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The calculation of electron-molecule cross sections at scattering energies well below 0.1 eV using conven-
tional algorithms for solving the Schilinger equation is often rendered problematic by severe numerical
problems. Here we describe and implement an alternative procedure that combines known analytic properties
of the body-frame electron-molecule scattering matrix, as codified in the modified effective range theory, with
an analytic correction that imposes physically correct threshold laws. This approach eliminates completely the
need for numerically solving the Schiinger equation at energies below about 0.1 eV. Instead, one uses
scattering matrices above this energy to determine parameters for an extrapolation to subthermal energies. We
apply this method to the calculation efN, momentum-transfer and rotational excitation cross sections from
threshold to 1.25 eV. The results resolve a long-standing apparent anomaly in the analysis of experimental data
for very low-energy electron scattering from, NFinally, we use linear regression to present our theoretical
results in a user-friendly fornfS1050-294{®7)08603-4

PACS numbd(s): 34.80.Gs

I. INTRODUCTION and subsequent developments in the report of a recent con-
ference on VLE scatterinfy7].

Integral elastic, momentum transfer, and rotational exci- Such techniques complement the indirect determination of
tation cross sections at energies below 0.1 eV are of interestoss sections by Boltzmann analysis of data taken in swarm
not only for the fundamental insight they afford into quan-experiments. This swarm data directly yields transport
tum dynamics, threshold behavior, and many-body effectsoefficients—collective properties of the swarm of electrons
such as bound-free correlation, but also for technological apas it drifts and diffuses through a dilute gas of molecules of
plications. These range from the modeling and optimizatiorknown density and temperature under the influence of an
of plasma devices and gas lasers to understanding planetaapplied electric field of known strength. Transport analysis
atmospheres and photoelectric heating in astrophysics. Béhen seeks to reproduce these data from an electron velocity
cause rotational energy levels are very closely spda#ith distribution function determined by solving the Boltzmann
typical separations on the order of meadhd very many lev- equation with an assumed set of cross sections as Bt
els are populated under common physieald experimental The analysis is iterative, the cross sections being varied until
conditions[e.g., experiments at room temperat(293 K) self-consistency is attained between calculated and measured
excite roughly 20 rotational states of, l1]], such applica- transport coefficients. Swarm experiments, too, have ad-
tions often require a huge number of rotational cross secvanced in recent years, notably in a new class of such ex-
tions. These concerns further highlight the need for efficientperiments based on direct production of the electron swarm
numerically reliable ways to calculate the rotational crossby a short UV laser pulsgl0]. As documented in the mono-
sections that participate in energy transfer in low-graph by Huxley and Cromptofil] and in recent reviews
temperature molecular gases. One such method is the subj¢d®], transport analysis is now well established as the
of the present work. primary—and for many systems the sole—source of integral

Recent advances in experimental techniques for measuretational, vibrational, and momentum transfer cross sections
ing electron-molecule cross sections have heightened intereat energies below several tenths of an eV. Since 1979, we
in scattering at energies well below 0.1 eV—the very-low-have been collaborating with crossed-beam and swarm ex-
energy(VLE) region. Prominent among these advances ar@erimentalists to subject these cross sections to close scru-
the use of afterglow and drift tube technigu&d, electron tiny in conjunction withab initio theoretical cross sections of
monochromatorg3], monoenergetic electrons resulting from high numerical precisioril3-15. To date this effort has
photoionization of rare-gas atonmig], and Rydberg atoms. focused ore-H, scattering9,13,14.

The latter, excited to states with principal quantum number This program has now turned to the scattering of VLE
from several hundred to over 1000, serve as a VLE electroelectrons by M. Boasting a more complicated electronic
trap in collisions with moleculef5]. A survey of these ad- structure and far more strongly nonspherical static field than
vances can be found in the topical review by Dunnjé§y H,, as well as an intermediate duration shape resonance at
2.39 eV, thee-N, system has become the prototype for test-
ing both theoretical and experimental approaches to resonant
*Permanent address: Department of Chemistry, The Sichuaand nonresonant low-energy collisiofis]. For a review of
Union University, Chengdu, Sichuan 610065, People’s Republic othe extensive theoretical literature on this system, see Ref.
China. [16]; for resonant scattering, see REE7]; for experimental
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results, see Refl18]; and the data compilation R€f19]. rithms based on the integral form of the Sdfirger equa-
We have selected-N, scattering for the present study in tion) difficulties attendant upon generating the channel
hopes of gaining insight into a long-standing enigma con-Green’s functions needed to impose scattering boundary con-
cerning VLE rotational excitation in this system. Transportditions[31,32. Even if these problems are not crippling, one
analysis ofe-N, swarm data requires as inpig— jo=*2 realizes that the growing number of parti_al waves requireq as
rotational cross sections for all initial rotational staes the energy descends into the VLE region is a nonphysical
populated in the target gas. From the earliest such analyses #tificé—a mathematical consequence of the off-center sin-
the most recenf20—23, experimentalists have calculated 9ularity in the(fixed-nuclej electron-nuclear static potential.
these cross sections using the simple quadrupole Born af2ur present goal is to avoid completely such scattering cal-
proximation(QBA) expression derived by Gerjuoy and Stein culations. _ _
[23]. In the essential role of this expression lies the enigma, 1O this end we offer in Sec. Il a procedure that exploits
The QBA expansion is valiéh the threshold limitwhere ~ the known analytic properties of the scattering matrix, as
the exit channel projectile wave numble—0. Just above €mbodied in modified effective range thedMERT), and
threshold, however, the long-range* (induced polariza- approxma}te treatments of the rotational _dynamlcs that en-
tion interaction becomes important. Not surprisingly, theSuré physically corredPC) threshold behavior of VLE cross
quadrupole-polarization Born approximatiGi@PBA) ex- sections. Th,'.s procedu_re iollows the MERT _p_h|Iosophy of
pression of Dalgarno and Moffefe5] deviates substantially analytically “extrapolating” scattering quantities to very
from the QBA form. With still further increases in energy, |0OW energy; here we exirapolate elements of the scattering

intermediate- and short-range interactidegatic, exchange, Matrix from energies above 0.1 eV, where they can be cal-
nonasymptotic polarization, and correlatidregin to affect culated with relative ease by numerical solution of the Schro
the scattering, and the weak scattering assumption of thdiNger equation, into the VLE region. This procedure in-
Born approximation rapidly breaks dow@6]. Al this ap- volves minimal computational effort, requiring only a few
pears to happen within a few tens of meV of threshold, weliseconds on a personal computer. Follow[ng a.sketch of the
below the characteristic energy of the swarms in the aforeMethod and a summary of its key equations in Sec. Il we
mentioned experiment¥et only the QBA cross section—not aPPIY it to e-N; scattering at energies from zero to several
the presumably more accurate QPBA results nor cross sed€nths of an eVin Sec. lil. In a companion experimental and
tions from theoretical studies that include short- andtheoretical papef29], these results are used in transport
intermediate-range interactiorf@7,28—yield transport co-  analysis ofe-N; swarm data.

efficients within the 1% error bars on the measured data

desire to understand more fully the physics of VLE rotational Il. THEORY AND IMPLEMENTATION

excitation, to resolve this conundrum, and to produce a data
base of numerically sounc i |=2 cross sections that reflect
the full e-N, interaction motivated the present research

which complements a recent analysis of transport data takegy tion of the nonrelativisitic Schdinger equation for this

In swarm experiments in NNe_ mixtures[29). collision system—has been reviewed several times previ-
The challenge VLE scatterlng"p(')ses to the 'theorlst is th%usly [16-34; the review of Shimamurd34] is devoted
splwrgg Ithe elfectron-mhole;:ule S\;:Imhngﬁr eqhuatlor} at ener- solely to rotational excitation, and emphasizes sum rules and
gies below a evlvégfrfw_t SI.O ar: N enl’:aldsi‘) os;o Some_t'm|e§caling relations. Equations for close-coupling solution of
severe practical difficulties. In methods based on a singleg,q scattering equations in the present formalism appear in

center expansion of the scattering function in angular MOthe review by Morrison and Suf85], and will not be re-
mentum eigenstates of the projectj&0,16, these difficul- peated here. Additional background concerning our imple-

ties arise predominantly from the strongly nonSpherICalmentation of these equationsaeN, scattering can be found

interaction potential. This potential is dominated by thein Ref. [15]. Finally, we discussed application of the body-
short-range electron-nuclear Coulomb interaction and so ¢ ame-modified efféctive range theory formalism of Fabri-

strongly couple alarge pumber of par_t|al Waves—_prOJect_lon ant [36] to the calculation of VLEtotal cross sections in
of the scattering function on spherical harmonics define ef.[37]

with respect to an origin of coordinates at the center of mass
of the molecule. Because of repulsive centrifugal potentials
in scattering channels with projectile orbital angular mo-
mentas >0, many of these strongly coupled radial functions Three theoretical assumptions underlie the method used
decay rapidly ag —0. This decay is exacerbated with de- here. First, at energies below about 0.1 eV, we can approxi-
creasing energy, since as the classical turning point in eacmate scattering matrix elements of low partial wave order by
channel rapidly grows, so does the size of the classicallgnalytic expansions in powers of the exit channel electron
forbidden region. wave number(MERT). Second, we can approximate ele-

Consequently, a host of unsightly technical problems bements of high partial wave order using the first Born ap-
devil the numerical solution of the Sclulinger equation at proximation (FBA) [32,38; the validity of this assumption
very low energies. These include a breakdown of linear inhinges on scattering in these channels being weak and due to
dependence among the columns of the radial wave-functiothe long-range interaction potential. Third, we can treat the
matrix, accelerating error in propagating this matrix throughrotational motion adiabatically, subject to a correction that
the strong potential region because of the extreme range @nsures a PC dependence of the scattering matrix on energy
magnitudes in various channel components, éndalgo- near threshold.

Here we describe our procedure for calculating VLE cross
sections for electron scattering from a closed-shell nonpolar
'molecule. The context for this method—the close-coupling

A. Overview of procedure
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The assumption of adiabatic rotations inheres in the fixed
nuclear orientation(FNO) approximation, according to

which the orientatiorR of the internuclear axis is fixed dur-

’ Body Frame Vibrational Close-Coupling

ing the collision[16]. This approximation, which eliminates Body Frame K Matrices atE > E
the rotational Hamiltonian from the Schiinger equation, is *

valid except at scattering energies that are comparable to the

rotational level spacing of the targe&0,33. The solution of | Body Frame MERT|
the FNO Schrdinger equatiorfsubject to real boundary con- ‘

ditions) yields a reactancek() matrix that describes the pro- .

jectile dynamics but not target rotational excitation. TKis Body Frame K Matrices at E <E,

matrix is subsequently transformed to a transitidi fnatrix
appropriate to the scattering process of interest.

Rotations are reintroduced asymptotically via a rotational
frame transformation of th& matrix [39]. But the resulting
rotationally inelasticT-matrix elements approach a positive
constant rather than zero as the energy approaches threshold.
This defect in the FNO formulation, if left uncorrected, gen-
erates enormous errors in VLE rotational cross secfiggk
We impose PC near-threshold behavior on the frame trans-
formed T matrix using the scaled adiabatic nuclear rotation ¢
(SANR) theory summarized beloy0].

Prior to invoking the frame transformation, we work en-
tirely within the FNO approximation. Hence we conve-

‘Convert K to T Matrices

Body Frame T Matrices at all E

Rotational Frame Transformation

Laboratory Frame T Matrices at all E for j; — j

niently express the Schidinger equation in a body-fixed Impose Correct Threshold Behavior

(BF) reference frame whose axis is coincident wittR. In

addition to reintroducing rotations, the rotational frame ‘

transformation also transforms tfiematrix from the body Rotational cross sections

frame to a space-fixed frame appropriate to the laboratory

description of the collision. FIG. 1. Summary of MERT extrapolation procedure for calcu-

Our procedure for calculating the B matrix depends lating rotational cross sections.
on whether the scattering energy is above or below the
“boundary energy”Ey, : for E=E, we solve coupled radial polarization potential characteristic of both types of systems
scattering equations using a static-exchange-polarizatiof#3]. For electron-molecule scattering, MERT must also take
(SEB interaction potential and including the full comple- into account the non-spherical long-range polarization and
ment of partial waves required to converge the scatteringgermanent quadrupole potentiff&t,42,33.
quantity of interest(usually, these are keK-matrix ele- These potentials depend only on the permanent and in-
ments to 1% or bette15]. For E<E,, we use the simple duced moments of the target, averaged over the probability
analytic BF MERT expressions given in Sec. |l B. The con-density of the ground vibrational state. For a homonuclear
nection between these two energy regions is made via pdarget, these are the spherical and nonspherical polarizabil-
rameters in the MERT equations, which we determine fronities oy and a», and the(permanent quadrupole moment
K-matrix elements at a few energi&=E,,. This proce- Q:
dure, along with the implementation of the other two under-

lying assumptions, is summarized in Fig. 1. In the rest of this oy =(eP|ay|e))  (A=0,2),
section, we present relevant equations and specifics of their
application toe-N, scattering. Q_=<¢E)”)|Q|<pg”)> (1

B. Modified effective range theory where the overbar denotes the average over the ground vi-

The fundamental equations of modified effective rangebrational wave functiorqbg”)(R). The long-range potential is
theory (MERT) are analytic expansions of various scatteringthen
guantities in powers of the exit-channel projectile wave num-
ber[41-46. These expansions do not depend on the many P Q_ a
assumptions and approximations that typically underlie scat- Viu(r,0) ~ — T [r—3 + >rd P,(cos ), 2
tering calculationge.g., the representation of the target, ap- r
proximations to the interaction potential, or assumptions
about the dynamigsRather, they are based on analytic prop-where 8 is the scattering angle in the body frame. These
erties of theS matrix near threshol@42]. three moments appear in the leading terms in MERT expan-
For electron-atom and electron-molecule scatteringsions along with one or more parameters intended to incor-
MERT extends the familiar effective range theory for short-porate short- and intermediate-range interactions that influ-
range potential$47], so as to accommodate long-range in-ence VLE collisions. These interactions affect primarily
teractions such as the spherically symmetric*dnduced s-wave channels, and their effects are usually collapsed into

— 00
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a single parameter, the scattering lengthwhich character- present method is applicable only to rotational excitations
izes the scattering function in the zero-energy lifdit]. jo—i=lJox2. Second, short-range effects influenzé/0
Expansions of th&-matrix elements in the BF FNO for- only for two elements of thes, symmetry:34(0,0) and
mulation of electron scattering from a closed-shell nonpolagg(z 0). As we shall see in Sec. Ill, this dependence is cru-
molecule were derived by Fabrikaf86] using MERT, and  (ja| to VLE scattering[For other elements of the, K
have been implemented by Isaacs and Morr{Sf for low- a4y and those of other symmetries, the MERT expansion
energy totale-H, ande-N, cross sections. In the BF FNO ¢ (4) through order R is identical to the first Born ap-
formulation, elements of scattering matrices are labeled byroximation expression based on the asymptotic interaction
channel quantum numbers,¢’;A), where v signifies the potential Eq.(2); see the Appendix to Ref32].]
vibrational state of the target; the orbital angular momen- For rotational excitation with\j =2, the key element of
tum of the projectile, and its projection along=R. Inthe  the BFK matrix is=4(2,0). The corresponding coefficient
FNO approximationA is a constant of the motion, so the depends o\ as
radial scattering equations are uncoupledAin for homo-

nuclear targets, parity is also conserved. Hence thema- 1 [2— 14 . e

trix is block diagonal, and the collision igolloquially) de- Z0 = —— |2 Q%+ = aoQ—5a,Q+A(2Q%*+ 7ay)|.
scribed as occurring in independent electron-molecule 105513 3

symmetries labeled ,(A =0, even parity, > ,(A=0, odd, )

I1,(A=1, odd, etc. We shall denote particular elements of ) o . ) )

this matrix by appending orbital quantum numbers onto th3ecause this coefficient multipligs’ In k in Eq. (4), this A
symmetry designation: e.g%4(2,0) denotes the element of dependence mafand, for VLE e-N, scattering, dogsinad-
theS, K matrix with /=0 and/,=2. As we are interested €quately represent the influence on scattering irbtheym-

here in vibrationally elastic collisionsv& vo=0) we shall
suppress the vibrational quantum number and write
K-matrix elements aKf”/o. At energies abov&,,, we ex-

metry from regions of space near the target. We can extend
the range of validity of the expansion E@) by including
higher-order coefficients, as

tract these elements from converged solutions to the bodyA, =c1k+czk2+Z§/ K3 In k+ + c3k3+ ¢ k4 + O(KS).
/7o

frame vibrational

rithm [49-51], as described in Ref35].
For E<E, we use the MERT expansion cb(ﬁ’(/o in

powers of the projectile wave number

k=\2m.E. 3)

To orderk®, this expansion is

K37, =cik+cok2+ z} & In k+0(K?). (4)

0

The linear anck? coefficients are
~AA(L
C1=—Ad,08, 0+ QU1

s 2)

sza_oa/5//o+a_z(—l)/+A(A A O

)

XPsryt qué(/zo) ;
with

w
T D2/ T2 1)

(6)

Analytic expressions for the other factors in Eth)—

a®, a)?), p,,, andz} , —can be found in Ref.36].

Of particular importance in the application of BF MERT

to rotational excitation are restrictions in E¢4)—(6) on the

orbital angular momenta and the presence or absenceg in

and 29’/0 of the scattering lengtA. First, Wigner 3 coef-
ficients in q%lo) and qgﬁ/i)

mentum in the collision toA/'=/—/,==*2. Hence the

restrict the change in angular mo-

close-coupling scattering equations /o
[15,35,48, which we solve using an integral equations algo-

®

The additional coefficients; andc, incorporate short- and
intermediate-range effects beyond those represented by the
scattering lengtt\. Since physically based expressions such
as Egs(5) do not exist for these coefficients, they should be
considered mere numerical fitting parameters.

The use of such expansions immediately raises questions
about the range of their validit{46]. Although MERT is
formally valid in the threshold limitk;—0, in practice its
expansions remain accurate well above this limit. Hence
their range of validity must be determined empirically for
each system and symmetry cld$¥]. This is an issue of
great importance, because in our procedure we extract the
scattering length(and, if required, parameters; and c,)
from BFVCC K-matrix elements at energies abd¥g , and
at these energies MERT must be valid. In practice, we have
found the BF MERT theory for rotational excitation summa-
rized in Fig. 1 to be valid to 1% foe-N, scattering at ener-
gies up to 0.4 eV and, in independent studiest shown,
for e-H, scattering up to 0.3 eV.

C. Interaction potential

The electron-molecule interaction potential in the BFVCC
equations for E=E,, contains static, exchange, and
correlation-polarization term$16,30. The e-N, potential
used in the present calculations has been described in detail
elsewherd15], so we shall only summarize its high points.

The static and exchange terms are based on an
R-dependent Hartree-Fodkingle-configurationwave func-
tion for the groundX 129 electronic state of N To generate
the correlation-polarization potential, we augment the
Hartree-Fock basis with diffuse functions that allow for po-
larization distortiong52]. From the asymptotic form of the
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TABLE I. Permanent and induced moments of dsed in the tum (LAB-CAM) theory, in which channels are labelled
MERT expressions for body-frami-matrix elements; see also (p,j,/;J) with j the rotational quantum number of the target

Ref. [53]. andJ the total angular momentum of the system.

This transformation is implemented in two steps. First we
Source Q(ea;) aro(@j) ay(ap) transform the BF FNQX matrix into aT matrix in the same
Present theory —0.9608 10.980 3.096 representation via the transformation
Experiment —1.09+0.072 11.744+0.004# 3.08+0.00% TAy= —92j KAfl(l— i KA,]) -1 9
Cl target function ~ —1.14 11.52 3.16 ’

where the prefactor—2i corresponds to the convention
MrA,=1- S Second we transform the BF FNDmatrix to
the LAB-CAM representation via the unitary rotational
frame transformatiof39]

% rom induced optical birefringence measurements by Buckingha
Graham, and WilliamgRef. [54]).
®Measured by Orcutt and Col@ef. [55]) and Newell and Baird

(Ref. [56]).
°From relative anisotropies of Bridge and BuckinghéRef. [57]).
9Many-body perturbation results of Cernusak, Diercksen, and TjJ/j Y =2 Af}\ Tf”/ AfA/ , (10
Sadles(Ref. [58]). TR o e
®Multireference CI results of Langhoff, Bauschlicher, and ChongWhere
(Ref. [59]).
w_ (21
static potential at eacR, we extract the quadrupole moment 7=\ 5371 C(j7 A, —N), (1)

function Q(R) and from the long-range polarization poten-

tial, the spherical and nonspherical induced polarizabilitywith the conventions of Rose for the Clebsch-Gordan coef-
functions ao(R) and a,(R). We then average these func- ficients[64]. This second transformation reintroduces the ro-

tions over the ground vibrational state, using Morse vibratational dynamics to the asymptotic description of the colli-

tional functions as described in R¢L5], obtaining the val-  sjon, as required to describe transitiohs—j; physically,

ues in Table I. These quantities appear in the MERTthis procedure is equivalent to the adiabatic nuclear rotation
coefficients(5). approximation65].

Finally we note two approximations in our interaction po- At energies near a rotational threshalg, we must in-
tential. First, we treat short-range nonlocal bound-free correyoke an additional correction because rotational cross sec-
lation effects using the nonpenetrating approximation otjons calculated directly from the LAB-CAM matrices that
Temkin [60]. This results in a parameter-free local emerge from the transformatidf0) do not obey PC thresh-
correlation-polarization potential that, for reasons detailechid laws. That is, these cross sections behave incorrectly as
elsewhere, we call the “better-than-adiabatic dipole” poten-the exit-channel wave numbeky approaches zero, where
tial [28,61. Second, we approximate exchange effects using
a parameter-free energy-dependent local potential based on me 2
the free-electron-gas model originally introduced to electron- kj= (W(E_ EJ)) ' (12
molecule scattering by Har@2]. While this potential has
been exhaustively studied for various electron-molecule syswith m, the electron mass ang the threshold energy mea-
tems[63], it must be extensively modified to accommodatesured from the ground rotational state. In terms of the rota-
e-N, scattering as described in R¢L5]. tional constants, andD,, this threshold energy i66]

D. From the K matrix to rotational cross sections €;=Boj (j+1)—Doj?(j +1)% (13

To address the issues raised in Sec. | concerning transpaghecifically, elements of the LAB-CAM matrix must go to
analysis ofe-N, swarm data, we require a total momentum ygrq according to a power lay$7,33,32 that depends on
transfera(™ and rotational excitation cross se(:tiOdﬂ-%‘E)Lj ./, the order of the dominant partial wayie the exit chan-
These we calculate from BF FN® matrices, which we nel) at energyE:
obtain either from solutions of the BFVCC scattering equa- 5 P
tions for E>E,, or from MERT expansions foE<E,,. Tivie = K : (14
One can, of course, use analogous MERT expansions to cal- kj—0
culate total integral and differential cross sectip8g]. The
cross sections (™, which can easily be generated from the
BF FNO K matrix, using Eq(136) in [35], includes contri- o0~ k2L (15)
butions from elastic scattering and rotational excitation for ’Oﬁ'kﬁo !
all open channels. Calculating the rotational cross section
from theK matrix requires that we first transform this matrix However, rotationally frame-transformématrix elements
into a T matrix in a space-fixed laboratory frame whase do not obey Eq.14), and cross sections calculated from
axis is coincident with the incident electron wave vectorthem do not obey Eq(15); in fact the latter approach a
ko. This transformatior{39] alters the representation from nonzero constant at threshold.

BF FNO theory, in which asymptotic channels are labeled by To ensure that all LAB-CAMT-matrix elements that are
(v,/;A), to the laboratory-frame coupled angular momen-important to the cross sections of interest conform to the

This, in turn, forces the cross section to zero as
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threshold law(14), we scale the results of the rotational =~ TABLE Il. MERT parametergin atomic unit$ obtained via a
frame transformatiori10) by a ratio of matrix elements cal- least-squares fit to BFVC& matrices at 0.1, 0.12, 0.16, 0.18, and
culated in the first Born approximatidd0]. Details of this  0.20 eV. Also showr(in parenthesgsare MERT parameters for a
“scaled adiabatic nuclear rotation” correction appear as Eqsfigid-rotor calculation aR=2.068,.

(140 and are discussed in R¢B5]; the required Born ma-

trix elements can be found in the Appendix to Ri@2] and ~ K-matrix element A Cs Ca
in Sec. Il A of Ref. [15]. As we shall demonstrate in Sec. 3,(0,0) 0.420 29.148 57919
[ll, rotational cross sections calculated from corrected

: . (0.483 (27.650 (—57.260)
T-matrix elements do approach zero according to @§).

This consideration is particularly important for transport
analysis of swarm data &N, because the electron velocity
distribution is quite sensitive to rotational excitation from
threshold to 0.1 eV(The rotational threshold of Nis very
small owing to the small rotational constant
Bo=1.998 cm'!; for the 0—2 excitation, for example, the
threshold is 1.479 89 meY For this system we apply this
correction at energies below 0.2 eV.

C AI:/Iav_:_ngmg?r?ceerg tevc\ileazgh 'fcgii?gtsea%eczggﬁtezd rt(?t(:\tilﬁi UM overJ in the final rotational cross sectidf6). In prac-

cross sections, which are sums over final and averages ovm?: _t:llsrsun;l rg;s ngt tteo n'?f'ggytglg ratheerC(t)?] seomee (f;lgltte

initial rotational sublevelsm; and m; . To facilitate the Ximum valu€Jmay determined 1o ensur vergence to
. , 0, . the desired accuracy. For each includedhe partial cross

analysis of our results in Sec. lll, we write these quantities a3, ions? . is calculated from Eq(17) by summing over

sums over cross sections partial in the total angular momen- Jo™! , ) )
tum quantum numbed partial-wave orderg” and 7/, as prescribed by the triangle

rulesA(jo/oJ) andA(j/J). These partial wave sums typi-
1 = cally call for T-matrix elements whose order exceeds the
UJ(BLI: 5T 1 E (2J+1)crfoﬁj . (16) maximum generated in the BFVCC or MERT scattering cal-
JoT13=0 culations. If this happens, we again invoke the first Born
proximation—this time in the LAB-CAM formulation;
s strategy is justified foe-N, scattering in Sec. IV C of
Ref. [15]. To converge the present cross sections, for ex-
ample, we require LAB-CAMT-matrix elements of orders
up to/ = 10; those forr>2 we replace with their first Born
ol = > o (o=, (17)  approximates.
0 77, o

34(2,0) —0.926 ~5.884
(—2.270) (—4.903

34(2,2) 1.391 —6.409
(2.222 (—12.934)

Second, we must face a similar problem in evaluating the

TheseJ partial cross sections can in turn be decompose@ﬁ
according to the partial waves of the projectile in the en-
trance and exit channels, as

which, finally, are related to th€ matrix as [ll. RESULTS AND DISCUSSION

- In this section we use the MERT extrapolation procedure
a'iloﬁj(/o—>/)= FlTJJ/,Jo/oF' (18)  to calculate VLE rotational and momentum transfer cross

0 sections fore-N, scattering, then use the results to explain
aihe seemingly anomalous behavior of”, in transport

alysis for nitrogen. To demonstrate the accuracy of this

procedure, we first compare MERT-extrapolat€ematrix
elements and cross sections to those from converged solu-
Yions of the BFVCC scattering equations. We preface this
demonstration with a few remarks on implementation of the
procedure.

The first step is determining the parameters in the MERT
expansions for the requisite-matrix elements. For example,
BFVCC (or MERT) scattering calculations, because thesefor elements in the ,; symmetry, we calculated, c;, and
calculations are typically performed only for smallsym- ¢, via a least-squares fit to BF-FNK-matrix elements ob-
metries. For example, even at energies below several tenthained from solutions of the BFVCC scattering equations at
of an eV, we find that to converg&j=2 rotational cross energiesE=E,,. In particular, to obtain the values in Table
sections fore-N, we must include LAB-CAM matrix ele- II, we used 0.1, 0.12, 0.16, 0.18, and 0.20 eV. Our choice of
ments with/=2. To generate these via Eq.0) requires, in  these energies as input to the least-squares fit, although
turn, BF FNOK-matrix elements withA>1. Rather than somewhat arbitrary, is guided by two criteria. First, the
perform additional BFVCC calculations for such high- MERT expansion must be valid at all energies used in the fit.
symmetries, we approximate the requitédmatrices using Second, BFVCC scattering calculations must be computa-
the first Born approximation in the BF FNO formulation tionally viable at these energies. We expEgt=0.1 eV to
[32]; for e-N, scattering below several tenths of an eV, thisbe reasonable for many electron-molecule systems: at and
approximation is quite accurate fgt=2. above this energy, solution of the scattering equations is nu-

Two special features of the cross-section calculation
very low scattering energies deserve note. First, the sum ov
A in the rotational frame transformatiofi0) includes all
electron-molecule symmetries allowed by the triangle rule
imposed by the Clebsch-Gordan coefficients in @d). De-
pending on the values of and /, for the LAB-CAM T
matrix being generated, these sums okemay call for BF

FNO K-matrix eIementsKﬁ"/0 that were not obtained in the
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onstrating agreement to better than 1% from 0.2 eV down to
0.02 eV, the lowest energy at which we could converge the
BFVCC calculations. At higher energidsot shown, this
expansion is comparably accurate up to about 0.4 eV, be-
yond which it breaks down. This level of agreement charac-
terizes the other important diagonal elements,
24(1,1), I1,(1,1), andlly(2,2).
For calculatingA j = += 2 rotational cross sections, the di-
agonallT,(1,1) and (1,1) elements are the most important
except very near threshold. Here the scattering is dominated
by the off-diagonal element 4(2,0). In Fig. 2b) we com-
: pare BFVCC results for this matrix element to values from
B ofw o e e MERT extrapolations and as calculated in the FBA using the
Energy (eV) long-range potentia(2). This figure compares two MERT
expansions: the limited expansi¢#), which includes only
terms through ordek®Ink, and the extended expansi¢),
which includes additional terms through ordet. Clearly,
the limited expansion is accurate only very near the rota-
tional threshold. As the energy increases, this expansion
comes to qualitatively resemble the FBA values. The ex-
tended expansion Ed8), however, is accurate throughout
the energy range from threshold to several tirggs.
The physical reason for improved accuracy of the ex-
tended expansion is suggested by the similarity of the limited
expansion to the FBA values. As implemented with &),
: the FBAK-matrix elements reflect only the long-range quad-
BN o ooz oor  ooe  oor om o o om om rupole and polarization interactions—not short- and
Energy (eV) intermediate-range effects. The limited MERT expansion Eq.

(4) does incorporate these effects in #i#nk term, which is

FIG. 2. MERT extrapolationgsolid curve of the (a) $4(0,0)  Proportional to the scattering leng#h (note thatc, is inde-
and (b) 34(2,0) elements of the-N, K matrix for vibrationally pendent ofA for /'# /). But for the%4(0,2) matrix ele-
elastic scattering. The BFVC®-matrix elements are shown at ment, in which the electron in the-wave exit channel is
E=0.1 eV(open circles—these were used to determine the MERT fully exposed to short-range interactions, this incorporation
parameters—and at a few energies belByy (solid circleg for  of these interactions is inadequate. The addition of higher-
comparison to the MERT extrapolation. (b) the “full MERT" order fitting coefficientsc; and c, takes up the slack and
extrapolation Eq(8), which yielded the solid curve, included terms yields a very accurate MERT expression. Of course, as

throughk®, with parameters as in Table Il. This is to be comparedk— 0, both MERT expansions and the FBA results come
to the a “limited MERT" extrapolation(dashed curvebased on jnto agreement.

Eq. (4), which retains terms only through ordeﬁ'lnko. Also shown
are cross sections calculated in the first Born approximd#&aA)
(dotted ling with a potential given by Eq2).

e-N,: Zg (0,0)

K-matrix element

K-matrix element
&
8
*

full MERT
0.009 [
(b)
0.010

B. Momentum-transfer cross sections

At low energies, the totad-N, momentum-transfer cross
merically stable even when very stringent numerical criteriaSection, the sum of terms for elastic scattering and all ener-
are imposed. getically allowed excitations, is overwhelmingly dominated

Studies of rotational excitation, especially at energies beby the elastic [o—jo) term, the contribution of which ex-
low the first vibrational threshold, are often performed in theceeds by two orders of magnitude that of the largest rotation-
rigid-rotor approximation, in which the internuclear separa-ally inelastic contribution. Hence{™ is determined to a
tion is frozen at equilibrium. Although this approach cangreat extent by the largest diagonal element ofkheatrix,
yield cross sections whose qualitatively behavior is reliable 4(0,0). In Fig. 2a) we showed the MERT extrapolation of
the effects of even the zero-point vibrational motion can behis element to be very accurate. Not surprisingly, then, we
considerable[68]. For completeness, in Table 1l we also find in Fig. 3a) that thes™ calculated from extrapolated
show MERT parameters from such a rigid-rotor calculationK-matrix elements is essentially identical to that constructed
on e-N, scattering. from BFVCC elements.

One can, of course, generate MERT momentum-transfer

A. MERT-extrapolated K matrices cross s_ections directly from the scattering length using the
expansior 36]

To illustrate the accuracy of the MERT extrapolation pro-

cedure for thee-N, system, we consider two crucial (m)_ ,, 4=, 8 — T —
K-matrix elements. For calculating VLE momentum transfer ¢~ 47| A+ 25Q7 |+ 5| 2mAaot £a2Q
cross sections, the most important matrix element is )
24(0,0). In Fig. 2a) we compare the MERT-extrapolated > 3 Al f—F
values for this element to their BFVCC counterparts, dem- +0.862RQ°+0.06Q% [ko | —A| 75 @2Q
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o FIG. 4. Demonstration that the theoreticaiN, rotational
5 ® 0—2 cross sectior(closed circles obeys the threshold law Eg.
“er © o ° X (15). The dashed curves are, respectively, lindang dash and
x ¢ cubic (short dashin the exit-channel wave numblky and, accord-

ing to the threshold law for this excitation, correspond to outgoing

e-N, Momentum Transfer s andp waves.

| Haddad 21] and Phelps and Pitchfof@2] in separate trans-

]
20 [
%

Cross Section (units of a,?)

; o Proins 8 bchiord| | port analyses of swarm data taken in pitg A more de-
0§ o e aignen | ] tailed test of the VLE theoreticat™, obtained by inserting
it into the Boltzmann equation and using the resulting elec-
0 . ; : : : - : s tron distribution function to calculate transport coefficients
0.0 0.2 0.4 06 03 1.0 1.2 14 1.6 . . .
for comparison to measured data, will appear in R&f].

Energy (eV)

C. Rotational excitation cross sections

FIG. 3. () Total momentum-transfer cross sections &N, ) . _ )
scattering from BFVCC calculatioriepen and closed circlgsrom Unlike o™, the rotational cross SeCtIOI’tSj(OLJ-(E) at

a MERT extrapolation based on BFVCK-matrix elements at very low energies are significantly influenced by scattering
E=0.1 eV(_soIid ling), and from the direct MERT expe_tnsion of this jn more than one symmetry. The threshold la(tg) and
cross section, Eq(19) (dashed curve The open circles show (15) which apply at energies sufficiently near the rotational
BFVCC cross sections at. the energies used to extract the MER hreshold, shed light on the dominant exit-channel partial
parameters; the closed C|rcl_es denote BFVCC results below th'\?\/ave order ¢) at these energies. In Fig. 4 we compare the
energy, shown for comparisortb) Comparison of composite flependence of the-02 cross section on exit-channel wave
MERT-BFVCC momentum-transfer cross sections to experimenta . L
. . numberk, [see Eq(12)] with the predictions of Eq(15). As
values determined via from transport analyses by Had@Ad )
(solid circles and by Phelps and Pitchfofd2] (dotted curvie Also o @Pproaches threshold akg approaches zere;, ., goes
shown is the crossed-beam result of Shyn and Carigedh(tri- 10 Zero as the first power ok;, corresponding to an
angle. s-wave exit channel—as expected from the aforementioned
dominance of thex(2,0) K-matrix element. With a slight
4 1\ L increase in energy, however, this dependence switches to
+ §A2<2a0+ ng) —Q2(0.052x, k3, corresponding to @-wave exit channel. At these ener-
gies, scattering is strongly influenced by tlg(1,1) and, to
a lesser extent, th&,(1,1) elements. So, excepery near
kg In ko. (19 threshold, all three of these symmetries must be represented
accurately to produce PC rotational cross sections.
. m) : These findings, together with the sensitivityXyf(2,0) to
éléh&uEg;Ta; niz?rliir Lc;létift‘;q ( 1236}2 ;ggﬂzzogscgro;etq% short—range. interactions demonstrated in_Fig)),Zsuggest
illustrate, we inclu,de in Fig. @ cross sections obtaihed that the limited MERT expansion Ed) will not provide
from this: equation. Clearly fhe higher-order analytic termssufflment accuracy to ensure precise rotational cross sections
in the MERTK métrix play’ a significant role in this cross throughout the energy range-of interest. Sure enough, Fig. 5
section over the whole energy range shovys that the higher-order fitting coefficients of B) are
The BF MERT extrapolation enables the comparison OfreqUIred to accurately reproduce the-@ cross section.
theoretical cross sections to those derived from transport _ i i
analysis in Fig. &). To this end we construct a “compos- D. Anomalous .behaV|or of rotatlonal cross sections
in transport analysis

ite” cross-section set consisting of MERT-based values for
energiesE<Ey, and BFVCC values foE=E,,. The two The MERT-extrapolated rotational cross sections exam-

swarm-based cross sections in this figure were determined bged above are sufficiently accurate to warrant their use in an

+0.0034)°

+0.0186r,) +0.001 1)
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13 , . . . ; . , ———— 87 ki —
T S P S QBA (N _ " H2 i
_ l// scaled by 1.3 O-JO*)J 15 kOQ Fi(JO)i (20)
&, L o ] S : .
5 ! eN, (=0 j=2) where the factoF ..(jo) discriminates inelastic from super-
£ f : elastic scattering,
= [V A
Sosll/( | G0+ 1)(10+2)
8 : - - jo—jot+2
3 e ) Bt U .
[ : + = . .
30.74 ] +Ho Jo(jo—1) (] i—2)
(5] . . —Jo— .
(2lo-D2jpr1) o7l
0500 ooz o008 006 008 oto 01z 014 o1 ot This approximation is strictly valid only in thig;—0 limit,
Energy (eV) where the strong centrifugal barrier in tdewave entrance

channel[as manifested in the dominaity(0,2) K-matrix
FIG. 5. Rotational cross sections for the-@ excitation from element guarantees very weak scattering at very long
BFVCC scattering calculations and from MERT extrapolations ange—conditions that validate retention of only the quadru-
based on BFVC&-matrix elements d=0.1 eV (solid and dotted 1,510 interaction. Just above threshold, significant scattering
curves. The open circles show BFVCC results at energies used t ccurs in channels witliweakej p-wave barriers and the
extract the MERT parameters; the closed circles denote results b?dng-range polarization interaction begins to play a role. This

low this energy. The cross sections based on MBRTatrices . . . -
. 4 . interaction, therefore, should be taken into account—as it is
were obtained in two separate extrapolations, one to dediédot- . .
in the QPBA expressiof25]

ted curve, the other including coefficients fok® and k* terms
(solid curve. Also shown are the BFVCC-MERT cross sections

- e w? ki 3k2+Kk?
scaled by 1.3 to account for inaccuracies in the quadrupole moment QPBAO_(B) _QBA (B) 4= " om 0" R
(see text 7= I"=17 30 kg 2 Kj
inquiry into the long-standing enigma concernid, trans- n 9_7’—2 k-2+k:2) |E. (i 29
port analysis described in Sec. |—that this analysis yields 64 @2(ko” k") |F=(jo). (22

transport coefficients within experimental error bars only

when based on the QBAj=2 rotational cross sections. Note that Eq(22) corrects Eq(20) with an additional term
The behavior of the 8:2 cross section in Fig. 5 is typical of Whose dominant dependence kynis k?, consistent with the
those that participate in this analysis. After its sharp risethreshold law for/'=1, as required according to Fig. 4. In
from zero at threshold, this cross section exhibits very littlee-N, scattering, the effect of this correction term is espe-
variation with scattering energy untif, exceeds 0.2 eV. cially dramatic because of a partial cancellation in the long-
This energy dependence appears more akin to that of thenge potential due to the opposite signs@find a,; this
QBA cross section that the presumably more accurate QPBAffect can be seen in the comparison of two Born ® cross
result—which, as its acronym indicates, includes an interacsections in Fig. 6. This line of reasoning highlights the
tion (polarization that the QBA neglects. This resemblance anomalous nature of the agreement in shape of the MERT-
is explored further in the comparison in Fig. 6 of these twoBFVCC rotational cross sections and those of the QBA
Born results to the composite MERT-BFVCC cross sectionstheory.

The QBA cross section for @&j==*2 transition in a This agreement, however, is misleading. The apparent
homonuclear molecule 23] anomaly is explained by the demonstration in Fig®) 2and
5 that the short- and intermediate-range interacti@atic,
e ' ' ‘ exchange, intermediate-range polarization, and bound-free
e-N, jo=0 ->j=2 correlation significantly affectK-matrix elements that are

important tos{,, at these energies. As shown in Fig. 5, the
effect of adequately representing these interactions, through
the coefficientx; andc, in Eq. (8), is to increasethis cross
section. Coincidentally, the energy dependence of the result-
ing more accurate rotational cross section more closely re-
sembles that of the QBA theory than of the QPBA theory.

It is important that the results in Fig. 6 not be miscon-
strued to mean either that the QBA theory accurately reflects
the physics of rotational excitation at these energies, or that
one can use it with impunity for other systeniuite the
contrary. Both the QBA and QPBA theories neglect com-
pletely short- and intermediate-range interactions; neither,

FIG. 6. Comparison of BFVCC-MERT 02 rotationale-N, therefore, correctly incorporates physical effects that are im-
cross sectionésolid curve with values calculated in the quadrupole portant at energies ranging from slightly above threshold to
Born (dotted curv¢ and quadrupole-polarized Born approximations several tenths of an eV. The coincidental concurrence be-
(dashed curve Egs.(20) and(22), respectively. tween the shapes of the QBA and MERT-BFVCC rotational

10

0.5 -

Cross Section (units of a,?)

00 . . L ) L
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Energy (eV)
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cross sections explains why in prior transport analysis oftant. In any case, no such scaling is requigdappropriatg
swarm data in pure Nand in N—rare-gas mixtures, only for the momentum transfer cross section, the total cross sec-
QBA rotational cross sections yielded transport coefficientdion, or rotational cross sections above a few tenths of an
that agreed with measured d421]. The coincidental nature €V—none of which are similarly dominated by the long-
of this agreement is the crucial point; no such agreement@nge quadrupole interaction.
should be anticipated for other electron-molecule systems.

In conclusion, we should note that—notwithstanding the E. Fitted cross sections

importance of interactions other than the long-range To facilitate their future use, we here present our compos-
quadrupole—at very low energies)’,, remains very sensi- ite MERT-BFVCC cross sections in a user-friendly form.
tive to the value of the quadrupole momépt Our MERT-  The threshold laws foo(™ and UI(LLJ- prescribe the depen-
BFVCC cross sections correspondQe- —0.96% 85, which  dence of these quantities on the exit-channel wave number
may be compared to the experimental values ofk;. Thus we can use these laws to construct series expan-
Q= —(1.04+0.07)ea: obtained from electric-field-gradient- sions of these cross sections, and determine the required ex-
induced birefringence measuremefig], and— 1.1%a3 ex-  pansion coefficients via linear regression analyas.
tracted from far-infrared spectf&9]. To determine which terms to include in this fit, we turn to
Our theoretical quadrupole moment is too small because #e BF-MERT expansion of the momentum transfer cross
is based on a near-Hartree-Fock representation of theection, Eq.(19). The leadingko-dependent terms in this
X 1Eg ground electronic state of ;NA more accurate elec- expression are proportional k3 and kglnko. Translated into
tronic function would have produced a different quadrupolethe incident projectile energEosz/Z, these terms yield
moment. For example, the fourth-order perturbationfactors proportional ta/Ey, Eg, andEgInE,. As noted in the
theory calculations of Maroulis and Thakk&70] give  discussion of Eq(19) and illustrated in Fig. @), this direct
Q=-1.146a, while the multiconfiguration self- MERT expansion o™ is not valid over the entire energy
consistent-field calculations of Ermler and Hudid] yield  range from 0.002 to 1.25 eV. Thus instead we fit our MERT-
—1.25%4a3. However, unanimity about the theoretical depen-BFVCC cross sections, augmenting these terms with one
dence ofQ(R) on internuclear separatidR seems elusive. proportional tokge E2 to accommodate the high end of this
Table | in Liu, Lie, and Liu[72], which collects various range.
theoretical values o®(R=2.068,), displays configuration- At zero energy,c™ should reduce to the valuemf?,
interaction values ranging from-0.98a5 to —1.2%a3.  Which, for our scattering lengthA=0.42(, equals
(Our near-Hartree-Fock value at this internuclear separatioa.ZlﬁbS. However, because BF MERT entails the FNO ap-
is —0.902a2.) Averaging these values over the ground vi- proximation, the total momentum-transfer cross sectin
brational state would increase them by about 6%. any energyincludes contributions from all rotational excita-

Because of the aforementioned sensitivity Cq(fL, to  tions, whether or not they actually correspond to open chan-
0. thi tainty about th d | t(;1 . .f.nels; these contributions are nonzero because, as noted in
Q, this uncertainty about the quadrupole moment has signi 'Sec. 11, they do not approach zero at their respective excita-

cant consequences for transport analysis based either : ; ) S .
QBA theory or the present MERT-BFVCC rotational crossﬁﬁIan thresholds. This results in a zero-energy limit that is

sections. The MERT expansidd) shows that the dominant mcor'rect by an amount 18Q0°/45, Wh'?h fgr ourg-Nz cal—.
dependence of\j==2 cross sections on the quadrupole culations quals 1.0_3\@. To correct this slight mismatch in
moment isx?. This holds from threshold to several tenths of f[he present. f'F' we sz|mply replacg the zeroth—order yalue by
an eV—yprecisely the energy range in which the drift velocity'tS correct limit 4wA”. Doing so yields thg foilowmg fit for

is most sensitive to rotational excitation. This observationt.he tota}l momentum-transfer cross sectionag) as a func-
suggests a crudéut efficien) way to correct our rotational tion Of incident energyE, (in eV):

cross sections: simply scale them by the square of the ratio Oé_(m): 2 2167+ 29.298EY2— 44 674~ In En— 20.386%
the experimental to theoretical quadrupole moment. If, for ' ' 0 ' 0 0 ' 0
example, one takes as the experimental valued,1then +25.497E3. (23

the cross sections in Fig. 5 should be multiplied by
|1.1/0.961?=1.3. The result of this scaling, shown in Fig. 5, This fit reproduces our MERT-BFVCC momentum-transfer

illustrates the sensitivity of these cross sectionsQoAs ~ Cross sections to better than 1% from zero to 1.25 eV.
detailed in Ref[29], these scaled theoretical rotational cross . Similarly, we can use the known behavior of the rota-
sections, when inserted into the Boltzmann equation, yieldional cross section to devise a fit to our composite MERT-
transport coefficients within the 1% error bars of the mosBFVCC values forAj =2 transitions, which, as noted above,
recent swarm experiments. This, we believe, explains th&'e the only appreciable excitations belo_vv the resonance re-
apparent enigma with respect to this scattering process. 9ion from about 1.5 to 4.0 eMCross sections for deexcita-
Nevertheless, in addition to being somewhat unrefinedtion can be calculated from these using detailed baladce.
this scaling correction suffers from uncertainty about the exFo decreases toward threshadg, this rotational cross sec-
perimental value of). But it is unarguably easier than re- tion approaghes the QBA fon@O). He”C‘? we can wnte. itin
peating the current scattering calculations with a2 form that introduces an ancillary functién _.;(Eo) which

configuration-interaction (Cl) target functon—a CPU- goes to zero at threshold, viz.,
intensive effort that would also be plagued by the aforemen- ) _0BA (1)
tioned uncertainties about the CI value of this molecular con- GJon(EO) - ‘Tioﬂ'(EO)[lJr fioHJ(EO)]’ (24)
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TABLE lll. Coefficients in the ancillary functiorijoﬂj(Eo) of primarily the FNO approximation, use of a near-Hartree-
Eq. (25 used to fit theoreticaé-N, rotational cross sections for Fock electronic function for the target, and simplifications in
jo—lio*2 transitions. These are coefficients of powers of the inci-the exchange and polarization constituents of the interaction
dent energyE minus the threshold energy; (both in eV). The  potential; we discussed these assumptions in detail in Ref.
analytic forms obtained by inserting these functions into &4) [35].
for of!)_(E) reproduce to within 1% our calculated cross sections  The principal conceptual result is the resolution of the
from threshold to 1.25 eV(Threshold energies are based on con-long-standing enigma concerning in swarm determination of

stants in Ref[66].) e-N, rotational cross sectiongee Fig. 6 and the accom-
panying discussion This resolution brings additional coher-

Jo € (eV) d; dz dy ence to a long-term project in which we have been assessing

0 0.001 480 20216 10.8604 18.2194 bo'Fh theory and transport analysis for electron—molec_ule scat-

1 0.002 466 _1.8734 92870 396345  tering. Qur goal is to generate benchmark cross sections fqr a

2 oo imm sml s SdDACdecronmolol ystems o dabase o

3 0.004 440 —1.9151 9.8909 31.3904 work):m Iow—erFl)ergye-Hz scattegring has agccorl)“r1plished this

4 0.005426 —1.9101 9.9038 31.0499 goal for rotational excitation, determining cross sections on a

= 0.006 413 —1.8976 9.8645 311314 par with those for low-energg-He cross sectiongr5]. As

6 0.007 399 —18791 9.7873 314314 glaporated in the companion paper RE29], the present

7 0.008 386 —1.8563 9.6436 32.4237 study bringse-N, rotational cross sections to this level of

8 0.009373  —1.8351 9.5712 32.5957  agreement. The situation concerning vibrational excitation,

9 0.010359  —1.8100 9.4427 33.3092  of hoth H, and N, remains, alas, more recalcitrgi3].

10 0.011346  —1.7805 9.2820 34.2476 In considering the extension of the present approach to a

1 0012334  —1.7615 9.1977 34.6676  calculation of very-low-energy momentum transfer and rota-

12 0.013319  —1.7679 9.2964 34.0475  tional cross sections for other types of electron-molecule sys-

tems(e.g., scattering from polar and polyatomic targetise
primary concerns are two. First, BF-MERT expressions for
and need to fit only the ancillary function to theoretical data.ine system of interest must be available or derived. Second,
Note that the QBA cross section goes to zerkasin con-  the BFVCC (or, if appropriate, BF rigid rotor scattering
formity with the threshold law (15 for the s-wave-  equations must be solvable at a few energies at the upper
dominated exit channel, as illustrated in Fig. 4. limit of the range of validity of BF-MERT. A more detailed

Swarm experiments typically requite =2 cross sections  discussion of MERT for various systems can be found in
for a range of initial statefy,. For example, the recent swarm sec. |V B of Ref.[33].

experiments in B-Ne mixtures, which were performed at  To conclude, it is perhaps worth setting the present

78.6 K, require cross sections fpg=0,1, ...,12. Wehave  scheme in a practical perspective. The only computationally
generated and fit the ancillary function for these transitionsgemanding step is solving the BFVCC scattering equations
using the form at a few energies above 0.1 eV. While we used fully con-

—dJVE—ex+ et 2 verged fivefvibrationa)-state BFVCCK matrices, one could
F(Bo)=divEo~ €+ d2(Bo—€)) T da(Bom €)% (25 Sac this step considerably simpler with little loss of accu-

and obtain the coefficients in Table Ill. This fit reproducesracy' For example, if only rotationally inelastic processes are

our SANR-corrected MERT-BFVCC cross sections to bette|pf _interest, one can avaid vib.ratio_nal cou_pling a[together by
than 1% from threshold to 1.25 eV. If cross sections fort>MY the rigid-rotor approximation. This entails solving

higher j, are required, say for analysis of experiments atflxed—nuclel scattering equations at the equilibrium geom-

higher temperatures, they can be generated from the data ﬁfry, and is quite standard in the repertoire of modern

. . . : .electron-molecule theory. Only a few such calculations need
;i?léz]l_ using scaling relations such as those described "ﬁe performed to obtain parameters for the MERT extrapola-

tion. All subsequent steps in the generation of VLE cross
IV. CONCLUSION sections—fitting theK-matrix elements, MERT extrapola-

tion to lower energies, the rotational frame transformation,

The principal theoretical result of this study is the BF-and correction of the LAB-CAMT-matrix elements near

MERT extrapolation procedure summarized in Fig. 1. Thethreshold—involve easily programmed, very fast, numeri-
principal practical results are the fit23) and (24) to our  cally stable calculations that can be executed on a modest
composite MERT-BFVC@-N, momentum-transfer and ro- personal computer or work station.
tational cross sections. These fits can be used, together with
scaling formulas if necessafy4], to generatar(™ or any
desiredo{") ; for Aj=2 at energies below about 1.25 eV.
Above this energy, rotational excitation is controlled by the We would like to acknowledge useful discussions with
2.4-eV shape resonance, the shapes of these cross secti®@rs llya Fabrikant, Dr. Robert Crompton, and Dr. Malcolm
differ from those off resonance, ank,=4 transitions be- Elford concerning various aspects of this work. W.A..
come appreciable. In addition to the validity of MERT for would like to thank the Department of Education. We all
E<E,,, the assumptions underlying the present results argratefully acknowledge the support of the National Science
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