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A correlation-polarization potential originally introduced by O’Connell and Lane [Phys. Rev. A
27, 1893 (1983)] is used in e-H, scattering calculations in which the vibrational motion of the target
is taken into account. Eigenphase sums (as a function of internuclear separation) and cross sections
for elastic scattering and for rovibrational excitations are compared to their counterparts calculated
using the ab initio nonadiabatic model polarization potential of Gibson and Morrison [Phys. Rev. A
29, 2497 (1984)]. At low energies, these scattering quantities are found to be quite sensitive to the
treatment of polarization. To assess these model potentials, theoretical total, momentum transfer,

I. INTRODUCTION

Physicists studying electron-molecule scattering have
long known of the importance of polarization effects in
low-energy collisions."”? The term polarization is some-
thing of a catchall, including effects that are of second
(and higher) order in the electron-molecule interaction. In
a rigorous quantum-mechanical formulation of the col-
lision, polarization manifests itself as virtual excitations
of (closed) electronic states of the target.>

In spite of impressive progress during the past two de-
cades on exact and approximate methods for including
polarization effects in electron-atom and electron-
molecule collision theories,"*~!'* only recently have
rigorous treatments (within the rigid-rotator approxima-
tion!) become computationally feasible.®~14 Neverthe-
less, there remains a need for simple, reliable model polar-
ization potentials for calculation of accurate cross sections
for electron scattering from complicated molecules, clus-
ters, and surfaces—and for vibrational excitation.

One such model potential—the correlation-polarization
(CP) potential—was introduced in 1983 by O’Connell and
Lane,!> who applied it to electron scattering from rare-gas
atoms with phenomenal success. Subsequently there have
appeared reports of successful application of CP poten-
tials to electron scattering from an impressive array of
molecules'®'7 in the rigid-rotator approximation. As this
approximation does not allow for the vibrational motion
of the target, the next step in exploring this model seemed
clear: try it for vibrational excitation. v

In this paper we report an implementation of a CP po-
tential to electron scattering from H,, with special em-
phasis on vibrational excitation. We compare a variety of
scattering quantities—eigenphase sums and integrated and
differential cross sections—to their counterparts as deter-
mined in calculations using a second model, the ab initio
nonadiabatic polarization potential of Gibson and Mor-
rison.” We also compare various low-energy cross sec-
tions to available experimental data. By these compar-
isons, we elucidate the sensitivity of these scattering quan-
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and rotational- and vibrational-excitation cross sections are compared to experimental data.

tities to the treatment of polarization.

In Sec. II, we briefly review polarization effects and the
problems they pose for the study of vibrational excitation.
In Sec. I, we discuss the implementation of the CP po-
tential for vibrational excitation. Then, in Sec. IV, we
bring on the results: differential and integrated cross sec-
tions for excitation of H, from the initial ground vibra-
tional state, vy =0, to v =1 and, v =2.

II. BACKGROUND:
POLARIZATION AND ITS DIFFICULTIES

Polarization effects are simplest in the asymptotic re-
gion (i.e., at large values of the radial coordinate r, of the
scattering electron) where the polarization potential as-
sumes the asymptotic form (AF) (Ref. 1)

ao(R) az(R)
Vgolf(re,R)=-— 'er ————azr:-Pz(cose,), ro—oo . (1)

In Eq. (1), ao(R) and a,(R) are the spherical and non-
spherical polarizabilities of the target at internuclear
separation R, and the azimuthal angle 6, is measured
from the internuclear axis. Between the asymptotic re-
gion and the molecular charge cloud, polarization can still
be treated adiabatically—although not by so simple a
form as Eq. (1).%5 But nearer to the target nonadiabatic
(i.e., velocity-dependent) polarization effects become im-
portant. These dynamic effects give rise to an energy-
dependent term in the polarization potential; the impor-
tance of this term for low-energy electron-molecule col-
lisions remains unknown.'® Finally, inside the charge
cloud the independent-particle model, which is implicit in
Eq. (1) and in adiabatic treatments of polarization, is no
longer appropriate, and bound-free correlation must be
taken into account.

For many years, polarization effects were represented!
by including in the electron-molecule interaction potential
Vini(re,R) a local, energy-independent, heuristic term that
was defined by the simple (if drastic) expedient of multi-
plying Eq. (1) by a spherically symmetric cutoff function.
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This function depends on a parameter that is usuvally
chosen either by adjusting theoretical cross sections to ex-
perimental data!® or by a physically motivated guess.”®

At the other theoretical extreme are formulations, such
as those based on optical-potential theory'™!? or pseudo-
states,'® in which dynamic polarization effects are treated
in an “essentially exact” fashion. All such studies report-
ed to date have been carried out in the rigid-rotator ap-
proximation, in which the internuclear separation of the

. target was held fixed throughout the scattering calcula-
tion. So the results of these studies do not incorporate the
vibrational motion of the target and, of course, exclude
vibrational-excitation cross sections.

Between these extremes—neither as crude as a cutoff
asymptotic form nor as rigorous as, say, an optical-
potential treatment—are theories based on a model polari-
zation potential.5=%15—17 The ideal of such a potential
would be a local, parameter-free function of r, that could
simply be added to the static potential in the Schrédinger
equation. One such model has been implemented by Gib-
son and Morrison.” Based on a variational treatment of
the polarized and unpolarized target® near the Hartree-
Fock level of accuracy, this model invokes its major ap-
proximation in the treatment of nonadiabatic effects,
which are incorporated via a nonpenetrating approxima-
tion originally introduced by Temkin for electron-atom
scattering in the polarized orbital method.”?! According
to this rather ad hoc prescription, the two-electron,
bound-free Coulomb interactions are simply “switched
off” whenever the projectile coordinate 7, is less than the
radial coordinate in the one-particle density function of
the target. The resulting model polarization potential is
parameter-free, local, and energy independent. To date it
has been applied to e-H, scattering calculations of dif-
ferential and integrated elastic,”>?* rotational- (Ref. 22)
and vibrational-excitation?® cross sections, and to
electron-N, scattering®* calculations of the total cross sec-
tion in the rigid-rotator approximation. Because this po-
tential incorporates effects beyond a purely adiabatic

treatment, Gibson and Morrison christened it the BT A
(“better than adiabatic”) model. These authors further
found that for e-H, collisions, only the dipole term in this
potential need be retained; this led them to introduce the
“better than adiabatic dipole” (BTAD) potential that is
used in the present study.

Although the BTAD scheme does not inflict the com-

34 INVESTIGATION OF PARAMETER-FREE MODEL . ..

d..

2787

putational demands of, say, optical-potential theory, nei-
ther is it trivial to calculate. At each internuclear separa-
tion, one must perform extensive variational calculations
and numerically evaluate large numbers of finite integrals.
So for electron scattering from complicated, highly non-
spherical molecules—to say nothing of scattering from
clusters or surfaces—there is still a need for a simple ana-
Iytic model polarization potential. Moreover, even for
scattering from comparatively simple molecules, a
parameter-free model polarization potential would be of
great value in the study of vibrational excitation;?>? an
electron’s ability to vibrationally excite a molecule de-
pends critically on the variation of Vi, (r.,R) with R, so
regardless of the method used to solve the scattering equa-
tions, the R dependence of the polarization potential is
crucial. The central problem in devising such a potential
is how to continue the asymptotic form (1) into the short-
range region in a physically reasonable, parameter-free
way. Fortunately, one can tolerate a certain looseness in
the model, because near and within the target electrostatic
and exchange effects dominate the scattering process.

The CP potential introduced by O’Connell and Lane!’
seems ideal for vibrational-excitation calculations. As we
will sec in the next section, this potential is quite easy to
calculate, for it depends only on the target charge density
and the polarizabilities ag(R) and a,(R). And, like the
BTAD potential, its theoretical foundation is more sound
than that of the cutoff asymptotic form, and it is unsul-
lied by parameters that require adjustment to experimen-
tal data.

III. THE CORRELATION-POLARIZATION
POTENTIAL AND ITS IMPLEMENTATION
FOR VIBRATIONAL EXCITATION

The functional form of the CP potential in the prob-
lematical short-range region is given by an approximate,
local correlation potential energy that is calculated for
various ranges of the target probability density p(r,R). At
each R, we use the form of the correlation potential
recommended by Padial and Norcross.'®?” This potential
is expressed in terms of the “density variable” 7,

3 1/3

4mp(r,,R) ’ @

_rs(re,R)E

and, in atomic units (hartrees), is given by

0.0311 Inr; —0.0584 4+-0.001 33~ Inr, —0.0084r,, r, <1

Veolfe,R)= 1 Y(1+LBr {2+ 2 Byr,).
( 1 +Blrsl/2+32rs )2

s Fs>1 .

The constants in this
$1=1.0529, and B,=0.3334. These constants do not de-
pend on R. The dependence of this potential on the inter-
nuclear separation is carried by the density variable of Eq.
(2). Note that since r; depends on the target probability

equation are y=-—0.1423,

(3)

density p, it depends on 7, and 8,. So, like the other com-
ponents of the eleciron-molecule interaction potential,
Veo(r,,R) must be expanded in Legendre polynomials; we
use standard computer codes to effect this expansion.?®
From this expansion we obtain the coefficients v§°(#,,R)
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shown in Fig. 1, which are discussed below.

The correlation potential energy in Eq. (3) takes no ac-
count of target distortion and so is inappropriate outside
the target electron cloud. Happily, each expansion coeffi-
cient v3°(r,,R) for A=0 and 2 crosses the corresponding
asymptotic coefficient

ok )--x 02. @)

Uisym(re’R)= -

8

The CP potential V5 (r,,R) is constructed by the simple
(if somewhat ad hoc) expedient of “joining™ the expansion
coefficients v$°(r,,R) and v3¥™(r,,R) for A=0 and 2 at

r}—the value of r, where they cross,” i.e.,
co A
CP A(rerR)) re<re»
vy (re;,R)= asym A A= 02 : (5)
U, (re’R)’ Yo >T;

In this model, only the spherical and P,(cos8,) terms of
the polarization potential are retained. Equation (5) pro-
vides the desired prescnptlon for continuing v3”™(r,,R)
inward to the origin without introducing parameters that
require adjustment to experimental cross sections. In Fig.
1, the coefficients v5°(r,,R) for e-H, at equilibrium
(R =1.4a,) are compared to the asymptotic expansion
coefficients (4) and to coefficients for a purely adiabatic
polarization potential* and the BTAD potential.

When the target vibrates, the joining radius and the
value of the correlation potential at this radius depend on
the internuclear separation R. For the e-H, CP potential,
these quantities are given in Table I for internuclear
separations ranging from 0.5a; to 2.6ay. (This range
more than encompasses the extent in R of the lowest three
vibrational wave functions, whlch is rou%hly from 1.0aq
to 2.0aq.) The variations of rc(R ) and v P(rc ,R) with R
are not pronounced—as R increases there is a gradual in-
crease in the former and little change in the latter—but
neither are they negligible.

And now we introduce some computational details.
The permanent and induced moments of H,, which are
given in Table I, and the charge densities of the target
were evaluated from near-Hartree-Fock calculations of
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FIG. 1. (a) Spherical (A=0) and (b) nonspherical (A=2) ex-
pansion coefficients of four e-H, polarization potentials at
Rq=1.4a5. The BTAD (solid curve) and CO (dashed curves)
potentials are described in the text, as is the asymptotic potential
(dot-dashed curve). The purely adiabatic potential (dotted
curve) was calculated variationally with the scattering electron
fixed at radial coordinate (Ref. 4).

TABLE I. Molecular moments of H, and parameters for calculation of the CP potential for e-H,
scattering at internuclear separations R. The potential v;\ $E(r2 R) is the value of the Ath Legendre pro-

jection of the prortfantrial VVf.ﬁr(r,,R) at the j Jommg radlus 7 (R) (1 0[ 2]—1 O>< 10 2)

— VU3 (rc,R)

R ag o q re ~0g (re, re

(ao) (a3) (ad) (ead) (ao) (E;,) (ao) (E,)

0.50 2.047 0.130 0.033 2.3166 3. 5543[ 2]' 3.1350 6.7186[ —4]
0.80 2.850 0.319 0.151 2.5500 3.3703[-2] 3.8206 7.4810[ —4]
1.00 3.519 0.540 0.244 2.7138 3.2440[—2]  4.1680 8.9448[ —4]
1.20 4.302 0.869 0.345 2.8812 3.1212[—2] 4.5503 1.0139[ 3]
1.40 5.194 1.305 0.452 3.0481 3.0080[—2] 4.7876 1.2423[—3]
1.60 6.188 1.850 0.564 3.2120 2.9067[—2] 4.9407 1.5526[—3]
1.80 7.315 2.603 0.680 3.3782 2.8084[ —2] 5.1274 1.8828[ —3]
2.00 8.529 3.426 0.798 3.5376 2.7231[—2] 5.2249 2.2983[—3]
2.20 9.869 4.469 0.916 3.6976 2.6397[—2] = 5.3463 2.7349[—3]
2.50 12.083 6.389 1.089 3.9351 2.5196[—2] 5.5167 3.4491[—13]
2.60 12.875 7.130 1.145 4.0140 2. 4797[ 2] 5.5712 3.7004{ — 3]




the electronic wave functions of H; (using the POLYATOM
computer program®) at the 11 values of R shown in
Table I. The basis set used in these computations was a
[5s2p/3s2p] set of nucleus-centered contracted
Cartesian-Gaussian functions. The exponents and con-
traction coefficients for this basis set were taken from the
work of Huzinaga.®! To determine the BTAD polariza-
tion potential and the target polarizabilities we augmented
this basis with diffuse Gaussians chosen to realistically
accommodate distortions of the target. The resulting
[6s3p /4s3p] basis is given in Table I of Ref.- 7. This
basis set was used for all values of R-—i.e., the variation
of the X E+ electronic H, wave function with internu-
clear separatlon was carried solely by the linear variation-
al parameters in the Hartree-Fock calculations. A de-
tailed examination of the resulting electronic energy curve
and of various molecular properties will be relegated to a
forthcoming paper.*?

Figure 1 reveals differences in the BTAD and CP po-
teritials at one geometry, equilibrium. More important to
vibrational excitation are the matrix elements of this po-
tential between initial and final target vibrational wave
functions ¢, (R) and ¢,(R). In Fig. 2 we compare BTAD

and CP matrix elements <¢00(R) | w8 (7, R) |¢,,(R)) for
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FIG. 2. Coupling matrix elements for vibrational states
vo=0 and v =1 of the (a) spherical (A=0) and (b) nonspherical
(A=2) Legendre projections of the BTAD (solid curves) and CP

(dashed curves) model polarization potentials.
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vo=0 and v =1. (The vibrational wave functions used in
this study were obtained by numerically solving the nu-
clear Schrédinger equation for the electronic energy curve
that was obtained in the aforementioned structure calcula-
tions.) \

The spherical matrix elements of Fig. 2(a) are primarily
responsible for pure vibrational excitation (vy=0,
Jo=0—v=1, j=0), and the nonspherical elements of
Fig. 2(®) for rovibrational excitation (vy=0,
J6=0—v =1, j=2). In both cases, the BTAD and CP
potentials yield strikingly different matrix elements. In
the near-target region, however, the static potential is
much stronger than the polarization potential. Neverthe-
less, as we will see in the next section, the differences on
display in Fig. 2 significantly affect the vibrational-
excitation cross sections.

IV. CROSS SECTIONS:
THEORETICAL METHODOLOGY, RESULTS,
AND DISCUSSION

Qur primary goal is to compare vibrational-excitation
cross sections calculated with the CP and BTAD poten-
tials and thereby to explore the sensitivity of these cross
sections to the treatment of polarization. But it is also
useful to consider briefly elastic scattering and pure rota-
tional excitation; although these scattering processes entail
no change in vibrational state, their cross sections are sig-
nificantly affected by the nuclear motion. Foilowing a.
description of our scattering calculations, we will examine
each of these cross sections in turn.

A, Scattermg calculatlons

We have calculated elastic, pure rotatlonal pure v1bra—
tional, and rovibrational cross sections, using shghtly dif-
T erent theoretical prescriptions for elastic and inelastic
processes. A rationale for this scheme and details of the

- calculations themselves—methodology, convergence cri-

teria, and parameters, etc.—will appear elsewhere,*? but
the few remarks in this section will provide a context for
the results to follow.

Our computational schemes for elastic and inelastic
scattering differ in their treatments of exchange effects
and of the dynamical interaction between the electron and
the nuclei. Elastic cross sections are calculated using the
adiabatic-nuclei (AN) method®® from fixed-nuclei scatter—
ing matrices that incorporate exchange effects exactly.’*
But inelastic cross sections are calculated using the
laboratory-frame close-coupling (LFCC) method>® with an
approximate exchange potential >

One would prefer, of course, to treat exchange (and all
other aspects of the scattering problem) exactly, and doing
so is feasible for elastic scattering, because accurate elastic
cross sections can be calculated using the AN theory. 2,23
Unfortunately, for the e-H, system, the AN approxima-
tion fails for low-energy inelastic scattering?® and is espe-
cially poor for vibrational excitation.”*> So for these pro-
cesses, the scattering theory used must incorporate a more
accurate representation of the interplay of the nuclear
dynamics and the quantum motion of the projectile. In
the present study, we fulfill this requirement by imple-
menting the full rovibrational LFCC theory. The price
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one pays for the accuracy of the LFCC theory’s treatment
of the nuclear dynamics is computer time. . To mitigate
somewhat the computational demands of our LFCC cal-
culations, we approximate the nonlocal exchange operator
in the Schrédinger equation by a local, energy-dependent
model potential, thereby transforming the coupled integro-
differential scattering equations of LFCC theory into cou-
pled differential equations.

Our model exchange potential is based on a free-
electron-gas (FEG) approximation of the target.’® In the
present study this potential has been designed explicitly
for the study of inelastic scattering in the following way.
For e-H, scattering at energies below several eV, inelastic
cross sections are dominated by p-wave S-matrix elements
{e.g., in the LFCC theory by matrix elements Svjﬂvvoio’o

with [/ =/p=1). Our FEG exchange potential contains a
“tuning parameter” that is chosen at each R so that the
eigenphase sum from body-frame static-model-exchange
calculation reproduces its counterpart from a static-
exact-exchange calculation. This “tuning” is done at one
energy only (0.54 eV) in the 3, electron-H, symmetry,
which is dominated by p waves. It is in this sense that the
resulting tuned free-electron-gas exchange (TFEGE) po-
tential is optimized for inelastic scattering.

We have not numerically enforced orthogonality of the
scattering function to bound molecular orbitals. Earlier
studies of e-H, scattering in the rigid-rotator approxima-
tion®” showed the effects of imposing this condition to be
minimal when a tuned FEG potential is used. The impor-
tance of orthogonalization when such a potential is used
in calculations of vibrational-excitation cross sections,
however, remains to be investigated.

We converged all integrated cross sections and eigen-
phase sums to better than 19 and all differential cross
sections to better than 5% at all angles. To attain this
level of convergence, we included in the LFCC expansion
basis four vibrational manifolds (v =0, 1, 2, and 3);
within each vibrational manifold, we included five rota-
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FIG. 3. Elastic-scattering e-H, cross sections (from initial
state vg=0, jo=0) from AN calculations with the BTAD (solid
curve) and CP (dashed curve) potentials. The exchange interac-
tion was treated exactly in these calculations. Also shown are
cross sections from a comparable rigid-rotator calculation (RR)
(dotted curve) using the BTAD potential at R = 1.4a,.
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FIG. 4. Integrated LFCC cross sections for the 0,0—-0,2
pure rotational excitation of H; as determined using the BTAD
(solid curve) and CP (dashed curve) polarization potentials.
Also shown are rigid-rotator cross sections (dotted curve) using
the BTAD potential at equilibrium.

tional states, using spherical harmonics for the rotational
target functions. We carried out studies of the CP and
BTAD potentials for both even- and odd-parity rotational
states; but our findings turned out to be independent of
the parity of the rotational states, so here we will report
results only for the even-J case.

In the comparisons that follow, the computations that
produced the BTAD and CP results are identical in every
respect except for their treatment of polarization. A few
total and rotational-excitation cross sections calculated in
the rigid-rotator approximation will also be shown, so that
the effects of the vibrational motion of the target on these
scattering quantities can be assessed.!!

B. Elastic cross sections

In Fig. 3 and Table II we compare integrated elastic e-
H, cross sections calculated using the AN method with
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FIG. 5. The differential cross section for the 0,0—0,2 pure
rotational excitation at 0.08 eV from BTAD (solid curve), CP
(dashed curve), and rigid-rotator (dotted curve) calculations. See
caption to Fig. 4 for details.
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TABLE II. Electron-H, cross sections (in aj) at selected energies (in eV) calculated with the BTAD
and CP polarization potentials. The elastic cross sections were calculated using the ANV method with
an exact treatment of exchange; the inelastic using LFCC with the =,-tuned FEG exchange potential
described in Sec. III. For each energy, the top line gives the BTAD cross sections, the bottom line the

CP results.
) 0(&?)
Energy
eV) 00—00 00—02 00—10 00—12 00—20 00—22
0.08 30.650 0214 -
26.340 0.218
0.20 35.001 0.442
30.758 0.467
0.70 | 42,754 1.458 0.058 0.026
39.938 1.717 0.061 0.032
1.00 45.519 2.263 0.181 0.137
43.883 2.769 0.232 0.181
1.50 48.898 3.701 -.0.453 0.453 0.006 0.011
49.143 4.648 0.623 0.631 0.010 0.019
2.50 51.785 5.659 0.756 0.943 0.047 0.081
54.503 6.807 0.942 1.177 0.072 0.120
3.00 51.708 6.086 0.748 0.978 - 0.055 0.088
55.006 7.126 _.0.889 1.157 0.074 0.114
3.50 50.974 6.266 0.705 0.952 0.053 0.081
54,589 7.151 0.807 1.081. 0.066 0.095
4.50 48.391 6.187 0.586 0.822 0.043 0.061
52.200 6.760 0.630 0.870 0.050 0.066
6.00 43.547 5.639 0.425 0.604 0.031 0.040
47.196 5.890 0.433 0.597 0.033 0.040
8.00 37.322 4.820 T 0289 0.400 0.020 0.025
40.559 4.857 0,286 0.379 0.020 0.023
10.0 32.068 4.129 . .0.210 0.276 0.014 0.016
0.207 0.014

34.903 4.087 0.259 0.013

the BTAD and CP polarization potentials. Also shown in
Fig. 3 are results from a rigid-rotator calculation in which
the internuclear separation was fixed at its equilibrium
value of 1.4ay. For this system, the CP elastic cross sec-
tions are in reasonable agreement with the BTAD results;
the percentage difference between them is 10% or less
from 0.047 to 10.0 eV, the difference being largest below
about 2.0 V.3 The error introduced into this cross sec-
tion by making the rigid-rotator approximation is as great
as 5% at energies below 2.0 eV.

C. Pure rotational excitation

In Fig. 4 and Table II we show cross sections for the
pure (i.e., vibrationally elastic}) rotational excitation
0,0—0,2. As in the elastic case, for this excitation the CP

and BTAD cross sections agree reasonably well from
threshold (0.044 eV) to 10.0 eV; the agreement is especial-
Iy good at energies below 0.5 eV. The difference between
the integrated CP and BTAD cross sections rises with in-
creasing energy to 26% at 1.5 eV, then decreases.

The differential cross section for this excitation at 0.08
eV is shown in Fig. 5. At this energy (and at others below
about 1.0 eV) both model potentials produce a cross sec-
tion with the same shape. At higher energies the CP and
BTAD differential cross sections exhibit larger differ-
ences, but these are differences of scale, not of shape. As
illustrated in Fig.- 5, the rigid-rotator approximation con-
sistently produces integrated and differential cross sec-
tions for rotational excitation of H, that differ substan-
tially from those obtained when the vibration of the nuclei
is taken into account.
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FIG. 6. Eigenphase sums at 1.5 eV in the =, e-H, symmetry
from body-frame, fixed-nuclei scattering calculations using the
BTAD (solid curve) and CP (dashed curve) polarization poten-
tials. Also shown is the product ¢¢(R)${(R) (dotted curve).

D. Vibrational excitation

We now come to the primary focus of this study: vi-
brational excitation. Some insight into this scattering pro-
cess can be gained by examining the variation with R of
eigenphase sums for the most important electron-molecule

1.0
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A
©
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1.5
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"::j L
®
0.5
0.0 + +
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FIG. 7. Integrated vibrational-excitation cross sections for
the (a) 0,0—1,0 and (b) 0,0—1,2 excitations obtained from
LFCC calculations using the BTAD (solid curve) and CP
(dashed curve) polarization potentials.

~ 0.04

scattering angle {deg)

FIG. 8. Differential cross sections at 1.5 eV for the 0,0—1,0
and 0,0—1,2 excitations of H, from LFCC calculations using
the BTAD (solid curve) and CP (dashed curve) potentials. See
Fig. 7 for the corresponding integrated cross sections.

symmetries. The eigenphase sum of interest for inelastic
scattering below about 5.0 eV is that of the =, symmetry,
because at these energies contributions from this symme-
try dominate rotational and vibrational excitation.*

In Fig. 6 and Table III are shown the eigenphase sums
at 1.5 eV in the 2, symmetry as a function of R. (In

0.08 1

0.02 +

-0.00 + - + + ———t
- oo 2.0 4.0 6.0 8.0 10.0

E (ev)
(a)

---0.15 —

0.10 ¢

o (a3)

0.05 ¢+

0.00
0.0

E (eV)
(b)

FIG. 9. Cross sections for the (a) 0,0—2,0 and (b) 0,0—2,2
excitations of H, from LFCC calculations in which the BTAD
(solid curve) and CP (dashed curve) polarization potentials were
used.



Table III these data are given at other energies and for the
2, and II, symmetries; using this table, one can examine
the sensitivity of these scattering quantities to polarization
as R and E change.) The R variation of the 2, CP and
BTAD eigenphase sum are quite similar. Yet, the slopes
of these eigenphase sums in the critical range of R from
1.0a, to 2.0ap—as indicated by the product of vibrational
wave functions ¢o(R) ¢;(R) (the dotted curve in Fig. 6)—
are different enough that the AN cross sections from the
two models differ considerably. To illustrate this point,
we present in Table IV pure vibrational and rovibrational
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cross sections calculated making the AN approximation
for vibration [adiabatic-nuclei vibration (ANV)]. We shall
return to this table in the discussion of Sec. IVE.,
Because of the inadequacy of the ANV method for
low-energy e-H, excitations,”> ‘we resort to the LFCC
method. Integrated LFCC cross sections for pure vibra-
tional and rovibrational excitation to the v =1 manifold
are shown in Fig. 7 and Table II. At energies above 4.0

'eV, the CP and BTAD cross sections ¢(0,0—1,0) and

0(0,0—1,2) agree fairly well. At lower energies, howey-
er, the differences between the two are significant. The

TABLE III. Electron-H, eigenphase sums (in radians) at selected energies (in €V) and internuclear
separations (in ao) from body-frame fixed-nuclei calculations using the BTAD (upper) and CP (lower)
polarization potentials. In these calculations, exchange was treated exactly, using the iterative static-
exchange method of Collins et al (Ref. 34). (A more complete table of eigenphase sums, including 11
internuclear separations, more energies, and four symmetries, is available on request from the authors.)
(1.0[ —2]=1.0x1072)

E (eV) Eigenphase sums (rad)
R (ap) 0.08 0.70 1.0 3.0 10.0
Zg
1.000 3.030 2.781 2.706 2.392 1.918
3.038 2.801 2.730 2.430 1.983
1.200 3.028 2.768 2.690 2.366 1.887
3.036 2.790 2.716 2.407 1.958
1.400 3.026 2.756 2.675 2.341 1.866
3.035 12779 2.702 2.386 1.938
1.600 3.025 2.743 2.662 2.320 1.843
3.034 2.76% 2.690 2.367 1.922
1.800 3.024 2.735 2.649 2.300 1.829
3.033 2.761 2.679 2.350 1.912
2.000 3.024 2.726 2.638 2.283 1.821
. 3.034 2.753 2.669 2.336 1.906
z, \
1.000 0.099[ —1] 0.718[ —1] 0.103 0.307 0.701
0.096[ —1] 0.778[ —1] 0.113 0.351 0.769
1.200 0.134[ —1] 0.986] —1] 0.143 0.433 0.897
0.130[ —1] 0.107 0.157 0.492 0.964
1.400 0.174[ —1] 0.136 0.199 0.616 1.109
0.169[ — 11 0.148 0.222 0.695 - 1.170
1.600 0.223[ —1] 0.191 0.288 0.881 1.316
0.218[ 1] 0.211° 0.323 0.988 1.369
1.800 0.284] — 1] 0.283 0.441 1.230 1.498
0.280[ — 1] 0.317 0.503 1.331 1.546
2.000 0.367[—1] 0.466 0.754 1.603 1.649
0.366[ —1] 0.540 0.876 1.682 1.693
I,
1.000 0.331[ —2] 0.397[ — 1] 0.582[ —1] 0.175 0.401
0.322[ —2] 0.444] —1] 0.662[ — 11 0.208 0.466
1.200 0.371[ —2] 0.467[ —1] 0.686[ —1] 0.204 0.441
0.358[ —21] 0.526[ —1] 0.785[ — 11 0.243 0.509
1.400 0.419] —2] 0.545[ —1] 0.800[ — 1] 0234 0.478
0.402[ —2] 0.618] —1] 0.922[ —1] 0.280 0.548 -
1.600 0.475[ —2] - 0.630 —1] 0.924] —1] 0.265 0.512
0.452[ —2] 0.718] —1] 0.107 0.317 0.583
1.800 0.540[ —2] 0.723[ —1] 0.106 0.296 0.544
0.513[ —2] 0.829[ —1] 0.123 0.356 0.615
2.000 0.613[ —2] 0.822f{ —1] 0.120 . 0.327 0.572
0.582[ —2] 0.393

0.946f —1]

0.140

0.643
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TABLE IV. Electron-H, cross sections {(in a3) for excitations vg,jo—,j at selected energies (in eV),
as calculated with the BTAD (upper) and CP (lower) polarization potentials using the ANV method.
(Corresponding results from LFCC calculations appear in Table I1.) In the rows labeled ESE, exchange

was included exactly, using the iterative stlatircfexchang‘q rp§t}}Q§ (Ref3:1)

B s vy - T

olad)
0,00,0  0,0-0,2 0,010  0,0—~1,2 0,020 0,022
E=0.7 eV
ANV (TFEGE) 47.825 1.555 0.156 0.127
43.316 1.846 0.202 0.169
ANY (ESE) 42.754 1.458 0.145 0.110
39.938 1.673 0.183 0.138
E=1.5 eV
ANV (TFEGE) 52.617 3.682 0.574 0.648 0.026 0.046
51.773 4.556 0.762 0.865 0.041 0.071
ANV (ESE) 48.898 3.647 0.581 0.620 0.023 0.041
49.143 4.377 0.750 0.789 0.034 0.058
E=3.5 eV
ANV (TFEGE) 51.058 6.119 0.670 0.924 0.050 0.073
: 53.991 6.971 0.754 1.027 0.061 0.084
ANYV (ESE) 50.974 6.534 0.720 0.954 0.052 0.075
54.589 7.251 0.791 1.025 0.061 0.081
E=6.0 eV
ANV (TFEGE) 41.822 5.575 0.403 0.572 0.029 0.037
45.212 5.827 0.409 0.562 0.030 0.036
ANY (ESE) 43.547 5.866 . 0.411 0.556 0.029 0.036
47.196 5.991 0.412 0.532 0.030 0.033
’ E =10.0 eV
ANV (TFEGE) 29.946 4.099 0.203 0.264 0.012 0.015
32.816 4,065 0.201 0.248 0.012 0.013
ANY (ESE) 32.068 4.112 0.196 0.235 0.012 0.013
34.903 ] 14.014 01%2 L o 0011 - 0.011

percent difference in 0(0,0—1,0) increases from 11% at
0.7 eV (near the threshold energy for this excitation, 0.516
eV) to 38% at 1.5 eV. Similarly, the difference in
0(0,0—1,2) (threshold energy is 0.599 eV) increases from
23% at 0.7 eV to 39% at 1.5 eV. These differences are
manifestations of the differences between the CP and
BTAD vibrational matrix elements shown in Fig. 2.

Differential cross sections at 1.5 eV, the energy at
which the cross sections in Fig. 7 are most sensitive to the
polarization potential, are shown in Fig. 8. At this energy
{and at others below several eV) the CP and BTAD cross
sections 0{0,0—1,0) exhibit differences of scale and of
shape, suggesting that the two models yield different mix-
tures of partial waves in this cross section.

The differences between the CP and BTAD cross sec-
tions for excitations to v =1 are magnified in the
vg=0—v =2 cross sections shown in Fig. 9. At 1.5 eV,
for example, the difference in ¢(0,0—2,0), the threshold
for which is 1.002 eV, is 70% and that in ¢(0,0—2,2),
with threshold energy 1.042 eV, is 71%. The correspond-
ing differential cross sections (not shown) manifest the
sensitivity seen in the vy=0—v =1 cross sections of Fig.
8, but this sensitivity is more pronounced for v =2 than
for v=1.

E. Discussion of theoretical results
and comparison to experimental data

The low-energy results shown in Secs. IVB—IV C ex-
hibit considerable sensitivity to the polarization potential
used to calculate them. To indicate the importance of this
sensitivity, we compare in Tables V and VI theoretical re-
sults for total (i.e., elastic plus rotational-excitation),
momentum-transfer, pure rotational, and vibrational-
excitation cross sections from the present BTAD and CP
calculations with data from a variety of experiments.
Low-scattering energies, at which the sensitivity to polari-
zation is greatest, are emphasized.*’ An extensive discus-
sion of our BTAD and experimental e-H, cross section
data appears elsewhere.*!

Examination of the results in Tables II and IV shows
that the sensitivity of vibrational-excitation cross sections
depends on other assumptions made in formulating the
collision theory. For example, at energies below 3.0 eV,
the difference between the BTAD and CP vibrational-
excitation cross sections depends on the scattering theory
used (LFCC or ANV) and on how exchange is represented
(exactly or via the FEG model potential). Thus, at 1.5 eV,
the difference between the BTAD and CP ¢(0,0—2,0) is
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TABLE V. Comparison of theoretical e-H, cross sections (in A?) at selected energies (in eV) with ex-
perimental data. For each entry, the upper value was calculated with the BTAD polarization potential,
allowing for the nuclear motion as described in Sec. IV. The value below this one (in parentheses) was
calculated using the CP potential, also taking account of the nuclear motion. Results in square brack-
ets, however, were calculated using the BTAD potential in the rigid-rotator approximation with the in-
ternuclear separation of H, fixed at its equilibrium value, 1.4a,. Total (tot), momentum transfer (MT),

and pure rotational excitation (0,0—>0,2) cross sections are shown.

o.théor (A") ) oot (AZ) )

E (V) olheor (%) oZP (A% alieor (3% o8B (A%)p (0,00,2) (0,0—0,2)

0.047 8.026 8.234 T 378  9.10 0018 0.018 )
(6.841) (7.565) (0.020)
[6.812] [8.736] [0.016]

0.08 8.642 8.79 9.688 100 0.060 0.060
(7.436) (3.448) (0.061)
[7.384] [9.596] [0.055]

0.10 8.925 9.19 10.122 10.5 0.074 0.074
(7.718) (8.886) (0.075)
[7.651] [10.008] [0.067]

0.20 9.924 10.05 11.743 12.0 0.124 0.120
(8.743) (10.567) 0.131)
[8.618] [11.535] [0.110] -

0.50 11.596 11.62 14.646 14.7 0.279 0.278
(10.651) (13.850) 0.317)
[10.347] [0.239]

[14.207]

“Ferch et al. (Ref. 43).
SCrompton et al. (Ref. 44).

709% when the LFCC method is used and 58% when ihe
ANYV method is used.

Other than the use of a model polarization potential,
the central approximation in the present study is the FEG
treatment of exchange effects. Some measure of the accu-
racy of our TFEGE potential can be gleaned from Table
IV by comparing ANV inelastic cross sections from exact
and model exchange calculations. Thus, at 0.07 eV, where
the sensitivity to exchange is the greatest, the TFEGE in-
troduces an error of 7% in o0(0,0—1,0) and 11% in
0(0,0—1,2). (The accuracy of the TFEGE seems little
affected by whether the BTAD or CP potentials are used
to model polarization.) Unfortunately, at present we do
not know whether the same order of difference between
exact and TFEGE cross sections would be found in a full
rovibrational LFCC calculation; this question is currently
under investigation in our group.

Of course, the ANV approximation 1ntroduces consid-
erable error into these low-energy cross sections, as can be
seen in Table IV. But even the measure of this error de-
pends to some extent on the polarization potential. At 1.5
eV, for instance, the ANV ¢(0,0—2,2) differs from its
LFECC counterpart by 318% if the BTAD potential is
used and by 274% if the CP is used. This phenomenon is
probably due to the sensitivity of the commutator of the
nuclear Hamiltonian and the interaction potential to the
polarization component of this potential; the accuracy of
the AN approximation hinges on this commutator being

TABLE VI. Comparison of theoretical e-H, cross sections
for the excitation vo=0—0v =1 at selected energies (in eV) with
data from swarm (S) and beam (B) experiments. These cross
sections (in A?) are summed over final rotational states j. For
each entry, the upper (lower) cross sections was determined in
LFCC calculations using the BTAD (CP) potential; the CP re-
sults are in parentheses.

Energy
(ev) o.thecr 0’§th a O_Expt b
0.60 0.008 0.009 0.0172
: (0.014)
0.70 0.023 10.020 0.032
(0.026)
.00 ©0.089 0.064 0.094
(0.116)
1.50 0.254 0.200 0.246
(0.351)
3.50 0.464 0.490
(0.529) :
4.50 0.394 0.391
(0.420)

*Crompton et al. (Ref. 45). o
bEhrhardt er al. (Ref. 46).



2796 MICHAEL A. MORRISON AND BIDHAN C. SAHA 34

negligible in the Schrodinger equation in the body
frame.*

V. CONCLUSIONS

The sensitivity of e-H, vibrational-excitation cross sec-
tions to the choice of model polarization potential is of
some concern. To be sure, elements of both models inves-
tigated in this study are somewhat ad hoc, but each in-
corporates the essential physics of polarization at long and
intermediate range and of correlation at short range, and
each is based on a reasonable theoretical foundation. This
sensitivity may imply that, at least for vibrational excita-
tion of H,, considerable precision in one’s model polariza-
tion potential is necessary if accurate cross sections are to
be obtained. At the very least, these findings emphasize
the need for more rigorous calculations of ab initio eigen-
phase sums (for a range of internuclear separations) and
of vibrational-excitation cross sections—say, in an
optical-potential formulation. The results in Table IV
reemphasize the importance in the calculation of these
cross sections of accurately representing the dynamical
“coupling” of the motion of the scattering electron and
that of the nuclei.

The comparison of theoretical and experimental cross
sections in Tables V and VI suggests that for low-energy
vibrational excitation of H,, the BTAD may be a more ac-
curate approximate representation of polarization than the
CP potential. Considering the issues discussed in Sec.

IV E, however, we think it would be rash to generalize this
finding to any other molecule. In our group an investiga-
tion of this matter for e-N, scattering is nearing com-
pletion; but it is also important that such a study be pur-
sued for electron scattering from a strongly polar mole-
cule, such as HCIl, where the nature of the electron-
molecule interaction is drastically different from that in
e-H,.

The findings of this study notwithstanding, we consider
the CP potential a very promising model of polarization
effects. The importance of accurately taking account of
the vibrational motion of the nuclei in calculations of in-
elastic electron-molecule cross sections and the ease with
which the CP potential can be evaluated argue strongly
for its consideration in the future, particularly when com-
plicated, technologically important systems, such as large,
many-electron polyatomic molecules, clusters, and sur-
faces, are of interest. ' :
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