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We discuss the theory of cooling electrons in solid-state devices via “evaporative emission.” Our model is
based on filtering electron subbands in a quantum-wire device. When incident electrons in a higher-energy
subband scatter out of the initial electron distribution, the system equilibrates to a different chemical potential
and temperature than those of the incident electron distribution. We show that this re-equilibration can cause
considerable cooling of the system. We discuss how the device geometry affects the final electron temperatures,
and consider factors relevant to possible experiments. We demonstrate that one can therefore induce substantial
electron cooling due to quantum effects in a room-temperature device. The resulting cooled electron population
could be used for photodetection of optical frequencies corresponding to thermal energies near room
temperature.
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I. INTRODUCTION

As electronic devices become smaller, they leave the re-
gime of classical physics and enter the realm of quantum
physics. Many classical quantities such as resistance must be
reinterpreted for systems on a mesoscopic scale. One such
classical concept is that of the refrigerator: a device that uses
an external source of work to cool a gas. In this paper we
consider whether this classical concept can be applied to an
electron gas so that one could cool such a gas by applying a
voltage to a device.

There are many ways to cool electrons in a condensed-
matter system. For example, thermoelectric coolers based on
the Peltier effect1 are available commercially. A different
kind of electron-cooling mechanism proposed in semicon-
ductor devices is based on a quasistatic expansion of a two-
dimensional electron gas.2 Still other possibilities include
taking advantage of many-body effects that can lead to liquid
and gas phase transitions in the electron population in a
semiconductor quantum well.3,4

In this paper we investigate electron cooling in a mesos-
copic solid-state device using evaporative emission. This
method entails removal of �“filtering”� electrons from a high-
energy subband of a many-electron system, followed by re-
laxation of the remaining electrons to a temperature lower
than that of the initial system. Evaporative cooling is widely
used in bosonic systems,5 but this method is harder to imple-
ment for fermionic systems, as we shall discuss below.

In Sec. II we describe the theory of a two-dimensional
device that can cool electrons in quantum wires. We use the
Landauer formula6–8 to analyze the cooling properties of
such a device. This formula was originally developed to ex-
plain the transport properties of electrons in a quantum de-
vice. It relates these properties to the quantum-mechanical
scattering amplitudes for electrons that pass through the de-
vice. To calculate these amplitudes, we use an extension of
R-matrix theory9–11 summarized in the Appendix. In Sec. III
we use this theory to calculate cooling properties of several
two-dimensional devices. We begin with a simple T-junction
device and show that by optimizing its design we can

achieve electron cooling. We improve upon this result by
switching to a “plus-junction” design, which improves the
cooling characteristics of the device. In Sec. IV we discuss
applications and realistic parameters for a device to cool
electrons, and in Sec. V we summarize our key results and
describe future research.

II. ELECTRON COOLING IN TWO-DIMENSIONAL
QUANTUM DEVICES

Our theoretical approach is analogous to the working
principle of the classical Hilsch vortex tube,12–14 which uses
a T-shaped assembly of pipes to separate high-pressure air
into a high-temperature system and a low-temperature sys-
tem. This separation does not violate the second law of ther-
modynamics, because the system is driven by an external
force.

We use a similar idea to cool electrons in a quantum-
mechanical system. The simplest such device uses a
T-shaped assembly of quantum wires to remove higher-
energy electrons from an electron gas at fixed temperature.
Figure 1 is a schematic of such a configuration that defines
the regions of the device. We assume that our device is
formed from a quantum well whose thickness is sufficiently
small that the device can be considered two-dimensional.
That is, we assume that the device confines electrons to a
layer of thickness z0 such that the confinement energy asso-
ciated with motion in the z direction is much larger than any
other energy in the problem. �This confinement energy is
�2�2 /2m*z0

2, where m* is the electron effective mass.�
There are three leads in the T junction: the input lead, the

output lead, and the sidearm, as shown in Fig. 1. We shall
label physical quantities by subscripts i, o, and s, accord-
ingly; for example, we denote the widths of the leads by wi,
wo, and ws. Electrons are injected into this device through the
input lead, and in the input region are in thermal equilibrium
at an initial temperature Ti and chemical potential �i. Filter-
ing of higher-energy electrons from the initial electron gas
occurs in the scattering region. The rate of scattering into the
sidearm depends upon the electron energy: if the subband
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energy in lead of width w is given by En=�2�2n2 /2m*w2,
then the “force” that electrons exert on the sides of the lead,
F=−dE /dw, is larger for larger n. Thus when an electron
encounters the sidearm, the higher-subband states are more
likely to scatter into the sidearm. Alternatively, one can see
that the higher-subband electrons scatter preferentially to the
sidearm because these electrons are in states with wave func-
tions that are linear combinations of plane waves with larger
transverse momenta.

Electrons that scatter forward into the output lead proceed
into the ballistic region, where the electron population is
determined entirely by the product of the initial electron dis-
tribution and the scattering probability. Next these electrons
enter the adiabatic region, where they exchange energy
among themselves and so relax to a temperature To and a
chemical potential �o. In principle, the values of To and �o
can be calculated from conservation laws for energy and par-
ticle flux. In Sec. III we report such calculations and show
that for some device geometries the temperature To is less
than the initial temperature: this temperature decrease is the
desired cooling effect.

Finally, at large distances �as determined by the electron-
phonon scattering rate� the electrons will return to equilib-
rium with the lattice at the initial temperature Ti; this re-
equilibration occurs in the equilibrium region. To see
cooling, one must measure the temperature of electrons be-
fore they get to this region.

Below we define our notation and describe how we cal-
culate the electron distributions in the input and output leads.
We also define and describe the calculation of a quantitative
measure of electron cooling in the device.

A. Input electron densities and populations

Provided the electrons in each lead are in thermodynamic
equilibrium, we can treat them as an ideal Fermi gas. For
lead � therefore the subband electron density �per unit vol-

ume� in an open �energetically accessible� subband n is

�n
����E,T�,��� = f�E;T�,���Dn

����E� �1�

for n such that the subband energy obeys �n
����E. In this

equation, the density of states is

Dn
����E� = �E − �n

����−1/2. �2�

The quantity E is the dimensionless total electron energy
measured in units of the lowest subband energy of the input
channel, E1

i ��2�2 /2m*wi
2. We choose the zero of energy at

the energy of the ground transverse state in the input lead.
We measure all other subband thresholds �n

��� relative to this
energy and in units of E1

i , so that

�n
��� = n2wi

2

w�
2 − 1. �3�

The occupation probability for lead � is given by the
Fermi-Dirac distribution function for total electron energy
E=En

���+�n
���,

f�E;T,��� =
1

e�E−���/kBT + 1
, �4�

where �� is the electrochemical potential in lead �, En
��� is the

longitudinal kinetic energy of the electron with longitudinal
wave number k, and kB is Boltzmann’s constant.

The corresponding subband number flux in lead � is the
integral of the subband density �Eq. �1�� times the electron
velocity vn

����E� over all allowed total electron energies E:

Jn
����T�,��� = �

�n
���

�

�n
����E;T�,���vn

����E�dE , �5a�

where vn
��� is the velocity of electrons in subband n of lead �

with energy E, this velocity being measured in units of
�2m*E1

i ,

vn
����E� = �E − �n

���. �5b�

Note that the dimensionless velocity is the inverse of the
one-dimensional density of states. The total input number
flux in lead � is the sum of the subband number fluxes for
that lead,

J����T�,��� = �
n=1

�

Jn
����T�,��� . �6�

The total energy flux past a given point, K����T� ,���, can
be calculated in a similar fashion:

K����T�,��� = �
n=1

�

Kn
����T�,��� �7a�

=�
n=1

� �
�n

���

�

E�n
����E;T�,���vn

����E�dE , �7b�

where Kn
����T� ,��� is the energy flux for the nth subband of

lead �.

FIG. 1. Regions in a two-dimensional T-junction device. The
“ballistic region” is the part of the device within a distance compa-
rable to the electron-electron scattering length ��e–e� of the junction.
The “adiabatic region” is within the electron-phonon scattering
length ��e–ph� of the junction. It is in the adiabatic region that we
achieve cooling. At larger distances, in the “equilibrium region,” the
electrons have returned to the temperature of the lattice.
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B. Transmitted-electron densities and populations

Immediately upon leaving the scattering region, transmit-
ted electrons are in a highly nonequilibrium distribution and
cannot be characterized by a temperature or a chemical po-
tential. By the time these electrons have traveled a distance
along the lead comparable to several times their relaxation
length, they have come to equilibrium at To and �o, and it is
meaningful to describe them by a Fermi-Dirac distribution
function f�E ;To ,�o�. The output-lead properties To and �o

refer to the electron population in the adiabatic region, where
the output electrons are in thermodynamic equilibrium, al-
though they are not in equilibrium with the lattice. Given Ti
and �i for the input lead, our goal is to determine the values
of To and �o for the output lead that yields the lowest To
	Ti; i.e., that maximizes cooling of transmitted electrons.

For a given Ti and �i, we can determine the temperature
in the output lead To by requiring that the flux of electrons in
the output lead at equilibrium equals the flux of electrons
transmitted into this lead �conservation of flux�. To set up
equations to implement this strategy, we must define subband
and lead populations in terms of electrons transmitted from
the input lead into the output lead. The state-to-state density
of electrons transmitted from an open subband n of the input
lead i into an open subband n� of a lead �� is

�n�,n
��,i �E;Ti,�i� = �n

�i��E,Ti,�i�Tn�,n
��,i�E� �8�

for E
�n�,n
max, where

�n�,n
max � max	�n

�i�,�n�
����
 . �9�

In Eq. �8�, Tn�,n
��,i�E� is the state-to-state transmission coeffi-

cient from subband n in lead i to subband n� in lead ��. The
restriction that the total electron energy E be greater than or
equal to �n�,n

max ensures that both subbands n and n� are open;
were this restriction violated, the transmission coefficient

Tn�,n
��,i would be undefined.
The flux of electrons transmitted into subband n� of the

output lead, the transmitted subband flux, is

Jn�
o,i�Ti,�i� = �

n=1

� �
�

n�,n
max

�

�n�,n
o,i �E;Ti,�i�vn

����E�dE . �10�

Hence the total flux of electrons transmitted into the output
lead is

Jo,i�Ti,�i� = �
n�=1

�

Jn�
o,i�Ti,�i� . �11�

Similarly, for the energy flux we have

Ko,i�Ti,�i� = �
n�=1

�

Kn�
o,i�Ti,�i� �12a�

=�
n=1

�

�
n�=1

� �
�

n,n�
max

�

E�n,n�
o,i �E;Ti,�i�vn

����E�dE . �12b�

C. Cooling parameter

For any given Ti and �i we can determine the equilibrium
temperature in the adiabatic region of the output lead as fol-
lows. Consider a surface that crosses the wire in the ballistic
region. The number flux and energy flux through that surface
are given by Eqs. �11� and �12�. If we draw a second such
surface in the adiabatic region, then the number flux and
energy flux through this surface will be given by Eqs. �5� and
�7� evaluated at the local �output-lead� values of the elec-
tronic chemical potential �o and temperature To. The values
of �o and To will reach steady state only when the fluxes
through these surfaces balance. If these fluxes do not bal-
ance, then a net charge or energy will flow into the region
between the surfaces until these fluxes do balance. Therefore
in steady state we have

J�o��To,�o� = Jo,i�Ti,�i� , �13a�

K�o��To,�o� = Ko,i�Ti,�i� . �13b�

Using Eqs. �12� we calculate the energy flux into the bal-
listic region of the output lead. We then calculate the chemi-
cal potential and temperature that would give the same fluxes
in the output region. This calculation produces values of To
and �o for the output lead.

As a measure of the effectiveness of a given device for
cooling electrons, we define the cooling parameter

��Ti,�i� �
To�Ti,�i�

Ti
. �14�

If ��1, the device heats electrons. Our goal therefore is to
determine the device geometry and initial electron properties
Ti and �i that produce the smallest possible �	1—a situa-
tion we characterize as “maximum cooling.”

III. RESULTS

To set the stage for presentation of our primary results we
briefly consider a toy model in which we replace the Fermi-
Dirac distribution of Eq. �4� by a classical Boltzmann distri-
bution. In this idealized device the widths of the input and
output leads are equal. The input and output electron densi-
ties then have the form

�toy
�i� �E,
i,ci� = ci �

n=1

nmax
�i�

Dn
�i��E�e−E/
i, �15a�

�toy
�o��E,
i,co� = co �

n=1

nmax
�o�

Dn
�i��E�e−E/
o, �15b�

where the ci’s are overall normalization constants that effec-
tively replace the chemical potentials as independent vari-
ables. Assuming that the junction is an ideal electron filter,
we fix the number of occupied input-lead subbands nmax

�i� and
output-lead subbands nmax

�o� . For example, we can assume that
two input-lead subbands are occupied, and that the junction
removes all electrons from the second subband and transmits
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all electrons from the first subband: nmax
�i� =2 and nmax

�o� =1.
In this model, the number-flux and energy-flux integrals

can be evaluated analytically. Equating the incoming and
outgoing fluxes, we can eliminate the ci’s to obtain a tran-
scendental equation that relates the cooling parameter � to
the input-lead temperature 
:

� =
1

1 + 3e−�3/�
�/�1 + e−�3/�
���

. �16a�

We can expand this equation in a Taylor series about �=1 to
get the approximate solution

��
� � 1 −
3�e3/

 + 
 + 3�

�1 + e3/
��e3/

2 + 
2 + 3
 + 9�
. �16b�

In our dimensionless units the threshold of the second
subband is at an energy of 3. We find that maximum cooling
occurs when 
�3, where there are thermally excited elec-
trons in the second band. At very large temperatures �
�3�,
the populations in the two input-lead subbands are nearly
equal, and losing electrons from the second subband corre-
sponds to losing half of the total number of electrons without
appreciable cooling. Figure 2 shows these results along with
those for calculations in which three input-lead subbands are
occupied and electrons are lost only from the second and
third subbands or only from the third subband. This figure
makes clear that cooling is possible within this toy model.
Furthermore, these results provide useful bounds for consid-
ering cooling from real devices, to which we now turn.

To achieve optimum cooling, higher-subband electrons
should scatter into the sidearm, and lower-subband electrons
should scatter into the output lead. In a real device not all
higher-subband electrons will scatter into the sidearm, and
not all the lower-subband electrons will scatter into the out-
put lead. The probabilities for electron scattering, as quanti-

fied in transmission coefficients, depend on system proper-
ties such as the geometry and on scattering potentials. We
consider “perfect devices” that have no impurities, so elec-
trons are scattered only by the boundaries of the device. We
further assume that the potential energy of the electrons in
the leads is zero; this simplifying assumption is not essential
to either our formalism or the cooling effect. We can alter the
scattering of electrons by changing the ratio of the width of
the sidearm to that of the input lead �Fig. 1� or by changing
the geometry altogether.

A. T-junction cooling devices

To calculate the cooling parameter � we need to know the
population of electrons in each subband. To determine this
quantity we must in turn know transmission coefficients
from a state in the input lead to states in the output lead. To
calculate these transmission coefficients we use a generaliza-
tion of R-matrix theory that we summarize in the Appendix.
To determine the results reported here, we calculated cooling
parameters � using transmission coefficients for a T-junction
device for various ratios of the width ws of the sidearm to the
width wi of the input lead, keeping the width wo of the output
lead equal to wi.

1. T-junction device with ws=wi=1.0

We first consider a T-junction device in which all leads
have the same width: wi=ws=wo. Figure 3 �top� shows
“state-to-lead” transmission coefficients for scattering into
the output lead of electrons in different subbands of the input
lead. These coefficients are sums over all energetically ac-
cessible �open� subbands no of the output lead of state-to-

state transmission coefficients Tno,ni

��,i �Eq. �8�� from a given
state ni of the input lead. This figure illustrates the loss of
higher-subband electrons from the initial electron distribu-
tion.

Also plotted in the middle panel in this figure are the
state-to-state transmission coefficients. We see that it is in-
deed the case that states in higher subbands are more likely
to scatter down the sidearm than are states in lower sub-
bands. We have found this result to be generally true for all
geometries we have considered.

The cooling parameter � for this case is shown in the
lower panel in Fig. 3 as a function of the dimensionless
“reduced” initial temperature Ti with the initial chemical po-
tential �i=0. �Note that we measure the energy in terms of
E1

i , and all the energies are measured from E1
i . So �i=0

means that the external potential of the system is such that
the Fermi energy is EF=�2�2 /2m*wi

2.� For this geometry the
cooling parameter ��1 for all initial temperatures. That is,
this device geometry heats electrons—hardly the desired ef-
fect.

This case is important because it demonstrates that even if
high-energy electrons are lost due to scattering, a compensa-
tory loss of low-energy electrons may produce an overall
heating effect. Loss of low-energy electrons opens gaps in
the electron distribution at low energies. Higher-energy elec-
trons can then relax into these newly accessible low-energy

FIG. 2. �Color online� The cooling parameter � as a function of
the dimensionless input-lead temperature 
i, for the toy model of
Eq. �16a�. The solid curve corresponds to a two-band model in
which the idealized device transmits all electrons from the first
input-lead subband and removes all electrons from the second. The
long-dashed curve, which lies almost on top of the solid curve,
shows the analytic approximation of Eq. �16b�. The other two
curves correspond to numerical solution of a three-band model: for
the short-dashed curve the device removes all electrons from the
third input-lead subband. For the dotted curve, the device removes
all electrons from the second and third subbands. In our dimension-
less units, the threshold energy of the second subband is 3 and that
of the third subband is 8.
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states, with the resulting energy difference liberated as ther-
mal energy. If this happens, then the loss of low-energy elec-
trons will result in overall heating. The Fermi-Dirac case
differs from the Boltzmann case in our toy model: in the
Boltzmann case the upper subbands are always depopulated
as T→0, while in the Fermi-Dirac case the upper subbands
can be populated even at T=0 for large chemical potentials
�. Even a small dip in the scattered-electron distribution at
low energies can significantly affect the final temperature. To
cool electrons therefore it is not sufficient to merely scatter
higher-energy electrons. We must scatter thermally excited
electrons but not significantly scatter electrons in lower-
energy subbands.

2. Alternative T-junction geometries

To determine whether a T-junction device can cool elec-
trons at all, we now consider several widths ws of the side-
arm in Fig. 1. For each geometry we determine the initial
temperature Ti and chemical potential �i that minimize the
cooling parameter �. Table I shows these data and the cor-
responding final temperature To and chemical potential �o
optimized for maximum cooling.

To illustrate these data and the effect of changing the
geometry in this way, we show in Fig. 4 the variation of �
with initial temperature Ti �for initial chemical potential �i
=0� for different sidearm widths. These results show that we
achieve cooling ��	1� for some geometries and heating
���1� for others. Only the transmission coefficients depend
on the device geometry, so it is through these quantum-
mechanical scattering probabilities that we can control the
extent to which a device can cool electrons.

We shall now consider in detail a device with ws /wi
=0.4. Figure 5 shows state-to-lead transmission coefficients
for such a device. Corresponding transmission coefficients
for scattering into the sidearm are shown in the middle panel
of Fig. 3. �Note that, in regard to the sidearm data, as the
incident energy of an electron passes through the activation
threshold for a subband, the probability that the electron will
scatter down the sidearm increases rapidly. Eventually this
probability becomes larger than the scattering probability
into any lower subband of the sidearm.� At low energies the
transmission probability is nearly unity, so for this geometry
no low-energy electrons are lost from the initial distribution.
Were we to adjust the Fermi energy of this device so only the
lowest two subbands were occupied, we would see cooling.

In Fig. 6 we illustrate the dependence of the cooling effect
on the initial chemical potential �i. This figure shows the
cooling parameter � for ws /wi=0.4 as a function of the ini-
tial temperature Ti for �i=0.0, 3.0, and 6.0. Electron cooling
is maximized for �i=0, the edge of the lowest subband. At
this chemical potential all electrons scattered into the side-
arm are in the thermally active region of the Fermi distribu-
tion. Cooling is also obtained for �i=3.0, the edge of the
second subband. At larger values of �i, however, this device
heats electrons.

This example shows that a T junction can cool electrons.
We would prefer, however, a device that produces more cool-
ing than 4%. Investigation of other T-junction geometries
could not produce significantly more cooling for any value of

FIG. 3. �Color online� Upper panel: State-to-output-lead trans-
mission coefficients for electrons in a T-junction device with wi

=ws=wo. The curves correspond to different subbands of the inci-
dent electrons: ni=1 �solid curve�, 2 �dashed�, 3 �short dash�, 4
�dash-dot�, 5 �dotted�. The horizontal axis is the energy of the in-
coming electron measured in terms of the first-subband energy of
the input lead, E1

i =�2�2 /2m*wi
2, from a zero of energy at E1

i .
Middle panel: Electrons are scattered into the sidearm from sub-
bands of the input lead ni=1 �solid curve�, 2 �long dash�, 3 �me-
dium dash� 4 �short dash�, and 5 �dotted�. This case corresponds to
transmission into the output lead in Fig. 1. As the energy passes
through a threshold that opens a sidearm channel, the transmission
coefficient to that channel increases rapidly, then generally de-
creases with further increase in energy. This behavior is consistent
with a semiclassical picture of electrons with large transverse mo-
mentum and small longitudinal momentum preferentially “squirt-
ing” down the sidearm. Lower panel: The cooling parameter � ver-
sus the input-lead “reduced temperature” for the coefficients shown
in the upper panel for initial chemical potential �i=0. The “reduced
initial temperature” �horizontal axis� is the dimensionless quantity
kBTi /E1

i .
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ws /wi. So we next investigate the addition of a second side-
arm. This change produces the “plus junction” illustrated in
Fig. 7.

B. A “plus-junction” cooling device

Since we achieved cooling in a T-junction device with
ws=0.4, we shall consider a plus junction with the same lead
ratios: wi=wo and ws /wo=0.4. �The widths of the two side-
arms in Fig. 7 are the same.�

In Fig. 8 we show the results of calculations for a “plus-
junction” device. In panel �a� we plot state-to-lead transmis-
sion coefficients for the first three subbands of such a device
with ws /wi=0.40; in panel �b� we show the corresponding
cooling parameter � as a function of the initial temperature 
i
for different choices of initial chemical potential �i. In pan-
els �c� and �d� we show the corresponding results for ws /wi
=0.32. We first note that, in general, adding a second sidearm
improves the cooling by increasing the transmission coeffi-
cients into the sidearm. In panels �a� and �c� the subband
thresholds for the input lead are marked by vertical solid
lines, and the thresholds for the sidearms are marked by ver-
tical dashed lines. The transmission coefficient for the sec-
ond subband shows an abrupt decrease as the energy passes
the threshold for the first subband in the sidearm. This fea-
ture is large enough to affect transmission into the second
sidearm subband at its threshold, �=3. We also see a dip in
the first subband transmission coefficient for the first sub-
band but this dip is comparatively narrow.

These features affect the cooling parameter as shown in
panel �b�. For �i=0 and �i=3 there is a narrow range of
temperatures 
i at which the device cools. With increasing
initial temperature, electrons populate states in the first sub-
band with very small transmission probabilities. These elec-
trons are not transmitted, and the resulting hole in the popu-
lation of the first subband leads to heating—so the cooling
parameter has a relative minimum. At high temperatures,
electrons populate the lowest three bands, and cooling results
from loss of electrons from the third subband. At the higher
electrochemical potential �i=8, which equals the threshold
of the third subband, cooling does not occur until the tem-
perature 
i becomes rather large. But at sufficiently high tem-
peratures, the substantial loss of electrons from the third sub-
band leads to appreciable cooling.

Panels �c� and �d� show the results of an attempt to im-
prove cooling by narrowing the sidearm. Panel �c� shows
that narrowing the sidearm increases the threshold for each
of its subbands. This change results in less scattering out of
the first subband. Furthermore, there is less scattering out of
the second below threshold. The third subband is not
strongly affected. The consequences of these changes are
evident in the cooling parameter in panel �d�. Narrowing the
sidearm improves cooling, because the decrease in the num-
ber of electrons lost from the first subband suppresses the
bump in the cooling parameter for the larger sidearm-width
in panel �b�. The low-temperature behavior of the cooling
curve highlights the sensitivity of the effect to the loss of
low-energy electrons. Figure 3�c� shows that there is a small
notch near E=0 in the transmission coefficient into the low-
est subband. The loss of these very-low-energy electrons
means that the cooling curves for �=3 and �=8 will diverge
as T→0, since higher-energy states will always be populated
even at T=0, and when the electrons relax to fill this notch
their final temperature will not be zero. On the other hand,
the cooling curve for �=0 diverges until the temperature is
so low that there are no electrons to relax into the lost states,
resulting in a well-behaved cooling parameter in the T→0
limit.

With increasing temperature, an increasing number of
electrons are lost from the second and third subbands, in-
creasing the cooling effect. Thus cooling at an initial electro-
chemical potential of �i=8 in the narrower sidearm is better
than at any temperature in the wider sidearm �panel �b��,
because in the narrower sidearm fewer electrons are lost
from the first subband.

These figures illustrate the dependence of the cooling pa-
rameter on the detailed dependence of the transmission co-
efficients on energy. These coefficients, in turn, depend on
device geometry. For wide sidearms, more electrons may be
lost from the second subband—but only at the cost of loss
from the first subband, which produces heating. Some
choices of sidearm widths we explored produced cooling
curves with a relative minimum; in such cases increasing the
input temperature degrades device performance, because
higher-energy electrons fall into gaps in the population of
lower subbands. In all cases, however, the trend at high tem-
peratures �5	
	15� is to increase cooling; eventually the
behavior of devices that lose a substantial fraction of elec-
trons from the third subband approaches the classical model

TABLE I. Cooling parameters � of T junctions with different
sidearm widths ws. Also shown are the input-lead chemical poten-
tial �i, the output-lead chemical potential �o, and the output-lead
temperature To optimized for maximum cooling.

ws �i Ti To �o �

1.0 0.0 4.06 4.36 −3.27 1.07

3.0 5.22 5.80 −1.72 1.11

6.0 6.19 7.18 −0.21 1.16

0.9 0.0 4.65 4.94 −3.35 1.06

3.0 5.49 6.00 −1.28 1.09

6.0 6.25 7.10 0.57 1.14

0.75 0.0 3.40 3.52 −1.80 1.03

3.0 4.77 5.10 −0.01 1.07

6.0 6.07 6.73 1.66 1.11

6.0 0.0 1.25 1.24 −0.33 0.99

3.0 5.19 5.40 0.65 1.04

6.0 6.38 6.83 2.67 1.07

0.5 0.0 1.43 1.37 −0.19 0.96

3.0 1.11 1.14 2.48 1.02

6.0 5.96 6.34 3.34 1.06

0.4 0.0 2.10 2.02 −0.14 0.96

3.0 1.93 1.90 2.62 0.98

6.0 4.80 4.96 4.44 1.03
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of Eq. �16a�. Apparent improvement in cooling at high tem-
peratures must be tempered by the realization that the model
breaks down if the electron-phonon scattering length is too
short compared to the size of the device. We discuss this
point in more detail below.

One could try to further optimize the geometry of a device
by, for example, allowing the width of the sidearms to in-
crease with increasing distance from the junction with the

central region. Alternatively, one could round the sharp cor-
ners at each junction into smooth curves. However, our ini-
tial explorations of such alterations did not produce substan-
tially more cooling than obtained with the far simpler plus
junction in Fig. 7. The essential feature that makes a plus
junction more effective than any T junction is the presence of
more than one sidearm. For ws /wi=0.4 we obtain almost 8%
cooling ���0.92� compared to 4% ���0.96� in the T junc-
tion. It is also important that the threshold for scattering into
these sidearms lies above the threshold for the second sub-
band of the input lead. Further improvements might be
gained from cascading stages of the plus junction.

IV. EXPERIMENTAL CONSIDERATIONS

We now consider a plus-junction device using realistic
experimental parameters for InSb and GaAs. All material
properties of an actual device depend on the Fermi energy EF
of the system. This quantity is inversely proportional to the
effective mass m* of the electrons in the material and is

FIG. 4. �Color online� The cooling parameter � as a function of
the reduced initial temperature with initial chemical potential �i

=0 for different values of ws /wi. The cooling parameter decreases
with increasing magnitude of ws /wi=1.0 �solid line�, 0.9 �long
dash�, 0.75 �medium dash�, 0.6 �short dash�, 0.5 �dash-dot�, and 0.4
�dotted�. The reduced initial temperature is defined in the caption to
Fig. 3.

FIG. 5. �Color online� State-to-lead transmission coefficients for
electrons in a T-junction device with wi=wo and ws=0.4wi. Elec-
trons are scattered into the output lead from subbands of the input
lead ni=1 �solid curve�, 2 �long dash�, 3 �medium dash� 4 �short
dash�, and 5 �dotted�. The horizontal axis is the energy of the in-
coming electron measured in terms of the first-subband energy of
the input lead, E1

i =�2�2 /2m*wi
2, from a zero of energy at E1

i . See
also the data in Table I.

FIG. 6. The cooling parameter � as a function of the reduced
initial temperature for a T-junction device with wi=wo and ws

=0.4wo for three initial chemical potentials, �i=0.0 �solid curve�,
3.0 �dashed�, and 6.0 �dotted�. These data are based on the trans-
mission coefficients shown in Fig. 5. Maximum cooling is obtained
for �i=0. The reduced initial temperature is defined in the caption
to Fig. 3.

FIG. 7. Schematic of a plus-junction device. While the widths of
the input and output leads are equal �wi=wo�, the width ws of the
two identical sidearms may be smaller or larger than wi.
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determined by the electron density in the reservoir. For our
device we chose for the initial chemical potential �which is
approximately equal to the Fermi energy� �i=0. Since we
have scaled the energy by E1

i and chosen E1
i as the zero of

energy, setting the initial chemical potential equal to zero
means that

�i = EF =
�2�2

2m*wi
2 , �17�

where wi is the width of the input lead of the device in Fig.
7. Since the Fermi energy and the subband energies depend
on the effective mass in the same fashion, the width of the
input lead is independent of the material. For a sample with
electron density n, we have

��2

m* n =
�2�2

2m*wi
2 , �18�

which gives

wi =� �

2n
. �19�

If, for example, n=1.0�1011 cm−2, then wi=39.6 nm, quite
a small value. We can increase this value by decreasing the
electron density.

For a plus junction, we were able to maximize cooling by
setting the initial temperature to 
i
2 in dimensionless
units. In dimensional units, this optimum temperature is

kBT = ToptE1
i . �20a�

Using Eq. �17�, we obtain

kBT = ToptEF. �20b�

For a sample with n=1.0�1011 cm−2, the initial tempera-
ture for maximum cooling is Ti
82 K for GaAs and Ti

399 K for InSb. Room temperature �300 K� corresponds
to T
1.5 for InSb. One can therefore obtain substantial
cooling due to quantum effects in a room-temperature de-
vice. A cooling parameter of �
0.95 implies that the elec-

FIG. 8. �Color online� �a� State-to-output-lead transmission coefficients for electrons in a plus-junction device with ws /wi=0.4. The
curves correspond to different subbands of the incident electrons: ni=1 �solid�, 2 �long dash�, and 3 �short dash�. The horizontal axis is the
energy of the incoming electron measured in terms of the first-subband energy of the input lead, �2�2 /2m*wi

2, from a zero at this energy. �b�
Cooling parameter �, calculated from the coefficients in �a�, as a function of the reduced initial temperature 
i. The reduced initial
temperature is defined in the caption to Fig. 3. Plotted here are curves for initial chemical potentials of �i=0 �solid�, �i=3 �long dashed� and
�i=8 �short dash�. �c� Transmission coefficients as in �a� but with ws /wi=0.32. �d� Cooling parameters as in �b� but with ws /wi=0.32. In
panels �a� and �c� the subband thresholds for the input lead are marked by vertical solid lines, and the thresholds for the sidearms are marked
by vertical dashed lines.
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tron population is cooled by 15 K. The resulting cooled elec-
trons could be used for photodetection of optical frequencies
corresponding to thermal energies near room temperature.

One problem is that at high temperatures the system will
no longer act in a quantum-mechanical fashion. While point-
contact experiments have shown features at temperatures as
high as 44 K,15 these features wash out at higher tempera-
tures. However, we do not require long-range quantum-
mechanical coherence across the device. Only electrons in
the scattering regions must behave quantum mechanically.
Once the electrons leave the interaction region, any dephas-
ing collisions will not affect their subsequent transport, so
long as nothing heats the electron gas before its temperatures
is measured.

The parameters for these devices operate in the “low-
temperature” regime. We could design a device to operate in
the “high-temperature regime” �
�1� by using wider quan-
tum wires. This change would decrease the characteristic en-
ergy E1

i so as to increase the reduced temperature 
 for a
fixed actual temperature T. But we cannot choose too large a
value for the width wo of the output lead, since we want to
retain �i
0; this condition with a large value of wo would
require an initial Fermi energy �and thus an initial doping�
that would be too low to be practical. For example, for InSb
we could set E1

i to one-tenth the thermal energy at room
temperature, which would involve approximately tripling the
width of the wire. However, we would also need to decrease
the doping by a factor of 10.

The devices we have considered have only one cooling
stage. One could increase cooling by connecting multiple
plus junctions in series. The spacing between junctions, how-
ever, must be large enough that scattering resonances be-
tween sidearms are negligible. If not, one would have to treat
the device as a single large quantum-mechanical scattering
target. While the presence of such resonances would not pre-
clude cooling, they would make calculations for a chain of
junction devices more difficult and sensitive to details of
phase breaking.

V. CONCLUSIONS AND PROSPECTS FOR FUTURE
RESEARCH

Many photodetection applications require a cold detector.
We have presented results for a prototype device that dem-
onstrates electron cooling in a single-particle picture. We
have shown that, while a naive T junction can produce mod-
est cooling, adding an additional sidearm yields a device—
the plus junction—that can produce as much as 8% cooling,
The abrupt discontinuities in the confining potentials in these
models are not essential to cooling; what is essential is that
higher-subband states, in which electrons have larger trans-
verse momenta, scatter appreciably into the sidearms. We
therefore expect electron cooling in such devices to be insen-
sitive to details of the potential so long as the potential does
not eliminate the states of the lowest subband.
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APPENDIX: R-MATRIX THEORY FOR A
TWO-DIMENSIONAL SYSTEM

We consider the two-dimensional system in Fig. 9. This
system has a central region A connected to N external re-
gions or “leads.” The leads and the interior region meet at a
set of boundary surfaces we denote by S0,S1,. . .,SN. We treat
the boundaries between the shaded and unshaded regions as
“hard walls” �infinite potential� so electron wave functions
are nonzero only in the shaded regions. Since there may be
more than three leads, we depart from the notation used in
the body of this paper �in which the input, output, and side-
arm leads were denoted by subscripts i, o, and s� and denote
the input lead by a zero subscript and all other leads by
positive integer subscripts. We measure all distances in units
of w0 and energies in terms of �2 /2m*w0

2. We seek an ana-
lytic solution for the amplitudes of outgoing states in the
leads when only one incoming state is occupied.

The time-independent Schroedinger equation for the scat-
tering function is

�Ĥ − E���E,no
� = 0, �A1�

where ��E,n0
� represents the state of an electron with kinetic

energy E incident in input-lead subband n0. Note that ��E,n0
�

is well defined in all leads. In a finite region, the Hamiltonian

Ĥ is not Hermitian. We can produce a Hermitian operator by

adding to Ĥ the so-called Bloch operator L̂B.10 We denote the

eigenfunctions of Ĥ+ L̂B in the interior region A by ��i� and
write the so-called Bloch eigenvalue equation as

�Ĥ + L̂B���i� = Ei��i� . �A2�

Inserting the Bloch operator into the Schroedinger equation
we get

�Ĥ + L̂B − E��E = L̂B�E. �A3�

We now expand the scattering wave function ��E� in the
set of orthonormal Bloch eigenfunctions

FIG. 9. Schematic of a two-dimensional device for the present
scattering calculations. The surfaces S1, S2 , . . .SN separate the inte-
rior region A from the N leads.
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��E� = �
j

Cj�� j� . �A4�

Inserting this expansion into the Schroedinger equation and
using the properties of the Bloch eigenfunctions yields

��E,n0
� = �

j

�� j�L̂B��E,n0
�

Ej − E
�� j� , �A5�

where Ej is the eigenvalue corresponding to the Bloch eigen-
function �� j�. This expansion is valid throughout the interior
region A and on its surface �see Fig. 9�.

To derive an equation for the R matrix, we now apply this
expansion of the scattering state on each boundary Si. At
each such boundary we can expand the scattering function in
either lead eigenfunctions or Bloch eigenfunctions in the in-
terior region. To be specific, we introduce a local Cartesian
coordinate system for each lead: xq and yq are the longitudi-
nal and transverse coordinates of the qth lead, respectively.
We choose xq=0 on each boundary. �One can easily choose
any orthonormal coordinate system, mutatis mutandis.� Each
lead eigenfunction is then a product of a plane wave in the xq
direction and a transverse bound-state eigenfunction �n�yq�.
The scattering wave function in the qth lead therefore be-
comes

�E,n0
�xp,yp� = e−ik0,n0

x0�0,n0
�y0��p,0

+ �
q,nq=1

N


q,nq
�E�eikq,nq

xq�q,nq
�yq��p,q,

�A6�

where kq,nq
and 
q,nq

are the wave vector and transmission

amplitude for the channel with quantum number nq in chan-
nel q. Also, �nq

�yq� is the nqth transverse eigenfunction for
lead q. Finally, �p,q is the Kronecker delta function, which
ensures that each wave function is defined in only one lead.
If we measure energy in units of E0 then we can express
energy conservation in lead q as E=kq,nq

2 +nq
2�2 /wq

2, where
wq is the width of the qth lead �in units of w0�. We use this
equation to determine the wave vector kq,nq

.
After considerable algebra we get a set of linear algebraic

equations that we can solve for the transmission amplitudes:

i�
p,np


p,np
�E�kp,np

Mq,nq,p,np
�E� − 
q,nq

�E�

= �q,0�nq,n0
+ ik0,n0

Mq,nq,0,n0
. �A7�

In writing these equations we have defined matrix elements

Mq,nq,p,np
= �

yp

�
yq

�q,nq

* �yq�RE�yq,yp��p,np
�yp�dyqdyp.

�A8�

Finally, the R matrix is given by

R�E,yp,yq� � �
j

� j
*�xq = 0,yq�� j�xp = 0,yp�

Ej − E
. �A9�

This equation is general in that we can easily adapt it to any
number of leads and to different choices of input lead.
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