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Abstract. Model polarisation potentials for use in calculating positron-molecule cross 
sections are often based on approximations in which terms that depend on the sign of the 
charge of the projectile are neglected. Thus, these potentials do not fully distinguish 
between electron and positron scattering. The validity of using such potentials for positron- 
H2 collisions is investigated by performing scattering calculations using electron- and 
positron-H, model polarisation potentials. Results show that, because of differences in 
the way electrons and positrons distort the target charge cloud, sign-dependent terms in 
the adiabatic potential can significantly influence the total cross section. Low-energy cross 
sections are also shown to be rather sensitive to how non-adiabatic polarisation effects are 
taken into account. Using a cut-off fully adiabatic positron-H, polarisation potential, 
theoretical total cross sections in reasonably good agreement with recent measurements 
are obtained. 

1. Introduction 

Recent advances in experimental technology have stimulated increased activity in the 
measurement of cross sections for low-energy positron scattering from atoms and 
molecules. In particular, the development of sources for intense, reasonably mono- 
chromatic beams of low-energy positrons (cf Canter and Mills 1982) has made feasible 
accurate measurements at energies below 10.0 eV. A number of reviews have appeared 
recently of experimental (Griffith 1979, Stein and Kauppila 1982, Kauppila and Stein 
1982) and theoretical (Humberston 1979, Massey 1982, Schrader and Svetic 1982, 
Ghosh et a1 1983) research in this field. 

With this activity has come renewed interest in scattering calculations for positron- 
molecule systems. Theoretical research on these systems is further motivated by the 
important role played in positron-molecule collisions by one of the most important 
interactions in low-energy charged-particle scattering: polarisation. 

The high sensitivity of positron-molecule cross sections to polarisation effects derives 
from the nature of the positron-molecule interaction potential. The full interaction 
potential differs in several important respects from the more familiar electron-molecule 
interaction potential. The latter consists of static, exchange, and polarisation terms (see 
Morrison 1983 for a qualitative introduction). In contrast, the positron-molecule 
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potential does not contain an exchange operator, since the positron is quantum 
mechanically distinguishable from the target electrons. This feature of the potential is 
partly responsible for the comparative simplicity of positron-molecule scattering calcu- 
lations over their electron-molecule counterparts. (This simplification is somewhat 
offset at scattering energies above a few eV by the need to account for rearrangement 
channels that are not present in the electron scattering case, such as positronium 
formation and annihilation (Horbatsch et a1 1983, Ray er a1 1980, Khan and Ghosh 
1983, Varracchio and Girardeau 1983).) 

Another significant difference between positron- and electron-molecule interaction 
potentials is the character of the static contribution. This term arises from the Coulomb 
interactions between the scattering particle and the electrons and nuclei of the target. 
The electron-molecule static potential is attractive. However, because of the strong 
positron-nuclear repulsion, the positron-molecule static potential is strongly repulsive, 
dominating the interaction potential in the ‘short-range region’ very near and within 
the target charge cloud. This fact enhances the sensitivity of positron-molecule cross 
sections to the polarisation potential in the ‘intermediate- and long-range’ regions 
outside the charge cloud. (This sensitivity was first investigated by Lodge et a1 (1971).) 

The importance of polarisation effects has been tacitly acknowledged in a wide 
variety of theoretical studies of positron-atom scattering, many of which use rather 
sophisticated methods for determining the positron-target polarisation potential (see 
the reviews by Schrader and Svectic 1979, Ghosh et a1 1983, and references therein; 
for more recent work, see Sin Fai Lam 1982, Morgan 1982, Willis and McDowell 
1982, Mukherjee and Sural 1982, Horbatsch er a1 1983). By contrast, to date only 
a handful of positron-molecule studies have been published (see § 2.1.3). 

The great preponderance of these studies have treated positron-H2 scattering. In 
all prior theoretical calculations on this system, the polarisation potential used was 
taken without modification from the electron-H, literature. Implicit in this stratagem 
is the premise that positron-H, cross sections are insensitive to differences in the 
polarisation potential that arise from the sign of the charge of the projectile. Viewing 
the static positron-molecule interaction as an adiabatic perturbation due to a fixed 
charge, one can restate this premise in terms of perturbation theory (see § 2.1.2(i)): 
perturbation terms of higher than second order in the adiabatic polarisation potential 
are irrelevant to the determination of positron-molecule cross sections. (This assump- 
tion is a central tenet of the polarised orbital method; cf Drachman and Temkin (1972).) 

This premise defines the primary questions for the present study: must one properly 
take account of the sign of the charge of the projectile in determining polarisation 
potentials for positron-molecule scattering calculations? Is it valid to use a very 
accurate electron-molecule polarisation potential in positron-molecule scattering calcu- 
lations? A secondary question concerns non-adiabatic polarisation effects: how impor- 
tant are these effects when the polarisation potential is determined explicitly for the 
positron-molecule system, and how sensitive are low-energy positron-molecule cross 
sections to the way these effects are taken into account? 

To initiate study of these questions, we consider here the positron-Hz system. In 
§ 2 we review briefly the nature of the polarisation interaction and how it has been 
treated in prior positron-molecule calculations. These remarks are followed by a 
description of the positron-H2 and electron-H2 polarisation potentials considered in 
the present study and of the scattering theories used to calculate cross sections. In 
0 3, we present and discuss our results, which include positron-H, cross sections 
calculated using an explicitly determined positron-H2 polarisation potential. We also 
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discuss the possibility of a Ramsauer-Townsend minimum in this system. We conclude 
in 0 4 by discussing the strengths and weaknesses of the present treatment of polarisation 
and the prognosis for future work on this problem. Unless otherwise noted, atomic 
units are used throughoutt. 

2. Theory 

2.1. The polarisation interaction 

The subject of polarisation in charged-particle scattering is complicated, and the 
relevant literature is vast. In order to provide a context for understanding the results 
of the present study and to elucidate key approximations, it is necessary to briefly 
sketch several widely used strategies for determining polarisation potentials. We shall 
limit ourselves to methods that have been used in positron-molecule studies. 

Polarisation effects in the scattering of charged particles arise from correlations 
between the projectile and the target electrons (cf Lane 1980). In a rigorous quantum 
mechanical formulation of the collision, these effects manifest themselves as virtual 
electronic excitations of the target, i.e., through the influence of closed electronic 
channels (cf Castillejo et a1 1960). 

The physics of polarisation is perhaps most easily understood in terms of a semi- 
classical model: an incident projectile of charge q establishes a time-varying electric 
field that distorts the electron cloud of the target. The resulting ‘polarised’ charge 
distribution interacts, in turn, with the scattering particle, giving rise to an induced 
change in the electronic energy of the system. This change in energy is the polarisation 
potential, which we shall denote V g ,  the superscript indicating the sign of the charge 
of the projectile (q  = * 1 au for a positron or an electron, respectively). Properly, this 
potential should depend on the position and velocity of the projectile. However, most 
polarisation potentials are based on the adiabatic approximation, in which the velocity 
dependence is neglected (§ 2.1.1). However, non-adiabatic effects are known to be 
important for low-energy scattering, and a variety of approximate strategies have been 
developed to incorporate them in model polarisation potentials (0 2.1.3). 

Characteristically, the polarisation potential V;ol, which is a function of the spatial 
coordinate of the projectile, r,, is non- spherical^ and predominantly 
asymptotic behaviour (i.e., as rq + a) is quite simple$, i.e., 

attractive. Its 

(1) 

where a0 and a2 are the spherical and non-spherical polarisabilities, respectively, of 
the target. Significantly, the asymptotic form of V;ol is independent of the sign of q. 
The positron-molecule interaction potential is simply the sum of Viol and the (repulsive) 

t In atomic units, h = m, = a, = 1. The charge of the projectile is q = f 1 for an electron- or positron, 
respectively. The unit of energy is h2/m,a i=  1E, = 2 Ryd = 27.212 eV. The unit of distance is the first 
Bohr radius, a,  = 1 Bohr = 0.529 18 X lo-’’ m. Cross sections are measured in units of square bohr, 
a ~ = 0 . 2 9 x 1 0 - 2 0 m 2 .  

Coordinates are referred to a molecular (‘body-fixed’) reference frame. The target molecule is described 
in the Born-Oppenheimer approximation. Parametric dependence of potentials and wavefunctions on 
certain coordinates is indicated by placing those coordinates after a semicolon in arguments, e.g., V&,(rq; R ) .  
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static potential, namely, 

2.1.1. The adiabatic polarisation potential. The starting point in the determination of 
model polarisation potentials is the adiabatic polarisation potential, ViD( rq; R). In 
the adiabatic approximation, the molecular electrons respond to the field of a fixed 
projectile. The change in the total energy of the system due to resulting distortion is 
calculated from the adiabatic Hamiltonian of the system, %’iD, which is just the sum 
of the target electronic Hamiltonian and the electrostatic projectile-target potential 
V. The adiabatic polarisation potential is equal to (Drachman and Temkin 1972) 

where +bp)( r,; R )  and rL0( r,; R )  ,are the polarised and undistorted ground-state elec- 
tronic molecular wavefunctions, respectively. In equation (3), the matrix elements 
indicate integration over the molecular electronic coordinates, collectively denoted by 
r, (cf Morrison and Hay 1979, Eades et a1 1979, Truhlar et al 1979, Gibson and 
Morrison 1982, 1983). 

The resulting adiabatic polarisation potential, which is an approximation to the 
optical potential (Drachman and Temkin 1972), is too strongly attractive in the region 
of space near the target owing to neglect of non-adiabatic effects (§ 2.1.3). 

2.1.2. Approximations to the adiabatic polarisation potential. In most model potentials 
based on ViD,  additional assumptions (unrelated to non-adiabatic effects) have been 
implemented. These approximations fall into two classes: those based on a perturbation 
approximation to the polarised wavefunction +Ap’, and those in which the multipole 
expansion of the Coulomb potential V in %’iD is truncated. 

(i) Perturbation theory approximations. In many applications, notably those within the 
polarised orbital method, the Coulomb potential for a target with Ne electrons at 
positions ri and N, nuclei at  R,, 

is treated as a perturbation, and the polarised target function +Ap) is evaluated to first 
order in this potential. The resulting second-order adiabatic polarisation potential, 
Vgk, is independent of the sign ofq. (This result can easily be seen from the expansion 
of VgA in intermediate unperturbed states (Drachman and Temkin 1972).) 

Higher order perturbation terms, which are neglected in VgA, do depend sig- 
nificantly on the sign of q, as is well known from research on positron- and electron-atom 
polarisation (cf figure 6.3.2 of Drachman and Temkin 1972). These terms are attractive 
(regardless of the sign of q ) ;  hence near the target VgA is weaker than Vi,,. As the 
scattering coordinate rq increases, V2D goes smoothly over to Vg&, the higher order 
perturbation terms dying off, and, eventually, Vgk reduces to the asymptotic form 
(1).  The essential approximation in studies based on the second-order adiabatic 
potential, however, is that these terms are negligible everywhere. The validity of this 
assumption for positron-H2 scattering is investigated in Q 3. 

(ii) Multipole suppression approximations. A separate class of widely used approxima- 
tions derives from the expansion of the projectile-target-electron Coulomb terms in 
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(4) in multipoles, e.g., 

where 0, is the angle between ri and rq and l< (l,) is the minimum (maximum) of 
ri and rT Of course, this expansion includes multipoles of all orders. The most 
troublesome of these is the monopole term ( A  = O ) ,  which causes V i D  to be far too 
strong near the origin. The monopole suppression approximation, in which this term 
is neglected, has been shown to improve agreement with experimental cross sections 
and is widely used in both electron and positron scattering calculations. It is considered 
to be ‘good, but arbitrary’ (Drachman and Temkin 1972) and could be thought of as 
a highly approximate way of including non-adiabatic effects (cf § 2.1.3). 

In electron scattering calculations, the leading remaining term in ( 5 ) ,  the dipole 
term ( A  = l ) ,  is often the only one that need be retained. This stratagem leads to the 
dipole approximation to ViD.  The positron-electron Coulomb interaction is attractive, 
and neglect of multipoles of order higher than dipole slightly weakens the electron- 
target polarisation potential. However, extensive study of positron-atom collisions has 
shown that for these systems better agreement with experiment is obtained if all the 
multipoles with A 3 1 are retained (cf McEachran et a1 1977 and the review by Ghosh 
et a1 1983). Nevertheless, the dipole approximation has been used in some positron- 
molecule calculations (cf § 2.2). 

2.1.3. Approximate inclusion of non-adiabatic effects. Short-range bound-free correla- 
tions are manifested in the so-called dynamic terms, which are neglected in the adiabatic 
approximation. These short-range terms are repulsive for positron (or electron) scatter- 
ing, so they weaken the adiabatic potential near the target. The nature of the dynamic 
terms has been investigated for electron scattering from simple atoms(cf Kleinman et 
a1 1969, Temkin 1957, Dalgarno et a1 1968, Burke and Taylor 1966, Callaway et a1 
1969, Jean and Schrader 1978), but for positron-molecule systems their range and 
strength is at present unknown. Because the strongly repulsive potential dominates 
the positron-molecule interaction at short range, non-adiabatic effects may be less 
important for positron collisions than for electron collisions, but they cannot be 
neglected entirely (cf figure 6). 

A great deal of attention has been given to strategies for approximating non- 
adiabatic effects in model potentials for scattering from molecules; since all of this 
work has focused on electron scattering, we shall not discuss it here (cf references in 
Gibson and Morrison 1983). Two methods have been implemented for positron- 
molecule scattering. 

(i) A parumeter-dependent cut-off procedure. The most widely used (and crudest) way 
to enforce the necessary weakening of the adiabatic polarisation potential is to simply 
remove it near the target via an ad hoc cut-off procedure. In almost all such treatments, 
the adiabatic potential (or its asymptotic form (1)) is simply multiplied by a cut-off 
function of the form (Burke and Chandra 1972) 

C ( r q )  = 1 -exp[-(rq/rJ6]. (6) 

The adjustable parameter in this function, the ‘cut-off radius’, r,, can be chosen in a 
variety of ways, the most common being tuning to experimental data. In spite of its 
extreme simplicity and seemingly unphysical spherical symmetry, this form has proven 
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highly successful in electron-molecule scattering calculations (see examples in Lane 
1980). 

When a cut-off model potential is used in a positron-molecule scattering calculation, 
two choices are critical. First, r, can either be taken without modification from the 
potential for the corresponding electron-molecule system or it can be newly determined 
for the positron-molecule system. Second, one can cut off either V i D  or its asymptotic 
form (1). 

(ii) The non-penetrating approximation. An appealing alternative to this method that 
is free of adjustable parameters is the non-penetrating approximation of Temkin 
(1957). This method has been widely and successfully used for electron-atom and 
electron-molecule scattering calculations. However, many authors have argued that 
it is not suitable for positron scattering (cf Drachman and Temkin 1972, McEachran 
et a1 1977). Because of its importance, we shall look briefly at this approximation in 
the context of the semiclassical model of polarisation introduced in D 2.1.1. 

Formally, the non-penetrating approximation is implemented by multiplying the 
projectile-target-electron Coulomb interaction in (4) by a step-function cut-off that 
removes it from &AD whenever the projectile is inside the molecular charge cloud (cf 
Gibson and Morrison 1983, Onda and Temkin 1983). Conceptually, one can argue 
the reasonableness of this procedure for electron scattering. As the electron nears the 
target, it feels the strong nuclear attraction and acquires a local kinetic energy that is 
comparable with that of the molecular electrons. Under these circumstances, the 
assumption that the target electrons respond adiabatically to the field of the projectile 
ceases to be appropriate. By removing the repulsive bound-free electron-electron 
Coulomb terms from the potential whenever the projectile is within the charge cloud, 
one tries to mimic the complicated short-range bound-free correlations, which act to 
weaken the adiabatic polarisation potential. 

The physical environment encountered by a positron is quite different. The 
positron-nucleus interaction is strongly repulsive, so the positron is accelerated far 
less in the near-target region than an electron with the same energy. (Indeed, at low 
scattering energies, this repulsion acts to slow the projectile and should enhance the 
validity of the adiabatic approximation.) When non-adiabatic effects do become 
important, it is not clear that neglecting the attractive positron-electron Coulomb 
terms in V is a reasonable way to mimic the neglected dynamic terms (cf McEachran 
and Stauffer 1983). (For this reason we have not explicitly implemented the non- 
penetrating approximation for the positron-H2 system. However, we have considered 
a non-penetrating electron-H2 polarisation potential-see § 2.3.) 

The complexity of the literature on polarisation in electron and positron scattering 
derives in part from the use of one of these non-adiabatic approximations in conjunction 
with one or more of the approximations to V i D  described in § 2.1.2. Doing so may 
result in fortuitous cancellation of various attractive and repulsive terms. (For example, 
both the perturbation-theory approximation and the dipole approximation weaken 
the adiabatic potential, as would the dynamic terms were they to be included.) 

2.2. Polarisation potentials in positron-molecule studies 

With the survey of P 2.1 as background, we can now identify the approximations 
underlying model polarisation potentials that have been used heretofore in positron- 
molecule scattering calculations. Doing so will enable us to state-in § 2.3-the central 
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concerns of the present research. As indicated above, treatments of polarisation in 
positron-molecule collisions are less sophisticated than in positron-atom or electron- 
molecule scattering. Within the context defined in 0 2.1, they can be divided into two 
classes. 

2.2.1. Asymptotic form with cut-off. In these models, the polarisation potential is based 
on the asymptotic form (1); this expression is cut off at short range, usually via the 
spherically symmetric cut-off function C (  rq) of equation ( 6 ) .  In considering such 
methods, two points should be kept in mind. First, since the asymptotic form-and 
not the full adiabatic polarisation potential V&,-is cut off, the cut-off procedure must 
account for several approximations, implicit in ( l ) ,  that are invalid near the target: 

neglect of higher order perturbation terms ( 0  2.1.1(i)); 
neglect of multipoles other than the dipole ( 0  2.1.1(ii)); 
neglect of dynamic terms (0 2.1.2). 

Although some of these neglected terms will cancel-to varying degrees in various 
regions of space-this is still a lot to ask of a spherically symmetric cut-off function! 

The second point concerns the choice of the parameter r, in C ( r q ) .  In a large 
number of positron-molecule studies the cut-off radius is taken without modification 
from scattering calculations on the corresponding electron-molecule system (Hara 
1972, Darewych and Baille 1974, Bhattacharyya and Ghosh 1975, Sur and Ghosh 
1982). In such calculations, no account is taken in the polarisation potential of the 
sign of q. Alternatively, the cut-off radius can be specified in some reasonable but ad 
hoc fashion; for example, Jain and Thompson ( 1983d) recently reported calculations 
of positron-CH4 collisions in which r, is chosen equal to the molecular bond length. 
Finally, r, could be determined explicitly for the positron-molecule system by optimising 
the agreement of theoretical and experimental cross sections for some range of 
scattering energies. 

Only two such studies of this nature have been reported. In recent work by 
Darewych (1982) on positron-N2 scattering, r, was systematically varied in an attempt 
to obtain agreement with recent experimental results (Hoffman et al 1982). Sig- 
nificantly, Darewych found that no single value of r, would yield agreement over the 
energy range from zero to 10.0 eV. In order to obtain acceptable cross sections, it 
was necessary to resort to the extreme (and unsatisfactory) expedient of an energy- 
dependent cut-off radius. An identical finding was subsequently reported by Horbatsch 
and Darewych (1983) for positron-COz scattering. These important studies strongly 
suggest that the sensitivity of positron-molecule cross sections to polarisation effects 
may be so great that this crude model, based on cutting off the asymptotic form of 
V i D  with a spherically symmetric function, is simply inadequate for these systems. 

2.2.2. Adiabatic potential with the non-penetrating approximation. The great majority 
of polarisation potentials for positron scattering that are based on the adiabatic 
polarisation potential (§ 2.1.1) do not take full account of the effects of the sign of 
q-either because they implement the second-order perturbation theory approximation 
(0 2.1.2(i)) or because they use an electron-molecule potential. 

For example, the ab  initio electron-H2 polarisation potential of Lane and Henry 
(1968)-in which the non-penetrating approximation (0 2.1.3(ii)) was implemented 
for the full adiabatic polarisation potential-has been used without alteration in 
positron-H2 calculations by Lodge et al (1971), Baille et al (1974), Bhattacharyya 
and Ghosh (1975), Pande and Singh (1978) and Sur and Ghosh (1982). The analogous 
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electron-H2 potential of Hara (1 969)-which further implements the dipole approxi- 
mation ( 9  2.1.2(ii))-has been used by Darewych et a1 (1974). Since both of these 
electron-H2 polarisation potentials include perturbation terms of higher than second 
order, which strongly depend on the sign of q, and are based on the non-penetrating 
approximation, they may be inappropriate for positron-H2 scattering calculations (see 
the results in 9 3 for the BTADE potential defined in 9 2.3). 

The most recent applications of an adiabatic polarisation potential for positron- 
molecule scattering are those of Gillespie and Thompson (1975) for positron-N2 
scattering and of Jain (1983) and Jain and Thompson (1982, 1983a, b, c, d) for 
positron-CH4 and positron-NH3 collisions. In these calculations, a second-order polari- 
sation potential was used, and the non-penetrating and dipole approximations were 
made. Recent experimental results for positron-N2 scattering (Hoffman et a1 1982) 
indicate that Gillespie and Thompson’s results for this system are considerably too 
low, expecially at  scattering energies below 2.0eV. It is not clear whether this 
discrepancy arises from neglect of higher order perturbation terms, from monopole 
suppression, or from the use of the non-penetrating approximation. 

2.3. Polarisation potential used in the present study 

In order to explore various aspects of polarisation in positron-molecule systems, 
scattering calculations for positron-H2 collisions have been performed using three 
polarisation potentials. 

The first of these is the ab initio electron-H2 potential of Gibson and Morrison 
(1983). This potential is similar to the widely used Lane and Henry (1968) and Hara 
(1969) electron-H2 potentials in that it is based on a variationally determined adiabatic 
potential in which the dipole and non-penetrating approximations are made (perturba- 
tion terms of all order are included). Since the latter approximation makes this electron 
dipole potential ‘better’ than a purely-adiabatic model, we refer to it as the BTADE 
polarisation potential. This model has been extensively tested in calculations of cross 
sections for elastic scattering, rotational excitation, and vibrational excitation (Morrison 
et a1 1983, Feldt et a1 1983). In all cases, when combined with suitably defined static 
and exchange terms, it yields highly accurate cross sections. Thus we believe the BTADE 

potential to be a very good approximation to the true electron-H2 polarisation potential. 
By using the BTADE potential in conjunction with the two models defined below we 
can investigate the validity of using a highly accurate elecfron-H2 polarisation potential 
in positron-H2 collision studies. 

These other model potentials further enable us to study the importance of higher 
order perturbation terms and non-adiabatic effects in positron-molecule collisions. 
Both are based on the adiabatic approximation of 9 2.1.1. In both cases, the full 
adiabatic potential V:D (not the asymptotic form (1)) is used, non-adiabatic effects 
being approximated by the spherical cut-off function of equation (6). (The choice of 
r, for this function will be discussed in 9 3.) The ADELEC model potential is based on 
the adiabatic potential Vi,, which is calculated with an electron as the distorting 
particle. In contrast, the ADPOS potential is based on VLD, a positron being the 
projectile. Thus, the crucial difference between the ADELEC and ADPOS potentials 
arises from higher order perturbation terms, which explicitly depend on the sign of q. 

In order to calculate full interaction potentials Vi,, these polarisation potentials 
were combined with the static potential (for the ground (X ‘El) state), namely, 

(7) G ( r ;  R )  =($o(rm;R)IV+(rm,  r, R ) I $ o ( r m ;  RI) 
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where the integration is to be performed over the molecular electronic coordinates 
r,. Once a basis has been chosen to represent &(r,,,;R), this potential-and its 
projections on a basis of Legendre polynomials, which are required for scattering 
calculations-can be calculated using existing computer codes (Morrison 1980, Collins 
et a1 1980). (Since the focus of this research is on low-energy collisions and on the 
polarisation interaction, no attempt was made to incorporate rearrangement channels? 
(e.g., for positronium formation).) A detailed description of the basis used for the 
neutral H2 target and how it is augmented to allow for polarisation distortion and a 
comparison of the properties of the resulting near-Hirtree-Fock wavefunction with 
experiment and more accurate structure calculations can be found in Gibson and 
Morrison (1983). 

2.4. Scattering theory 

Most of the cross sections to be presented in 0 3 were calculated within the laboratory- 
frame close-coupling (LFCC) formalism (Arthurs and Dalgarno 1960) using the rigid- 
rotor approximation, in which the internuclear separation is fixed at its equilibrium 
value 1 .4ao. In this formulation, the positron-molecule wavefunction is expanded in 
a basis of coupled angular functions. This basis is complete in the (laboratory frame) 
angular coordinates R and F. The expansion leads to a set of coupled radial differential 
equations that can be solved for the scattering matrix. Cross sections for elastic 
scattering and rotational excitation can then be calculated from this matrix. 

In the LFCC formulation, channels are labelled by the quantum numbers (1, j ;  J ) ,  
where we use 1 for the quantum number for the orbital angular momentum of the 
projectile, j for the rotational angular momentum of the nuclei, and J for the total 
angular momentum. Since the latter observable is a constant of the motion, channels 
with different values of J are uncoupled. 

Convergence of the reported cross sections to better than 1% was achieved by 
using five rotational states in the expansion basis and including values of J through 
five in the cross sections. For each value of J, all allowed partial waves ( 1 )  were 
included, as were all allowed potential expansion coefficients $. Integration of the 
coupled scattering equations (by an integral equations algorithm which has been 
discussed elsewhere (Morrison 1979)), was fully converged by rq = 6 0 . 0 ~ ~ .  

In order to investigate the possibility of a Ramsauer-Townsend minimum in the 
total positron-H2 cross sections (see li 3.3), we also performed body-frame fixed-nuclei 
(BFFN) scattering calculations (cf Burke and Chandra 1972, Lane 1980, and references 
therein). In this theory, the rotational Hamiltonian is completely neglected except in 
the asymptotic region, where it is reintroduced by performing a rotational-frame 
transformation (Chang and Fano 1972) on the scattering matrix. The Schrodinger 
equation is written in a body-fixed reference frame, the polar axis of which is chosen 
to lie along the internuclear axis d. The system wavefunction is expanded in a basis 
of spherical harmonics, and the resulting coupled radial differential equations are 
solved numerically. 

T The thresholds for dissociation, positronium formation and electronic excitation to the B 'Zz state are 
4.476, 8.63 and 11.36 eV, respectively. Dissociation does not become energetically favourable, however, 
until about 8.8 eV. 
$Most other positron-Hi, calculations in the literature include only s and p waves (cf Lodge et a1 1971, 
Darewych et a1 1974). We have tested this approximation and found it to be a reasonable one. The 
percentage error in the total cross section at 0.1, 1.0 and 8.0 eV due to neglect of partial waves of order 
greater than 1 = 2 is 0.5, 1.6 and 3.0, respectively. 
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Channels in the BFFN theory are labelled by ( I ;  A),  where A is the absolute value 
of the projection of the orbital angular momentum of the projectile along the internu- 
clear axis (in atomic units). In the fixed-nuclei approximation, the coupled scattering 
equations separate into independent sets according to the value of A and the parity 7 
of the system wavefunction. Therefore, the total integrated cross section (the sum of 
the elastic scattering and all rotational excitation cross sections) can be written as a 
sum of partial cross sections, namely, 

Each pair of labels A, 7 defines a system symmetry, e.g., Eg (A = 0, 7 = gerade). 
In BFFN electron-H, calculations, only a few symmetries are required to converge 

the sum in equation (8). For example, accurate total e-H, cross sections at scattering 
energies below about 10.0 eV can be obtained retaining the Eg, E, and IT, contributions 
to this summation. In contrast, more symmetries are required to converge positron-H2 
cross sections at the same energies. In particular, contributions to atot of more than 
10 per cent are made by the IT, and Ag terms. In our BFFN positron-H2 calculations, 
three partial waves (1) were required to converge each partial cross section 

3. Results and discussion 

The various approximations made in the BTADE, ADELEC and ADPOS potentials give 
rise to differences in these potentials, particularly near the target. These potentials 
will be discussed in 0 3.1. The important question of the significance of these differences 
to positron-H2 cross sections will be addressed in § 3.2 and the possibility of a 
Ramsauer-Townsend minimum will be explored in 0 3.3. 

3.1. Potentials 

The three polarisation potentials of § 2.3 can conveniently be compared by examining 
the radial coefficients in a Legendre expansion, 

In figures l ( a )  and ( b ) ,  the A = 0 and A = 2 components of the three polarisation 
potentials under consideration are shown. 

Clearly, these three polarisation potentials are quite different. The dipole non- 
penetrating, electron-H, BTADE potential is noticeably weaker than either the cut-off 
adiabatic electron-H2 or positron-H2 potentials. Also evident in figure 1 are substantial 
differences between the ADELEC and ADPOS potentials. In this figure these potentials 
are cut off using the same value of r,, so the differences between them derive entirely 
from higher order perturbation terms in the adiabatic polarisation potential, terms 
that depend on the sign of q. Changing the charge from q = - 1 (electron) to q = + 1 
(positron) causes a substantial strengthening of the adiabatic polarisation potential in 
the near-target region. 

The differences shown in figure 1 give rise to two questions. First, to what extent 
(if any) do these differences affect cross sections for this system? And second, can the 
differences that result from higher order perturbation terms be understood in terms 
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Figure 1. ( a )  Spherical ( A  = 0) and ( b )  non-spherical ( A  = 2) radial expansion coefficients 
(see equation (9)) of the three polarisation potentials discussed in 8 2.3: the adiabatic 
electron-H, potential (ADELEC), the adiabatic positron-H, potential (ADPOS) and the 
non-adiabatic electron-H, potential (BTADE). The ADELEC and ADPOS potentials were 
cut off using equation ( 6 )  with r,= 1 . 5 ~ " .  

of the distortion of the target charge cloud? The first of these questions will be taken 
up in § 3.2. 

Turning to the second question, we can conveniently display the effects of polarisa- 
tion by expanding polarised and unpolarised single-particle probability densities of the 
target in Legendre polynomials (Morrison 1980). For example, for the neutral target, 
with density p ( r q ;  R ) ,  the radial coefficient in such an expression is 

a,(r,;  R )  =- 2 A  +' [: p(r , ;  R)P,(cos 6,) d(cos eq) .  
2 

In figure 2 ,  the A = O  and A = 2  projections of the neutral, electron polarised and 
positron polarised H2 single-particle densities are compared. (For the (adiabatic) 
polarised densities in this figure, the (fixed) scattering particle is located along the z 
axis at  zq = 2.5ao.) 

Clearly, the distortion induced by a positron is quite different from that due to an 
electron, especially for A > 0. The ADELEC and ADPOS potentials of figure 1, which 
are the energy changes resulting from these distortions, are consequently quite different 
in the vicinity of the target charge cloud. 

The differences seen in figure 2 can be understood in terms of the semi-classical 
picture given in 0 2.2. If the scattering particle is near the target, the molecular 
electronic charge distribution distorts in such a way that, on average, it either moves 
away from the projectile (for an electron) or towards the projectile (for a positron). 
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The two distortions are not identical because the electric field that brings about the 
distortion is radial. Hence the charge density that ‘piles up’ near the projectile in the 
positron case experiences a stronger field than in the electron case. If the scattering 
particle is reasonably far from the target, the charge cloud experiences a nearly uniform 
electric field. Thus, as r increases, the adiabatic polarisation potentials become identical. 
(All of these potentials obey equation (1) for r > 10.Oao.) 

- 

- 

1, 

3.2. Cross sections 

As might be expected, using polarisation potentials as different as those of figure 1 in 
scattering calculations on a system that is highly sensitive to polarisation leads to 
strikingly different results. To illustrate this point, we compare total integrated cross 
sections (from the ground rotational state?, jo = 0) determined with the ADPOS and 
BTADE potentials in figure 3. Also shown in this figure are the most recent sets of 
published experimental data (Hoffman et a1 1982, Charlton et a1 1983). 

Q *  

Q *  
2 

I 
0 2 4 6 8 10 

Energy ieV) 

Figure 3. Total integrated cross sections for positron-H, scattering calculated with the 
ADPOS and BTADE polarisation potentials. The ADPOS potential was cut off using the 
function of equation (6 )  with r, = l.8a0. The cross sections shown are the sum of integrated 
elastic scattering ( j o  = 0 + j = 0) and rotational excitation (io = 0 + j = 2) cross sections as 
determined from LFCC calculations (see $2.4). Also shown are the experimental results 
of Hoffman et a1 (1982) (stars) and of Charlton et al (1983) (diamonds). 

t We include in the tutal cross sections utot only contributions from jo = 0 + j = 0 (elastic) and jo = 0 + j = 2. 
Cross sections for IAjl> 2 make negligible contributions to otot at energies under consideration (cf, Baille 
et al 1974). 
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The two polarisation potentials clearly lead to qualitatively different cross sections. 
In contrast to the BTADE results, the ADPOS cross sections do not exhibit a minimum 
and rise much more rapidly with decreasing energy. (We shall return to the question 
of the minimum in atot in 0 3.3.) Since the positronium formation channel is not taken 
into account in our formulation, the calculated cross sections do not exhibit the rise 
at about 8.0 eV that is seen in the experimental results due to this channel. However, 
below this energy it is possible to obtain good agreement between experiment and 
theory using the cut-off adiabatic positron-H2 potential. (In the ADPOS potential used 
here we chose r,= 1 . 8 ~ ~  (see figure 6 for a study of the sensitivity of these results to 

Significant differences are also seen in the total momentum transfer cross sections 
a,,,, calculated with the BTADE and ADPOS potentials, shown in figure 4. Both 
potentials produce a low-energy minimum in a,,, although at different energies. 

r c ) .  

2 L 6 0 
Energy ieVi  

Figure 4. Total momentum transfer cross sections for positron-H, scattering calculated 
with the ADPOS (full curve) and BTADE (triangles) polarisation potentials. The ADPOS 
potential was cut-off with the function of equation ( 6 )  with r, = 1 . 8 ~ " .  The cross sections 
shown are the sum of momentum transfer cross sections for elastic scattering ( jo = 0 + j = 0) 
and rotational excitation ( jo = 0 + j = 2) cross sections as determined from LFCC calculations 
(see 4 2.4). 
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Since the ADPOS potential gives the best overall agreement with experimental total 
cross sections, we used it to determine total differential cross sections. These are shown 
(at selected energies) in figure 5. Their variation with energy is qualitatively similar 
to that observed in positron-He scattering (cf figure 5 of Massey et a1 1966). These 
results may be useful in the absolute normalisation of experimental data (Hoffmann 
et a1 1982). 

5 00 

4.30 

1.25 

0.63 

I I 

ke:0 -10.0 e" eV 

0 30 60 90 120 150 180 
Scattering angle (deg) 

Figure 5. Total differential cross sections for positron-H, scattering at selected energies. 
These results were calculated with the ADPOS polarisation potential using the cut-off 
function of equation (6 )  with r, = 1.8. The cross sections shown are the sum of differential 
elastic scattering ( jo = 0 + j = 0) and rotational excitation ( j,, = 0 + j = 2) cross sections as 
determined from LFCC calculations (see $ 2.4). 

As expected, differential cross sections exhibit a dramatic sensitivity to the choice 
of polarisation potential. For example, BTADE differential cross sections (not shown) 
are less strongly peaked in the forward direction but show more scattering at 0, > 90" 
than do the ADPOS results in figure 5. 

We also calculated rotational excitation cross sections with the ADPOS and BTADE 

potentials. These cross sections also showed considerable sensitivity to the polarisation 
potential at scattering energies greater than about 0.1 eV. (Below this energy, they 
are entirely determined by the permanent quadrupole interaction.) However, since the 
ADPOS rotational excitation cross sections are given to within a few per cent by the 
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first Born approximation for scattering energies up to about 8.0 eV, they need not be 
presented here (see Baille et al 1974, Pande and Singh 1978). 

In assessing the cross sections presented thus far, it is important to keep in mind 
that the ADPOS potential contains an adjustable parameter, the cut-off radius r,. The 
choice of r, determines approximately the extent to which non-adiabatic effects modify 
the adiabatic polarisation potential. In figure 6( a ) ,  we present a study of the sensitivity 
of utot to this parameter. All of the curves in this figure are based on ViD. 
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Figure 6. Studies of the sensitivity of total integrated positron-H, cross sections to: ( a )  
the cut-off parameter in the cut-off function of equation ( 6 ) ;  ( b )  the use of an electron or 
a positron as the distorting particle. In ( a ) ,  results are shown for three cut-off ADPOS 
potentials, with cut-off radii r,= 1 . 5 ~ ~  (squares), 1 . 7 ~ ~  (crosses), and 1 . 8 ~ ~  (full curve), 
and for the fully adiabatic ADPOS potential of equation (3) (circles). In ( b )  cross sections 
are shown for identically cut-off ADPOS (squares) and ADELEC (diamonds) polarisation 
potentials (with r, = 1 . 5 ~ ~ ) .  Also shown are the experimental data of Hoffman eta1 (1982)  
(stars). 

The purely adiabatic potential, in which r, = 0 and non-adiabatic effects are com- 
pletely neglected, is too strong to qualitatively reproduce the shape of the experimental 
cross sections shown in figure 3. This observation emphasises the importance of 
non-adiabatic effects for low-energy positron-molecule scattering. Applying the cut-off 
function C(r,)  weakens Vi,,, decreasing the total cross section. Increasing r, in this 
function 'flattens' a,,,, causing it to rise more sharply with decreasing energy. Encourag- 
ingly, the sensitivity of this cross section to r, is not great. 
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A concern of the present study that is unrelated to non-adiabatic effects is the 
importance of the higher order (sign-dependent) perturbation terms in ViD.  In figure 
6(b) we compare total positron-H2 cross sections calculated with identically cut-off 
ADELEC and ADPOS potentials. The differences between these curves, therefore, arise 
solely from the sign of the charge of the (fixed) projectile. 

Figure 6 ( b )  illustrates the strong sensitivity of uta, to the sign of q in Vwl. The 
ADELEC cross section is much flatter than the ADPOS curve and does not agree as well 
with the experimental data. Worse yet, variation of r, in the ADELEC potential does 
not noticeably improve the overall agreement with experiment. For example, decreas- 
ing r, induces a sharper rise in the total cross section below about 3.0 eV, improving 
the agreement with experiment at low energies. However, this adjustment lowers a,,, 
above 3.0 eV, moving the theoretical curve away from the experimental results. These 
results tend to support the findings of Darewych (1982) and of Horbatsch and Darewych 
( 1983) that a cut-off electron polarisation potential is inadequate for positron collisions, 
although we note that the latter studies were based on the asymptotic form (1) rather 
than on ViD.  

3.3. A Ramsauer-Townsend minimum? 

One of the most distinctive differences between the BTADE and ADPOS cross sections 
in figure 3 is the minimum in the former curve at about 0.9 eV. The recent experimental 
data of Hoffman et al (1982) do not show a low-energy minimum (see also Coleman 
et a1 1974, 1976). However, there is some indication of such a structure (at about 
3.8 eV) in the results of Charlton et a1 (1980, 1983). The theoretical cross sections 
of Lodge et al (1971), Baille et a1 (1974), Hara (1974) and Sur and Ghosh (1982), 
all of which were based on electron-H2 polarisation potentials, exhibit a minimum in 
the total cross section, although the energy at which this minimum occurs and the 
rapidity of the decrease of U,,, with increasing energy differ significantly among these 
results. 

Because of disagreements among existing experimental data and uncertainties about 
the proper inclusion of polarisation in theoretical calculations, we consider the question 
of whether or not there is a Ramsauer-Townsend minimum in the total positron-H2 
cross section to be unanswered at present. Unfortunately, the need for a parameter 
in the ADPOS potential prohibits us from making a definitive statement on this question. 

However, some light can be shed on the situation by breaking down the total cross 
section into partial conkibutions according to system symmetry (cf, equation (8)). In 
figure 7( a ) ,  the ADPOS total cross sections and contributions to it from the dominant 
symmetries in the energy range under consideration (X,, 2, and nu) are shown. 

The X, symmetry is dominant below about 2.0eV, and is responsible for the 
sharp rise in ut,, at low energies. Above this energy, several symmetries make important 
contributions to a,,,. The X, cross section is nearly zero at roughly 3.8 eV. However, 
this energy is large enough that the contributions from the Xu and IT, symmetries 
effectively ‘wash out’ this minimum from the total cross section, which is free of 
structure. For a Ramsauer-Townsend minimum to be present in U,,,, the minimum 
in the X, cross section would have to occur at a significantly lower energy. 

This is precisely what happens when the BTADE potential is used. The X, cross 
section produced by this potential is nearly zero at about 0.9 eV, at which energy this 
contribution is the dominant one. This minimum therefore appears in the total cross 
section shown in figure 3. This result shows the X, partial cross section to be particularly 
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Figure 7. Investigation of the low-energy minimum in the positron-Hi, total cross sections. 
(a) Partial cross sections (see equation (8)) in the Z, (squares), 2, (pluses) and II, (stars) 
symmetries, together with their sum, the total cross section. ( b )  Z, eigenphase sums for 
various polarisation potentials: fully adiabatic ADPOS (triangles) and ADELEC (squares), 
cut-off ADPOS with r,= 1.5a0 (circles) and with r,= 1 . 8 ~ ~  (full curve), cut-off ADELEC 
with r,= 1.5a0 (pluses) and BTADE (crosses). Note that the ADPOS with rc=1.8a, was 
used in calculating the results of figures 3, 4 and 5 .  

sensitive to short-range features of the polarisation potential. This sensitivity is strik- 
ingly illustrated by the Z, eigenphase sum, a,,, (X,). This quantity equals zero at an 
energy very near that at  which the corresponding partial cross section is zero. In figure 
7( b) ,  Z, eigenphase sums are compared for several polarisation potentials. 

Clearly, this important scattering parameter is critically sensitive to how non- 
adiabatic effects are incorporated in the model potential. For example, one can change 
the energy at which the Xg cross section passes through zero by adjusting the cut-off 
radius in the ADPOS potential. Increasing the cut-off radius from 1 . 5 ~ ~  to 1 . 8 ~ ~  in 
this potential lowers the energy at which Ssum(Xg) equals zero. Use of a much larger 
value of r, in the ADPOS potential could induce a zero in Bsum(Xg) at a low enough 
energy that the resulting total cross section would exhibit a Ramsauer-Townsend 
minimum. However, such a calculation would be unlikely to shed much light on the 
question of whether the feature is actually present in the positron-H2 system. 

The eigenphase sums in figure 7 (  b )  also exhibit great sensitivity to the sign of q in 
the adiabatic potential. For example, identically cut-off ADPOS and ADELEC potentials 
produce zeros at quite different energies, the latter occurring at a much lower energy 
(for the same value of rc) than the former. 
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4. Conclusions 

We have explored several facets of polarisation in positron-molecule scattering, using 
as a first example positron-H2 scattering in the rigid-rotor approximation. At issue 
are the importance of higher order perturbation terms in the adiabatic polarisation 
potential-terms which are sensitive to the sign of the charge of the projectile-and, 
secondarily, non-adiabatic effects in Vpol. We have also examinated the validity of 
using electron-molecule polarisation potentials in positron-molecule scattering calcula- 
tions. 

We have demonstrated that, because of differences in the way electrons and 
positrons distort the H, charge cloud, Vpol and, more importantly, a,,,, exhibit consider- 
able sensitivity to the sign of the charge of the projectile. This fact indicates the 
importance of perturbation terms of higher than second order in the adiabatic polarisa- 
tion potential. Non-adiabatic effects are also important, and the cross sections are 
rather sensitive to how they are taken into account. 

Using a cut-off fully adiabatic positron-H2 polarisation potential, we have obtained 
rather good agreement with recent experimental total cross sections (at energies where 
the positronium formation channel appears to be unimportant), However, the presence 
of the adjustable cut-off radius in this model renders it less than satisfactory. Theoretical 
cross sections are rather sensitive to the value of this parameter. However, no ab initio 
prescription for its determination can be given at present, and without such a prescrip- 
tion, even qualitative questions-like the presence or absence of a Ramsauer-Townsend 
minimum-cannot be resolved by theory. Therefore, we view the present ADPOS 

calculations as only a first step towards a viable theory of polarisation in positron- 
molecule scattering. 

Further progress would seem to require a more rigorous, parameter-free, computa- 
tionally tractable theory of non-adiabatic effects in positron scattering. An exact 
treatment for a simple system, such as positron-H2, (e.g., using an optical potential) 
would provide valuable benchmarks for future study. 

A further difficulty arises for scattering energies above about 5.0 eV, where various 
rearrangement channels (e.g., positronium formation, dissociation, and electronic exci- 
tation) properly should be included in the theory. Doing so may exacerbate the 
problems caused by polarisation. Positronium formation is a correlation effect, like 
polarisation, and, if the coupling between the positron formation channel and, say, the 
elastic channel is strong, the former may significantly influence the total cross sections. 
Indeed, since positronium is highly polarisable (Humberston 1979), any theory that 
includes positronium formation should treat all correlation effects, including polarisa- 
tion very accurately. 

Finally, it is important to determine if the sensitivity seen in the present positron-H2 
study to higher order perturbation terms and to how the dynamic polarisation terms 
are approximated is exhibited in other positron-molecule systems. The availability 
of recent experimental data and theoretical work recommends the positron-N, and 
positron-C02 systems for immediate further study of this question. 
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