in which we have been asses
both theory and transport analysis for electron-molecule s
tering. Our goal is to generate benchmark cross sections
few typical electron-molecule systems—a database on wh
theory and experiment can agree to high precision. P
work on low-energye-H2 scattering has accomplished th
goal for rotational excitation, determining cross sections o
par with those for low-energye-He cross sections@75#. As
elaborated in the companion paper Ref.@29#, the present
study bringse-N2 rotational cross sections to this level o
agreement. The situation concerning vibrational excitati
of both H2 and N2 remains, alas, more recalcitrant@13#.

In considering the extension of the present approach
calculation of very-low-energy momentum transfer and ro
tional cross sections for other types of electron-molecule s
tems~e.g., scattering from polar and polyatomic targets!, the
primary concerns are two. First, BF-MERT expressions
the system of interest must be available or derived. Seco
the BFVCC ~or, if appropriate, BF rigid rotor! scattering
equations must be solvable at a few energies at the u
limit of the range of validity of BF-MERT. A more detailed
discussion of MERT for various systems can be found
Sec. IV B of Ref.@33#.

To conclude, it is perhaps worth setting the pres
scheme in a practical perspective. The only computation
demanding step is solving the BFVCC scattering equati
at a few energies above 0.1 eV. While we used fully co
verged five-~vibrational!-state BFVCCK matrices, one could
render this step considerably simpler with little loss of acc
racy. For example, if only rotationally inelastic processes
of interest, one can avoid vibrational coupling altogether
using the rigid-rotor approximation. This entails solvin
fixed-nuclei scattering equations at the equilibrium geo
etry, and is quite standard in the repertoire of mode
electron-molecule theory. Only a few such calculations ne
be performed to obtain parameters for the MERT extrapo
tion. All subsequent steps in the generation of VLE cro
sections—fitting theK-matrix elements, MERT extrapola
tion to lower energies, the rotational frame transformati
and correction of the LAB-CAMT-matrix elements nea
threshold—involve easily programmed, very fast, nume
cally stable calculations that can be executed on a mo
personal computer or work station.
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