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Abstract. We have applied the non-adiabatic phase matrix method for vibrational scattering
processes to a system which supports an extremely broad (short-lived) shape resonance. This
method provides a unified, systematic treatment of the range of physical effects that influence
the collision as the nuclear geometry varies, from strongly resonant to purely background
scattering. For this implementation we have chosen the prototypical26u shape resonance in
e–H2 scattering below 10 eV. We compare vibrational cross sections 0→ 1 and 0→ 2 from
the present non-adiabatic theory to results from fully converged body-frame vibrational close-
coupling calculations and from purely adiabatic studies using the energy modified approximation.

1. Introduction

The 26u shape resonance in fixed-nuclei e–H2 scattering has been the object of much
attention throughout the development of theoretical methods for electron–molecule scattering
calculations (Lane 1980, Domcke 1991). This resonance is responsible for an enhancement
in the elastic and vibrational excitation cross sections which allows access to higher-lying
states than can be populated appreciably by non-resonant scattering. This resonance also
plays a key role in dissociative attachment. The strong interaction of this resonant state
with the continuum of the system (neutral molecule plus free electron) for small internuclear
separations makes it difficult to characterize the state in terms of a resonance energy and
width (Nesbet 1981). Traditional methods based, for example, on fitting the eigenphase
sum to a Breit–Wigner form, become ambiguous as the internuclear separation decreases.

Direct methods for computing a complex potential energy function for H−
2 have been

proposed using a variety of quantum chemistry techniques, such as the complex self-
consistent-field method (McCurdy and Mowrey 1982), the projection-operator/configuration-
interaction method (DeRoseet al 1985), and the close-coupling bound-state approach
(Gorczyca and Norcross 1990). Although not always in quantitative agreement with one
another, results from such calculations clearly indicate that the resonance width decreases
rapidly as the internuclear separation increases above equilibrium. The26u resonant state
becomes bound at an internuclear separation around 2.8 a0 (McCurdy and Mowrey 1982).
Beyond this point, the potential energy curve for this state passes smoothly into the potential
curve for dissociative attachment.
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This extreme variation in the resonance width over the experimentally relevant range of
internuclear separations must be taken into account in theoretical calculations of vibrational
excitation cross sections for e–H2 scattering. This feature poses special problems for
methods which treat the internuclear separationR adiabatically, as a parameter in the
Born–Oppenheimer sense (Shugard and Hazi 1975); the most widely used such method
is the adiabatic nuclear vibration approximation (Faisal and Temkin 1972). Elaborations
of the adiabatic approach that are especially suited for near-threshold scattering include
the first-order non-degenerate adiabatic method (Morrison 1986, Morrisonet al 1979) and
the energy-modified adiabatic approximation (Nesbet 1979). (For a review, see Morrison
(1988).) The non-adiabatic phase matrix (NADP) method (Grimm-Bosbachet al 1996,
Nesbet 1996) goes beyond these formulations in that it incorporates non-adiabatic effects
within the context of the Born–Oppenheimer approximation (Schneider 1976) without
resorting to CPU-intensive body-frame vibrational close-coupling calculations (Chandra and
Temkin 1976, Morrison and Sun 1995). The NADP method also avoids the convergence
limitation inherent in close-coupling methods which neglect continuum vibrational channels.

Nonadiabatic effects are most likely to be important at scattering energies near a
relatively long-lived resonance (e.g. the25g resonance at 2.9 eV in e–N2 scattering).
Here transfer of energy between kinetic energy of the projectile and vibrational degree(s)
of freedom of the target occurs dynamically, an effect that might appear to preclude an
approach based on fixed-nuclei scattering matrices. The NADP method, however, is just
such an approach: an extension of the energy-modified adiabatic method (Nesbet 1979) that
incorporates non-adiabatic effects and is based on fixed-nucleiR matrices. This method can
be used both for vibrational excitation and dissociative processes (Nesbet 1996). To date
the NADP method has been applied to resonant vibrational excitation in e–N2 scattering
(Thümmelet al 1995, Grimm-Bosbachet al 1996).

The extreme variation in the character of the6u S-matrix, from strongly resonant at
largeR to clearly non-resonant at smallR, poses a special challenge to adiabatic methods.
This problem is illustrated by the fixed-nuclei6u eigenphase sums in figure 1. At and
below the equilibrium geometry, this eigenphase sum does not even pass through1

2π . By
R = 0.5 a0, the smallest geometry that contributes to low-lying vibrational excitations of
H2, all trace of the shape resonance has vanished. Thus, the range of relevant internuclear
separations encompasses quite different physical situations, from a pronounced shape
resonance to purely background scattering. The challenge is to incorporate such diverse
physics correctly and systematically in a formulation that preserves the highly desirable
feature of working with fixed-nuclei quantities. In this paper we show that the NADP
method accomplishes this goal.

An appealing feature of the NADP method is its foundation inR-matrix theory. (For an
alternative approach to the inclusion of non-adiabatic effects in vibrational processes in e–H2

collisions, see the applications of the Feshbach projection-operator method in Mündelet al
(1985) and Bermanet al (1985); for a review, see Domcke (1991).) The NADP method
makes possible a consistent non-adiabatic treatment for all values of internuclear separations.
The fixed-nucleiR-matrix, obtained from variational calculations at a set of internuclear
separationsR and fixed-nuclei continuum electron energiesε, is expressed in terms of a
phase matrixΦ(ε;R, r0) that can be separated unambiguously into a foreground matrix
Φ1(ε;R, r0) and a residual background matrixΦ0(ε;R, r0) at anyR. The background
phase matrix is converted to a vibronic phase matrix by the energy-modified adiabatic phase-
matrix (EMAP) method (Tḧummelet al 1995, 1992, Mazevetet al 1998)—an extension of
the original energy-modified adiabatic approximation (Nesbet 1979) that is appropriate to
weak variation with energy and internuclear separation. A matrix version of Breit–Wigner
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Figure 1. Eigenphase sums in the6u symmetry for e–H2 scattering at fixed internuclear
separations (indicated on the right-hand axis in units ofa0). These were calculated from the
asymptoticK-matrix, not the precursor phase matrix discussed in the text.

resonance analysis is used to convertΦ1(ε;R, r0) to a vibronic representation (Nesbet 1996).
The finalvibronic phase matrix is the sum of the converted background and foreground phase
matrices.

In the present implementation, we modify the NADP method as previously defined
(Nesbet 1996) by defining adimensionlessphase matrix (section 2) and by removing the
free-electron contribution (section 3). In section 4, we compare body-fixed6u NADP cross
sections for excitations from the ground state (v = 0) to thev = 1 andv = 2 excited states
with results from the purely adiabatic EMAP method, and with benchmark results obtained
using the body-frame vibrational close-coupling method (BFVCC). The benchmark status
of the latter cross sections has been established by extensive comparison with crossed-beam
data (Buckmanet al 1990). For these low-lying vibrational excitation cross sections, the
BFVCC method is a fully non-adiabatic treatment of the vibronic process in the limit of
negligible contribution from the vibrational continuum. In contrast, the NADP method
has the formal advantage of including, in principle, a complete representation basis for
vibrational states (Nesbet and Grimm-Bosbach 1993), including the continuum, as does
the projection-operator method. Both of the latter methods are therefore applicable to
dissociative attachment. (For an alternativeR-matrix-based formalism for the inclusion of
non-adiabatic effects, see Schneideret al (1979a, b)).
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2. The non-adiabatic phase matrix method

When the internuclear separation is fixed at a given valueR, the coupled integro-differential
equations for the radial part of the scattering electron wavefunction, written in the usual
body-fixed reference frame with thez-axis coincident with the internuclear axis (Morrison
1988), are[

d2

dr2
− `(`+ 1)

r2
+ k2

b

]
u3`,`0

(r;R) = 2
∑
`′

[V 3`,`′(r;R)+ V̂3`,`′(r;R)]u3`′,`0
(r;R), (1)

where the semicolon denotes the parametric status ofR, the subscript̀ 0 denotes the entrance
channel, andk2

b/2 = ε is the energy of the projectile in the body frame (in Hartree units).
The quantum number̀ corresponds to the electronic angular momentum of the scattering
electron, and3 to its projection along the internuclear axis. The coupling potential matrix
elements areV 3`,`′(r;R) for the static plus (local) polarization potential andV̂3`,`′(r;R) for
the non-local exchange operator. In the remainder of this paper, we shall suppress the
projection superscript3, it being understood that all quantities are referred to a particular
value of this quantum number.

From the solutions of the integro-differential equations (1) fixed-nucleiR-matrices at a
given R-matrix radiusr0 for a set of internuclear separationsR and fixed-nuclei electron
energiesε are defined by (Grimm-Bosbachet al 1996)

u`,`0(r0;R) =
∑
`′
R``′(ε;R, r0)

[
d

dr
u`′,`0(r;R)

]
r=r0

. (2)

The sum over̀ ′ includes values consistent with the electron–molecule symmetry under
consideration (e.g. for the6u symmetry,`′ = 1, 3, . . .). In the NADP method, the fixed-
nucleiR-matrix in (2) is replaced by a fixed-nuclei dimensionless phase matrix defined by
the matrix relation

tanΦ(ε;R, r0) = k1/2
b R(ε;R, r0)k1/2

b , (3)

wherekb is a diagonal matrix of (body frame) wavenumberskb =
√

2ε. This definition
differs from that given previously (Nesbet 1996) by the factors ofk

1/2
b , which render

Φ(ε;R, r0) dimensionless. Since this definition introduces branch-point behaviour at the
continuum threshold, an appropriate analytic continuation is required for closed channels
below threshold.

Fixed-nuclei resonances correspond to local maxima of the energy derivative of the
eigenphase sum, i.e. of the sum of the arctangents of the (diagonal) elements of the
diagonalized asymptoticK-matrix. By applying resonance analysis to the phase matrix
in (3), which is defined at theR-matrix radiusr0, we can define the energy and width
of a ‘precursor resonance’ at eachR (Nesbet 1996). Each fixed-R precursor resonance
can be associated with a physical scattering resonance (if one exists) when theR-matrix
radiusr0 is extended to infinity, which introduces the effect of long-range potentials. Under
the assumption that the background phase matrix varies linearly with energy, a precursor
resonance energyεres(R, r0) can be determined from the phase matrix of (3) as the value
of the fixed-nuclei continuum energyε at which

d2

dε2
Tr Φ(ε;R, r0)

∣∣∣∣
ε=εres

= 0. (4)

The ‘precursor’ status ofεres(R, r0) is signified by its parametric dependence onr0. Applying
Breit–Wigner resonance analysis to the fixed-nuclei phase matrixΦ(ε;R, r0) at εres(R, r0),
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we can obtain the widthγ (R, r0) of the precursor resonance from the eigenvalue equations
(Smith 1960)

d

dε
Φ(ε;R, r0)

∣∣∣∣
ε=εres

y(R, r0) = 2

γ (R, r0)
y(R, r0). (5)

The elements of the eigenvectorsy(R, r0) are the projections of the resonant eigenchannels
onto the original body-frame fixed-nuclei basis{|`;3〉} (Nesbet 1980). It is important to
note that, unlike a conventional Breit–Wigner analysis of the asymptotic eigenphase sum,
this precursor resonance analysis can be applied at any internuclear separation, even at
R = 0.5 a0, where no physical resonance exists (see figure 1).

Results of the precursor resonance analysis are used to construct the fixed-nuclei
foreground phase matrix as a function of the fixed-nuclei continuum energyε. This rapidly
varying part is given by

Φ1(ε;R, r0) = y(R, r0) tan−1

[
γ (R, r0)

2[εres(R, r0)− ε]

]
y†(R, r0). (6)

The slowly varying (background) phase matrix is then defined as

Φ0(ε;R, r0) ≡ Φ(ε;R, r0)−Φ1(ε;R, r0). (7)

Thevibronic phase matrix atr0 can now be constructed as the sum of matrices calculated
from the background and foreground fixed-nuclei phase matrices (6) and (7). The formal
basis for this construction is replacement of the body-frame energyparameter ε by the
operator ε̂ ≡ E − Ĥ(v), whereĤ(v) is the vibrational Hamiltonian of the neutral (Nesbet
1979). Formally, the(v, v′) block of the vibronic phase matrix is

Φv,v′ = 〈φv|Φ0(ε̂;R, r0)|φv′ 〉 + 〈φv|Φ1(ε̂;R, r0)|φv′ 〉, (8)

whereφv(R) is the eigenfunction of the target Hamiltonian̂H(v) corresponding to eigenvalue
Ev. Note that the operator̂ε acts on functions of the vibrational coordinates.

To apply this formal result we must generate matrix representations of the functions
in (8). The simplest of these is the background phase matrix. Because the background
fixed-R phase matrix is slowly varying withR, we can treat this term using the (fully
adiabatic) energy-modified adiabatic phase matrix (EMAP) method (Grimm-Bosbachet al
1996). In the diagonal elements we use fixed-R phase matrices evaluated at the eigenvalues
E − Ev of ε̂. In the off-diagonal elements we choose fixed-R phase matrices evaluated at
a continuum energy equal to the geometric mean of the eigenvalues ofε̂ for the entrance
and exit channels (Nesbet 1979),

εv,v′ ≡ [(E − Ev)(E − Ev′)]1/2. (9)

Evaluation of the foreground vibrational phase matrix, the second term in equation (8),
requires integrals overR of the fixed-nuclei quantity (6) withε replaced byε̂ in the
denominator. We evaluate this integral by introducing a complete set of functions ofR

defined by the eigenvalue equation

[Ĥ(v) + εres(R, r0)]χs(R) = Esχs(R). (10)

(For clarity, we suppress the dependence ofχs(R) and Es on theR-matrix radiusr0.)
Notice that in this equation, the precursor resonance energyεres(R, r0) plays the role of
an additional ‘electronic potential energy’. We solve equation (10) in a basis of spline-
delta functions (Nesbet and Grimm-Bosbach 1993). The resulting eigenfunctionsχs(R)

diagonalize the energy denominator in (6) whenε is replaced bŷε. We then construct the
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vibronic foreground phase matrixentirely in terms of fixed-R quantities. The (v, v′) block
of this matrix is†
Φ1
v,v′(E) = tan−1

∑
s

〈φv|y(R, r0)γ 1/2(R, r0)|χs〉

×[2(Es − E)]−1〈χs |γ 1/2(R, r0)y
†(R, r0)|φv′ 〉. (11)

This is the key equation of the NADP method; introduction of the complete set{χs(R)}
includes short-range (inner region) non-adiabatic effects at theR-matrix boundaryr0 within
the context of a fixed-R (Born–Oppenheimer) treatment. Use of this equation requires only
separation of the fixed-nuclei phase matrices atr0 into slowly varying (background) and
rapidly varying (foreground) parts; it therefore is valid even though the range of relevant
internuclear separations include values where no physical resonance exists.

Having constructed the vibronic background phase matrix using the EMAP method and
the foreground matrix via equation (11), we simply add the two to obtain the vibronic phase
matrix corresponding to total energyE,

Φ(E) = Φ0(E)+Φ1(E). (12)

From this matrix, the corresponding vibronicR-matrix is obtained via

R(E) = k−1/2 tanΦ(E)k−1/2, (13)

where the elements of the diagonal matrixk−1/2 are

[k−1/2]v,v′ = k−1/2
v δv,v′ . (14)

ThisR-matrix is then propagated into the asymptotic region, where it is transformed into a
vibronic K-matrix from which cross sections are calculated. In this ‘outer region’r > r0,
non-adiabatic effects are fully taken into account via coupling of the eigenfunctions ofĤ(v),
as in the BFVCC formulation.

3. The free-electron phase matrix

In conventional scattering theory for a spherical interaction potential, phase shifts are defined
relative to free waves via the usual asymptotic boundary conditions (Taylor 1972). In
conventional electron–molecule scattering theory, where the interaction potential is non-
spherical, the analogous quantity is the eigenphase sum, which is calculated from the
asymptoticK-matrix (see Morrison (1988) and references therein). The phase matrix (3),
however, contains a contribution due to free waves, which we call the free-electron phase
matrix. As is evident from (2), theR-matrix for a free electron is diagonal; its elements are
equal to the inverse logarithmic derivatives of spherical Bessel functions of order`. The
free-electron phase matrix is therefore diagonal; its matrix elements are proportional to the
inverse tangent of the inverse logarithmic derivative of these functions,

ΦFE
`,`′(ε; r0) ≡ tan−1

[√
2ε
j`(kbr0)

j`′(kbr0)

]
δ``′ . (15)

From the definition of the dimensionless phase matrix (3), it follows that the precursor phase
sum, which can be calculated from the fixed-nuclei phase matrixΦ(ε;R, r0), includes a
contribution from the free-electron matrix (15).

To facilitate precursor resonance analysis for small internuclear separations, we subtract
the contribution of the free-electron phase matrix from the fixed-nuclei phase matrix

† The separation ofγ (R, r0) into the productγ 1/2(R, r0)γ
1/2(R, r0) is essential for the extension of this method

to dissociative attachment and is discussed in Nesbet (1996).
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Φ(ε;R, r0). That is, in practice, we perform the resonance analysis described in section 2
on a modified phase matrix defined by

Φ̃(ε;R, r0) ≡ Φ(ε;R, r0)−ΦFE(ε; r0). (16)

Because the free-electron phase matrixΦFE(ε; r0) is independent of the internuclear
separationR, it contributes only to diagonal elements of the full vibronic phase matrix (12).
The separate components of the vibronic phase matrix combine additively to give, for the
(v, v′) submatrix,

Φv,v′(E) = Φ̃0
v,v′(E)+ Φ̃1

v,v′(E)+ΦFE(E; r0)δv,v′ , (17)

where we note that determination of the last term via the EMAP prescription for the
continuum energyε = εv,v′ of (9) results in a free-electron phase matrix that corresponds
to total system energyE.

4. Results

We have applied the NADP method to fixed-nuclei e–H2 R-matrices obtained by solving
the integro-differential equations (1). In these and the comparison calculations reported
here, the electron–molecule interaction potential consists (Trailet al 1990) of a static
term based on a near-Hartree–Fock target electronic wavefunction, an exchange term
that rigorously incorporates this non-local interaction (Trail 1991), and a parameter-free
polarization potential which approximates short-range bound–free correlation and dynamic
distortion effects (Gibson and Morrison 1984). For each fixed-nuclei electron energyε

and internuclear separationR, the correspondingR-matrix is constructed using (2) at a
radius r0 = 10 a0. For e–H2, this value ofr0 ensures that only the asymptotic part of
the polarization potential remains outside theR-matrix sphere and that non-local exchange
effects are negligible in the outer region,r > r0.

In figure 2 we present the precursor potential energy curve. This function is defined
at each internuclear separation as the sum of the precursor resonance energyεres(R, r0)

and a Morse potential, which we use to represent the electronic energy of the neutral H2

target; this function is therefore the total electronic potential energy in equation (10) for the
expansion basis{χs(R)}.

It is important to appreciate that the function in figure 2 differs from the ‘resonance
energy curve’ as usually defined, i.e. the real part of the complex potential-energy function
for nuclear motion in the transient negative-ion state (Nesbet 1991), because it neglects
long-range potentials outside theR-matrix radiusr0. The usual resonance energy curve for
e–H2 collisions, which has been studied previously (McCurdy and Mowrey 1982, DeRose
et al 1985, Gorczyca and Norcross 1990), shows a bound H−

2 state atR ≈ 2.8 a0, reveals a
well-defined resonance state for slightly smaller values ofR, and merges smoothly into the
background forR . 1.7 a0. In contrast, the precursor potential energy curve in figure 2,
which is distinct from the neutral electronic energy curve at allR and depends onr0, is a
mathematical construct whose definition is linked through the functionεres(R, r0) to theR-
matrix boundaryr0. It is important to note that the precursor resonance potential energy does
account for coupling between nuclear and electronic motion inside theR-matrix sphere via
the complete set of states{χs(R)} used to calculated the foreground vibronic phase matrix
Φ1(E).

Moreover, unlike the usual resonance energy curves, the precursor resonance potential in
figure 2 is well defined at all internuclear separations. This feature facilitates the calculation
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Figure 2. (a) The effective potential energy for the precursor resonance (full curve): the sum of
εres(R, r0) and the ground electronic state potential energy of H2 (broken curve). (b) Variation
of the precursor resonance width functionγ (R) with internuclear separation.

of cross sections—especially at small values ofR, where, as seen in figure 1, the fixed-
nuclei resonance shades into the background. At such values ofR, the decomposition (17)
simply becomes irrelevant and the resulting vibronicR-matrix equals that generated by
the adiabatic EMAP method, which pertains to situations where non-adiabatic effects have
negligible influence.

The consequences of this smooth merging of non-adiabatic and adiabatic physics, an
important characteristic of the NADP method, is evident in figure 3, which shows the6u

partial cross sections for 0→ 1 and 0→ 2 vibrational excitation. For both excitations,
the NADP and EMAP results are quite similar, and both agree with the fully non-adiabatic
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Figure 3. The 26u partial cross section for excitation of H2 from the ground vibrational state to
the (a) v = 1 and (b) v = 2 states, as calculated using (——) the BFVCC, (- - - -) the EMAP
method and (•) the NADP method.
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BFVCC results to within the roughly 1% numerical accuracy of these calculations. (In
the EMAP calculations the entire vibronic phase matrix was calculated directly from the
fixed-nuclei matricesΦ(ε;R, r0) via the usual adiabatic prescription.)

In the 0→ 2 cross section in figure 3, some minor differences are noticeable between
the NADP, EMAP and BFVCC results, especially in regard to the position of the maximum
and the amplitude of the partial cross section. Extensive formal and numerical consistency
checks indicate that the small-scale structure in the 0→ 2 NADP cross section near 3.0 eV
is not a numerical artefact. Rather, it may signal the presence in the NADP results of
non-adiabatic effects, a suggestion supported by the different positions of the maxima in the
BFVCC (fully non-adiabatic) and EMAP (fully adiabatic) cross sections. Such effects are
not seen, however, in experimental data for this excitation (Allan 1985). Alternatively, this
structure may be a consequence of our use of fixed-nucleiR-matrices based on Hartree–
Fock electronic function for the target. Because thev = 2 vibrational wavefunction samples
larger values ofR than thev = 1 function does, an NADP calculation of the 0→ 2 cross
section may overestimate the influence of the strong resonance at largeR seen in figure 1,
and hence may bring into play the well known deterioration of the Hartree–Fock Born–
Oppenheimer potential curves asR increases towards dissociation. (In this regard we note
that our resonance energy curves predict binding of H−

2 at R ≈ 2.6 a0, a value smaller
than those obtained in calculations based on a more sophisticated treatment of the target
(McCurdy and Mowrey 1982, DeRoseet al 1985).) In any case, non-adiabatic effects
are evident in the cross sections for higher-lying excitations measured by Allan. Due to
the difficulty of including values ofR > 2.5 a0 in these calculations and our intention to
abandon the Hartree–Fock potential energy curve in the next phase of this work, which will
focus on dissociative attachment, we have not pursued the small structure in the 0→ 2
cross section further.

5. Conclusions

The essential question addressed in this paper is, how can one separate the mathematical
description of the scattering into foreground and background parts in a way that is valid
for all internuclear separations and that gives accurate, physically interpretable results?
This question must be answered if one is to treat high-lying vibrational excitations or
dissociative attachment within a continuum Born–Oppenheimer framework. A previous
application to e–N2 scattering (Grimm-Bosbachet al 1996) showed that the NADP method
properly treats non-adiabatic effects for systems in which a physical resonance exists for all
internuclear geometries relevant to the scattering process of interest. This paper extends that
work to the more problematic case of systems in which the relevant geometries encompass
radically different physical conditions, from unambiguous resonant scattering at largeR to
unambiguous non-resonant scattering at smallR. We have demonstrated that the fixed-
nuclei phase matrix evaluated at the boundary of the inner region can be separated for all
R. The resulting procedure treats all internuclear separations on a common footing and
leads to correct cross sections. The availability of benchmark BFVCC cross sections for
e–H2 scattering and the dramatic variation in the fixed-nuclei eigenphase sums (figure 1)
make this an ideal system for calibrating the method.

The key equations of the present formulation are the definition (3) of the dimensionless
fixed-nuclei phase matrix, the separation of this matrix into foreground and background parts
evaluated by (6) and (7), the construction from these parts of the desired vibronic phase
matrix (12), and the extraction in this construction of the free-electron phase matrix (15).
The comparison of NADP vibrational cross sections for the 0→ 1 and 0→ 2 excitations
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with those from benchmark BFVCC and fully adiabatic EMAP calculations validates this
decomposition. This demonstration thus supports the applicability of the NADP method to
the study of dissociative attachment in e–H2 scattering, the ultimate goal of this research.

The essential computational device of the NADP method is the precursor potential
energy curve in figure 2. This curve shows that the NADP method allows one to incorporate
vibrational dynamics within a Born–Oppenheimer context consistently over the whole range
of experimentally relevant internuclear separations. This formulation therefore liberates the
theorist from the need to address imponderables such as, ‘at which value ofR do resonance
effects become sufficiently unimportant that a non-reasonant adiabatic treatment (like the
EMAP method) become appropriate?’ The NADP method, with the free-electron phase
matrix extracted as in section 3, simply, smoothly, and unambiguously merges with the fully
adiabatic EMAP method with decreasingR, as shown in the cross section comparisons of
figure 3.

To conclude, it is important to clarify the sense in which the NADP method is ‘non-
adiabatic’. The solution of the scattering problem in the inner region (r < r0) is carried
out entirely within the context of the Born–Oppenheimer approximation and hence is
adiabatic, in that the electron–molecule wavefunction is approximated by a function that is
separable in the vibrational coordinate of the nuclei and the electronic coordinates of the
projectile (Schneider 1976). Non-adiabatic effects are introduced atr0 in the construction
of the foreground vibrational phase matrix (6) by means of the compete set{χs(R)}, the
eigenfunctions ofĤ(v)+εres(R, r0) in equation (10). In the outer regionr > r0, non-adiabatic
effects are fully taken into account through vibrational close-coupling in propagation of the
vibronic R-matrix (13) into the asymptotic region.
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